Av%#@@kg

AUTHOR: SUDHIR KAMAT
Keyworbps: 4021, 4094, SPI,

DesicN NOTE
#047

This document is originally distributed by AVRfreaks.net, and may be distributed, reproduced, and modified
without restrictions. Updates and additional design notes can be found at: www.AVRfreaks.net

The Pin Adder.

Uses Seven Pins to Add 64 or more

Introduction

Serial Input Driver

This might sound a like a rather strange name for a project but this is just what the circuit
does “Adds I/0”. The AVR series are already very brutal with respect to speed and per-
formance but for me (and | suppose there are a lot of folks around there) having
additional 1/O is always welcome. The Parallel method using 74HC573 latches needs a
dedicated latch enable per 573 and uses the eight pins of the bus. Cascading is thus
difficult.

The 12C port expander PCF8574 is good but | like to keep things simple and fast. This
circuit allows huge cascading capability without the limits of addressing and 1°C routines.
PCB layouts are much simpler and straightforward with this method. The SPI is used
from the main MCU in the Master mode and this works right up to F,/4 (2 Mbps with 8
MHz XTAL) without any problem whatsoever. Remember to use some further buffer
drivers for the LD, SCK, STR, OE, and LE signals if driving between different PCBs or a
large number of chips.

| have designed an 80 input (10 x 4021) and 40 Relay output (5 x 4094) Logic Controller
for an amusement park game and it works beautifully. In fact I even multiplexed the SPI
to also read from a console keypad and drive display leds and several seven segment
displays. This designs note is aimed at the AVR series having an SPI interface. But with
a little ingenuity a software SPI can be written and then even an ATtiny can be made
very powerful with a handful of Shift Registers.

The Serial Inputs are handled by a CMOS 4021 chip. This is a very versatile Serial/Par-
allel In — Serial Out chip. A low to high strobe (LD) on the P/S Input (Pin 9) serves as the
load signal to place the data at the parallel inputs into the Shift Register.

Every subsequent clock pulse transfers the data from the register to the output. When
devices are cascaded the subsequent pulses after the first chip has serially output its
data are accepted from the Serial Input (as P/S is now low) thus data from the subse-
quent chips shift into each other and to the MISO pin. The last chip should have its serial
in grounded so that no noise creeps in.

Actually this is not very critical because you have already got your required data by then.
P/S is therefore strobed once (LD) and the data from the required number of 4021 chips
shifted in. The same routine can be repeated after a suitable debounce delay. | use a
dedicated debounce byte per 4021 (each bit serves as a debounce indicator) but there

www.AVRfreaks.net Design Note #047 — Date: 02/03

Avé@@kg

are a lot of debounce options. Note the inputs of the 4021 are Idle high and Active Low.
They can be further opto isolated for safety and noise surpression.

SPCR Set Up Routine The SPI Interrupt Enable bit must be set depending on whether a polling sequence is
being used or an interrupt. | prefer the polling sequence though. The SPI is enabled by
the setting of the SPE bit. Disabling this after the routine can stop the SPI operation if
necessary. The actual inputs and the bits of the data byte are determined by the DORD
(Data ORDer) option. The MSTR bit sets either Master or Slave operation. Master is the
mode employed here. The CPOL bit sets the Idle clock state. This is Low in case of the
4021 & 4094 and must bet set accordingly. The CPHA bit sets the clock phase which is
0 for the 4021 and 4094. Bits SPR1 and SPRO set the SPI Data rate. The speed can be
changed to suit requirements but | have used F, /4 without any problem.

Serial Input Routine To read a byte you must write a dummy byte to the SPDR. This byte appears on the
MOSI pin (That's why the next section uses a STR for the 4094 chips, to ignore this
data.) so make sure nothing else is getting triggered. You can poll the SPCR for the SPI
Transfer Complete Flag or use an interrupt based routine. Either way once the SPI
Transfer is complete the data from the SPDR must be read and stored to a register or
ram. | always use an array in RAM and put the whole process in a loop depending on
the number of bytes to be read. That's about it. The bytes from your inputs are in Ram

and you can proceed to solve your debouncing problems etc.

