
Common USB Development Mistakes – You Don’t Have
To Make Them All Yourself!

Steve Kolokowsky & Trevor Davis – Cypress Semiconductor
Copyright © 2006 Cypress Semiconductor

11 years have passed since USB was first introduced. Believe it or not, people
are finding new and innovative ways to use this protocol every single day. They
are also making the same mistakes every single day on thousands of designs
worldwide! When will learn from one another? How about right
now? Interestingly, USB has many similarities to the protocols that developers
are already familiar with. And yet, it is far enough away from the familiar territory
of PS/2 and RS-232 that engineers make the same mistakes over and over again.
Additionally, with tough compliance standards in place, engineers make mistakes
that could cost them USB compliance. These mistakes fall into five main
categories: Speed, power, signal quality, software and compliance.

Figure 1. The Most Common “Deadly Sins” For USB Design

Speed
Without question, one of the most misunderstood USB issues between
consumers and developers, and one of the most common questions on the floors
of retail stores all over the world, is what speed a given USB device is. There are
three current data transfer speeds for wired USB. USB Low Speed transfers
data at 1.5 Mbits/sec, Full Speed USB transfers data at 12 Mbit/sec, and High
Speed USB transfers data at 480 Mbit/sec. Don’t get confused though: USB 2.0
does not equal High Speed USB. High Speed USB was first introduced in the

USB Specification version 2.0 release that also addressed both Low Speed and
Full Speed data transfers.

As with any electronic system, designers want the best performance possible.
Unfortunately, with USB, many designers begin their design believing they are
going to get the full 1.5, 12, or 480 Mbit/sec performance from their system – this
is a bad assumption. There are several reasons why your device will never be
able to use all of this bandwidth. First of all, the USB bus is shared among
several users. Even if you are plugged into different ports on the motherboard,
you are probably sharing the same host controller as all of the other devices on
the bus, so your device is sharing the USB bus bandwidth with all of the other
devices.

Second, USB is a packetized protocol where longer blocks of data are divided
into 512-byte packets. Each packet contains a header identifying the packet
contents, and a CRC at the end of the packet for data integrity. Each packet also
requires an ACK from the other side of the link. Start of Frame (SOF) packets
are sent every 125 uSec (microframe) to maintain timing on the bus. The net
effect of this is that the theoretical maximum bandwidth of USB is 13 bulk
packets per microframe, or 53,248,000 bytes/second. Even this limit is not
achievable with current host controllers, which can receive 10 bulk
packets/microframe or send 8 bulk packets/microframe.

Figure 2. USB Bulk Transfer Frame

Failure to anticipate bottlenecks in the system: More than one high-speed
system has fallen prey to this issue. Cypress Semiconductor recently analyzed a
system that was writing data to a NAND flash. This system was sending data
over USB, storing the data into a buffer and then writing the data to the flash.
Every packet had three components of time: 1) the time to perform the USB
transfer, 2) the primary Operating System overhead timing, and 3) the
programming time of the NAND Flash firmware. A real-time analysis of the
performance revealed the timing below for a 128Kbyte block:

Figure 3. System Bottleneck Example

Until this time breakdown was completed, the engineers were spending all of
their time trying to reduce the USB transfer time by speeding up the waveforms
used by the USB interface chip. Once they realized, however, that performance
was dominated by their NAND Flash programming firmware, they were able to
greatly improve performance by reducing their NAND overhead. In most
systems, high-speed USB will not be the bottleneck. As a result, designers must
look closely at their entire system to ensure they have the bandwidth headroom
to reach the system speeds they desire.

Power
USB Bus Power: According to the USB specification, USB devices can either be
“Bus-powered”, powered through the USB cable, or “Self-powered”, powered by
a battery or plugged into the wall. One of the best ideas in USB was allowing
bus-powered devices – no need for a power plug! However, using USB bus-
power means that you have to live within the 500uA, 100mA and 500mA limits
imposed by USB. Unfortunately, many designers do not closely monitor these
limits and they create designs that do not properly comply with Bus Powered
compliance rules.

• 500uA – When the host is supplying power, but there is no activity on
USB, your device must be in USB suspend. In this state, you can only
draw 500uA from VBUS. This state exists to minimize current draw when
a PC is in suspend mode.

• 100mA – USB has high-power (500mA) and low-power (100mA) ports.
Low-power ports are generally found on bus-powered hubs, which take in
500mA and distribute 100mA to each of their downstream ports. When
your device is first plugged in, it doesn’t know what kind of port it is
plugged into, so it is limited to 100mA until it receives a
SET_CONFIGURATION message from the host. This means that your
device must be functional enough to enumerate on USB at a very low
power setting until it receives the SET_CONFIGURATION message that
allows it to switch to a high power setting. This was very difficult to do in
high-speed USB until the Cypress Semiconductor’s FX2LP chip was
introduced in 2004.

• 500mA – This is the absolute maximum power allowed under the USB
spec.

Real world design testing should be conducted by system engineers to ensure
they are meeting all the different power levels necessary for Bus Powered
operation – or else you’ll be shipping an expensive wall plug with that new USB
system of yours.

