132 x 176 dot Graphics Controller Driver for TFT 260,000-color Displays

HITACHI

Rev.1.0-1 October 2002

<NOTICE: This document may, wholly or partially be subject to change without notice>

Description

The HD66773, controller driver LSI, displays 132RGB-by-176 dot graphics on TFT displays in 260,000 colors. The HD66773's bit-operation functions, 18-bit high-speed bus interface, and high-speed RAM-write functions enable efficient data transfer and high-speed rewriting of data to the graphic RAM.

HD66773 has a low-voltage operation 2.2V min, and it is equipped with internal operation circuits for TFT gate and source. Also HD66773 has the internal booster that generates the liquid crystal voltage, breeder resistance and the voltage follower circuit for liquid crystal driver. And HD66773 can compose a LCM only with an external capacitor and resistor. In addition, precise power control can be achieved by combining these hardware functions with software functions, such as an 8-color display and standby and sleep mode. This LSI is suitable for any medium-sized or small portable battery-driven product requiring long-term driving capabilities, such as digital cellular phones supporting a WWW browser, bi-directional pagers, and small PDAs.

Features

- 132RGB x 176-dot graphics display LCD controller/driver for 260,000 TFT colors.
- 18-/16-/9-/8-bit high-speed bus interface and serial peripheral interface (SPI)
- High-speed burst-RAM write function
- Writing to a window-RAM address area by using a window-address function
- Internal bit-operation functions for graphics processing:
 - Write-data mask function in bit units
 - Logical operation in pixel unit and conditional write function
- Various color-display control functions:
 - 260,000 colors can be displayed at the same time (gamma adjust included) Vertical scroll display function in raster-row units

- Low-power operation supports:
 - Vcc = 2.2 to 3.3 V (low-voltage range)
 - Vci = 2.5 to 3.3 V (internal reference voltage)
 - Power-save functions such as the standby mode and sleep mode
 - Partial LCD drive of two screens in any position
 - --- Internal power supply circuit
 - Internal equalize function
- Structure for TFT-display retention volume Cst/Cadd structure
- Internal power supply circuit

 - Alternating functions for TFT-display counter-electrode power supply
 - N-line alternating drive of Vcom (Vgoff is also available for N-line alternating drive for Cadd)
 - Adjustment of Vcom (Vgoff) amplitude: internal 22-level digital potentiometer
- Output power-supply voltage
 - --- For the TFT-display counter electrode: Vcom amplitude = 6V (max), VcomH-GND =VREG1OUT (max), VcomL-GND= Vci + 1.0V to -Vci+0.5V (max)
- Internal RAM capacity: 46,464 bytes
- Internal operation circuit of liquid crystal display
 - Source signal: 396
 - Gate signal: 176
- n-raster-row inversion drive
 (It is possible to invert the polarity in every selected raster-row.)
- Internal oscillation and hardware reset
- Shift change of source/gate driver
- Available to COG with setting gate on both edge on one chip

HD66773 Block Diagram Description

TBD

Figure 1: HD66773 Block Diagram Description

Rev. 1.0-1 / October 2002

Rev. 1.0-1 / October 2002

Table 1 HD667B73 PAD Coordinate (Laced)