. Cseg

ckkkkkkkkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkkkkk kkhkkhkkhkkhkkhkkhkkhkkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhhkhkhkhkhkhkhhhkhkkx*k
; READSPI

.equ Tabl e_i nput =0x60 Ram address to store input data
. def data =r1 Dat a Regi ster
. def tenp =rl6 ; General Register
. def tenp2 =r17 ; Counter for number of bytes
Readspi: 1di r30,|ow Tabl e_i nput) Load Z-pointer with ram address
| di r 31, hi gh(Tabl e_i nput)
| di tenp2, 4 Nurmber of bytes to input counter
| di t enp, 0b01110000 No SPI Interrupt, SPlI enabl ed,
Data order LSB first
out spcr, tenp Master select, Cock polarity
; normal |y Low,
; Clock Phase 0, SPI clock rate
Ferl 4
clr tenp Dunmmy byte to be witten to SPDR
sbi portb, 0 Strobe LD High to Load 4021s
nop
chi portb, 0 Restore LD
readl oop: out spdr,tenp
nop
pol | : sbis spsr,7 ; wait for transfer to conplete
rjnp pol |
done: in data, spdr read data from SPDR
st z+, data ; Store in Ram and increnent ram
; address
dec tenp2 Decrenent byte counter

www.AVRfreaks.net

Design Note #047 — Date: 02/03

Serial Output Driver

Serial Output Routine

Avé@@kg

br ne readl oop ; If not done go to readl oop el se
; What ever

what ever: rjnp whatever
pREFR XA K KR x kKKK **x . Remenber to Disable SPI if necessary when done

The Serial Output Driver is just the opposite of the Input Driver described above. The
chip utilised is a simple CMOS 4094. This has a Serial Input (pin2) a Strobe Input (pinl)
a SCK Input (pin3) and an Output Enable (pinl5). The strobe selects whether the Serial
Data is for this chip or not (therefore it ignores the clock pulses fed to the 4021 s in the
input driver). An important observation is that the 4021 loads all the Parallel data in one
shot. In comparison the 4094 serially shifts one input bit at a time to the output on each
clock pulse. This means there is a finite time (depending on the number of 4094 s)
where the outputs are changing depending on the data. The output enable pin can
effectively tri-state the outputs but this can cause a temporary undefined state to the
output devices. This is ok when driving LEDs and seven segment displays but avoidable
when driving relays etc. The solution is therefore implemented in the form of an addi-
tional 8-bit latch (74HC573) which can be latched (LE) after all the data bytes have been
serially output and are settled and stable. Photo-triac drivers such as the MOC3021,
MOC3041 (Zero-Crossing) can also be driven using an open collector NPN transistor or
a low drive current FET such as the BSS170.

The SPCR set up routine (as described above) must be followed first before data is writ-
ten to the SPDR. The data to be output must be in a defined register(s) or in Ram.

An output array is what | use in Ram. Once data has been written to the SPDR the
SPCR can then be polled for the SPI Transfer Complete Flag or an interrupt based rou-
tine can be used to determine the Transfer Complete. Subsequent bytes can be read
and transferred using a simple loop with a register or RAM increment. While driving
seven segments please note the lack of series resistors. The voltage drop of the seg-
ment LED + the two 4148 diodes serves to establish the brightness and equally
distribute all current.

Use good quality displays and the brightness will never be a problem. The output of the
4094 does saturate but this is no problem and | have been using this for years without
any problem whatsoever. The same applies for driving LEDs. The beauty of driving
seven segment displays is the layout on the pcb is very simple because you can route
any of the segments to any of the 4094 outputs. A simple lookup table will then have to
be created to display the corresponding data on the display. In fact | have even used dif-
ferent pcb artwork for different seven segment displays adjacent to each other. This has
allowed me to use a single side pcb and all | had to do was create separate lookup
tables for each display.

Rememberto check on the MSB/LSB first bit as this can cause some confusion.

Notes: 1. The code does not include the Strobing of the LE (Latch Enable of the 74HC573) for
the Latched relay outputs. Remember to keep this pin low normally and strobe it high
and back low ---after all the data has been shifted to the various 4094s.