Back-power: “Self-powered” USB devices can also have their own power
problems. Since self-powered devices have their own independent power
supplies, they can be ON while the host is turned OFF. This causes a potential
problem where the small pull-up voltage applied to D+ to enable USB device
detection slowly charges up the entire host system and interferes with startup.
Self-powered USB devices (including battery-powered devices) must either drive
this pull-up directly from VBUS or turn it off via software control using a VBUS
sensor.

Signal Quality
Sharing D+/D-: In an effort to save time, effort, and money, some products
attempt to share the USB signal lines between multiple devices. For example, a
USB-based docking station may want to allow a floppy drive or a DVD player to
be inserted in a storage slot. Sharing the USB lines between the two devices
saves cost by reducing the number of required hub ports. However, it is difficult
to implement either of these approaches without fully understanding the
characteristics of all of the devices in the system. In the tristate arrangement
(Figure 4 option #2), the other device on the bus will add capacitance to the USB
lines. Also, the trace to this other device will cause reflections that may interfere
with high-speed USB operation. In the switch arrangement (Figure 4 option #1),
the switch will add both capacitance and resistance to the USB lines, slowing the
rise/fall times of the USB lines and closing the USB eye.

Figure 4: Docking Station D+/D- Sharing Options

Figure 5 shows a typical USB device transmit eye after it goes through a switch
with a 10pF / 10 Ohm load; there should be no interference with the red area
within the signal eye. The key to successful USB signal sharing is to keep this
load low and use a chip with fast edge rates.

Figure 5. Impeding Signals with Extra Interference

Because of Shared Signal Lines

Software
Not using available class drivers: Class drivers are an important part of the USB
ecosystem. These drivers are provided by the major operating systems so that
device driver development is not needed. USB classes are defined by the
Device Working Groups, volunteers who meet under the auspices of the USB to
create a standard language for talking to devices. The USB device classes that
exist today include HID – Human Interface Device (mice, keyboards and other
controls), Mass Storage (disk drives), Communication (modems, network
adapters), Audio, Video, and Still Image – Photos and Scanners.

If your device exactly fits into the existing class structure, the decision is simple.
Just go to www.usb.org, download the class definition and implement it.
However, if your device doesn’t exactly fit into the existing classes, they can still
be useful. For example, Microsoft used the Still Image Class to implement the
new MTP (Media Transfer Protocol) class. The HID class doesn’t have to
connect to something that interacts with the user; it can be used to interface
thermometers, pressure sensors, and pump controls to your program without
creating a driver.

For some reason, many companies attempt to take on custom driver
development or to hire outside driver design houses to perform expensive driver
development when implementation of a Class driver will do. Class drivers
eliminate design risk, cost and schedule issues, and debugging and complexity
issues.

Failure to obtain a VID from the USB I/F: Every USB device contains a unique
identifier so that the operating system can find the correct driver for the device.
The first part of the identifier is a 16-bit value assigned by the USB Implementor’s
Forum (www.usb.org) (VID). The second part of the identifier is a 16 bit value
assigned by the vendor (the company that created the product), called the PID.

USB Vendor ID – Assigned by USB

Implementers Forum (USB I/F)
Product ID – Assigned by Vendor

16 bits 16 bits

Obtaining the VID and then creating the PID is a simple process if the company
and designer plans ahead and is in proper communication with the USB
Implementers Forum. Unfortunately, every year thousands of devices are
delayed as a result of not having proper identifiers assigned as firmware or
software work is being done and the VID and PID numbers are needed for
identification.

Compliance
Failure to test prototype before sending for compliance testing: To legally use
the various USB logos, products must pass USB compliance testing. The USB IF
performs compliance testing to insure that all end customers have a good
experience with USB. This is important because all USB vendors are relying on
each other to generate goodwill with the public. If a customer has a bad
experience with one USB device, that customer will be much less willing to invest
his time and effort in another one.

Figure 6: USB Certified Logos

Some of the tests done during compliance testing require expensive, high-end
testing equipment that may be difficult for developers to afford. However, many
devices fail compliance testing due to simple items that any developer can check.
Before heading out to a plugfest or sending your device for compliance testing,
you should at least run these tests:

• Chapter 9 test – USB Command Verifier Tool. This program verifies that
your device can handle the most important SETUP commands that may
be sent from a host (check http://www.usb.org/developers/tools/ for tools)

• Power tests – Suspend current, inrush current, unconfigured current

EMI: Good EMI design techniques can fill an entire article on their own. The
most common and simple-to-fix EMI error is mistakenly tying the shield in the
USB cable directly to the ground plane of your system. This allows any noise

injected into the ground plane to escape any shielding around your device. In
addition, this noise is now being broadcast on a 2-meter long antenna!

Figure 7: Schematic of Cypress FX2LP development

board with separate shield ground

So now you know the problem areas. Hundreds of designers every year lose
more and more hair trying to solve issues resulting from the problems above.
Save yourself the hair-loss and the agony of rework and schedule delays – learn
from the mistakes of others. But most of all, don’t stop being creative because
the world will continue to demand more innovative, sophisticated, and enjoyable
USB based devices. Happy designing!