2. On power up a Display clear routine sending 0b00000000 to all 4094s should be
usedto clear the initial states of the 4094s.

www.AVRfreaks.net

Design Note #047 — Date: 02/03

Avé@@kg

. Cseg

Y~ I 1 =o = IR e T e

.equ Tabl e_out put =0x60 ; Ram address of data to be output

. def temp =r16 ; General and data register

. def temp2 =r17 ; Counter for nunber of bytes

Witespi: |di r30,lom Table output) ;Load Z pointer with ram address

| di r 31, hi gh(Tabl e_out put)

| di tenmp2, 4 ; Nunber of bytes to output counter

| di t enp, 0b01110000 ;No SPI Interrupt, SPlI enabled, Data
;order LSB first

out spcr, tenp ; Master select, Cock polarity

;normal Iy Low, Clock Phase 0 , SPI
;clock rate Fg /4

chi portbh, 2 ;Tristate 4094 outputs (use if
;necessary)

sbi portb, 1 ; Enabl e the 4094s STR pin as data is
;routed to them

witeloop: Id tenp,z+ ; Read data from Ram and i ncrement Ram
; address

out spdr, tenp ;Wite data to SPDR

nop

pol | : shis spsr,7 ; Wit for transfer to conplete

rjnp pol |

done: dec tenp2 ; Decrenent byte counter

br ne writel oop ;1f not done go to readl oop el se exitspi

exi tspi: shi porth, 2 ; Enabl e 4094 outputs (use if necessary)

chi porth, 1 ; Disabl e the STR of the 4094s

what ever: rjnp whatever ; do what ever next

ckkkkkkkkhkkkk*k
i

; Remenber to Disable SPI if necessary when done

www.AVRfreaks.net Design Note #047 — Date: 02/03

14 7 € 4 T

Avé@@kg

[1Sy TIN] OpesEs $V|o
- — — —IayTIN] opeose)
T 0TP%8 | 2ed 4 20 J1oA1Ip Ke |ay payo jeT "
EXR |
UOISINGY JaquinN Erdly ar o1 | |
JaAflup Ae|ds g juaubss 2 ac oz 6 1 [_8T_ \
19ppY N Id 3yl - ae o¢ —8 £t | v
! F av Or —s—+ — !
as o5 5 —= "
as 09 —
Il_ m as WN T
] as 8
Bloklom 6 T 8 1oy spoig 18
o €.SOHVL 6
I o1n VEOBZ NN
8yTY, 8y, TN
_ _ J9A 110930 |09 UddD NN
@ V_ m
1oA 11 pa BTV, 8v1Y,
8 X Spa Wug © |
El
3
- -
oo oS afo|ol alo|o |5
o o o o
£ 00909999 949 S| 0999299992 94 £ 099099909 949 =4
7 BRIRESIE @ G RRIVISIE @ 7 BRIRESIE B @ beb)
o~ © i n
&) o S & b
i . &
n Q n Q n Q9 n Q
JoxR ToxA JoxR JoxR 1oy TIRT30835% — >
7607 7607 607 7607 <
9N n 8n 6N
= = = & W
‘Are|d 1oy papwo sdea Burjdnodsq - T~ W
Ue SUOLIBUU0D) [e1sAID :310] -t
P " 9 [0 #10N 8-T sinduj 91-6 sinduj yeg-LT sinduj 26-62 sindul °
5788506 vsn mV MI0MI3N $9 40T HOMI3N $9Y 40T HIOMI3N $9Y 40T HOMISN 98 0T
00d ‘pu9
£ 1od ax —% s _ _ < _ _
&7 20d TIEIX —or
w1 €d Lad —7 55 punosb 0} (sa)
¥2d 9ad — =52 TTUuId 2l Ise] Uoys
Sz | g sy 9t [
9¢ ST — — — 13yTINn} opedse)
92d ¥Qd
Iz 7T
10d €ad
[H Zay —EL
62 Tad <&
(3 TT
3 00d 5t
26— Lvd 184 —
S 9vd 19d — 5
svd 98d
Ve OSIN
s rvd sad SO
51 Evd yad —e—
e evd edd =
Tvd zad
8¢ 30
3 m%n_ 18d PG
For M 08d oy
G+
14 € 7 T

Figure 1. The Pin Adder

	Introduction
	Serial Input Driver
	SPCR Set Up Routine
	Serial Input Routine
	Serial Output Driver
	Serial Output Routine