_	pad name	Х	Y	^	name	Х	Y
1	DUMMY1	-10209	-1099	101 Vcc		109	-1089
2	Vcom1	-10041	-1089	102 Vcc		189	-1089
3	Vcom1	-9961	-1089	103 Vcc		269	-1089
4	DUMMYR1	-9859	-1089	104 Vcc		349	-1089
5	DUMMYR2	-9768	-1089	105 Vcc		430	-1089
6		-9650	-1089	106 Vcc		510	-1089
7		-9116	-1089	107 Vci		590	-1089
8	DUMMY3	-8582	-1089	108 Vci		670 750	-1089
	DUMMY4	-8048	-1089	109 Vci			-1089
10		-7947	-1089	110 Vci		830	-1089
11	VGH	-7867	-1089	111 Vci		911	-1089
12	Vci3	-7765	-1089	112 Vci		991	-1089
13	C23+	-7685	-1089	113 Vci4		1129	-1089
14	C23+ C23-	-7605 -7525	-1089	114 OSC1 115 OSC2		1257	-1089 -1089
		-7323	-1089			1557	
16	C23- C22+	-7365	-1089	116 TS0 117 TS1		1418	-1089
18	C22+ C22+	-7363	-1089	117 131 118 TS2		1498	-1089
18		-7284	-1089	118 TS2 119 TS3			-1089
20	C22-	-7204	-1089	119 133 120 TS4		1658 1738	-1089
21	÷==	-7044	-1089	120 T34		1818	-1089
21	C21+ C21+	-6964				1818	
22	C21+ C21-	-6884	-1089 -1089	122 TS6 123 TS7		1979	-1089 -1089
23	C21-	-6803	-1089	123 137 124 DCTI	ST	2059	-1089
24	C21- C41+	-6723	-1089	124 DC II 125 DUM		2039	-1089
26	C41+ C41+	-6643	-1089	125 DUM 126 DUM		2257	-1089
20	C41+ C41-	-6563	-1089	120 DUM 127 DUM		2237	-1089
28	C41-	-6483	-1089		MY10	2418	-1089
29	C31+	-6403	-1089		MY11 MY11	2498	-1089
30	C31+	-6323	-1089		MY12	2498	-1089
31	C31+	-6242	-1089	130 DOM 131 VGS		2685	-1089
32		-6162	-1089	131 VGS		2765	-1089
33		-6029	-1089	132 VG5	D	2703	-1089
34	VGL	-5949	-1089	133 CGN		2952	-1089
35	VGL	-5869	-1089	135 CGN		3032	-1089
36	VGL	-5789	-1089	136 V0P	-	3139	-1089
37	CGND	-5687	-1089	137 V0N		3219	-1089
38	CGND	-5607	-1089	138 VMO	NI	3299	-1089
39	CGND	-5527	-1089	139 VMO		3380	-1089
40	VccDUM1	-5447	-1089	140 V31P		3460	-1089
41	IM0/ID	-5356	-1089	141 V31N	I	3540	-1089
42	GNDDUM1	-5237	-1089	142 Vcon	ıL	3657	-1089
43	IM1	-5146	-1089	143 TEST	'A4	3737	-1089
44	VccDUM2	-5028	-1089	144 TEST	'A1	3854	-1089
45	IM2	-4936	-1089	145 Vcom	ıR	3934	-1089
46	VccDUM3	-4818	-1089	146 VRE0	GIOUT	4014	-1089
47	IM3	-4727	-1089	147 TEST	`A2	4094	-1089
48	GNDDUM2	-4608	-1089	148 DUM	MY13	4201	-1089
49	DUMMY5	-4528	-1089	149 VTES		4308	-1089
50	DUMMY6	-4448	-1089	150 DUM	MY14	4415	-1089
51	RESET2*	-4357	-1089	151 DUM		4495	-1089
52	GNDDUM3	-4238	-1089	152 Vcon	hΗ	4602	-1089
53	TEST1	-4147	-1089	153 VCL		4740	-1089
54		-4067	-1089	154 VCL		4820	-1089
55	DB17	-3987	-1089	155 Vci1		4959	-1089
56	DB16	-3907	-1089	156 Vci1		5039	-1089
57		-3826	-1089	157 Vci1		5119	-1089
58		-3746	-1089	158 Vci1		5199	-1089
59	DB13	-3666	-1089	159 REGI		5343	-1089
60	DB12	-3586	-1089		MY16	5450	-1089
61	DB11	-3506	-1089	161 Vci2		5557	-1089
62	DB10	-3426	-1089	162 DDV		5695	-1089
63	DB9	-3346	-1089	163 DDV	DH	5776	-1089
64	GNDDUM4	-3227	-1089	164 Vci3		5909	-1089
65		-3136	-1089	165 C11-		6047	-1089
66		-3056	-1089	166 C11-		6127	-1089
67	DB6	-2976	-1089	167 C11-		6207	-1089
68 69		-2895 -2815	-1089	168 C11- 169 C11+		6287	-1089
	DB4 DB3	-2815	-1089 -1089	169 C11+ 170 C11+		6368 6448	-1089
	DB3 DB2	-2755	-1089	170 C11+ 171 C11+		6528	-1089
72		-2655 -2575	-1089	171 C11+ 172 C11+		6528	-1089
73		-2373	-1089	172 C11+ 173 C12-		6688	-1089
74		-2495	-1089	173 C12- 174 C12-		6768	-1089
75		-2376	-1089	174 C12- 175 C12-		6848	-1089
76		-2285	-1089	175 C12- 176 C12-		6929	-1089
77		-2125	-1089	170 C12- 177 C12+		7009	-1089
78		-2045	-1089	177 C12+ 178 C12+		7089	-1089
79		-1964	-1089	179 C12+		7169	-1089
80		-1846	-1089	180 C12+		7249	-1089
81		-1755	-1089	181 Vgoff	ſ	7388	-1089
82		-1675	-1089	182 Vgoff		7468	-1089
83		-1525	-1089	183 Vgoff		7601	-1089
	AGND	-1445	-1089	184 Vgoff		7681	-1089
85		-1343	-1089	185 TEST		7814	-1089
86		-1263	-1089		G2OUT	7947	-1089
87		-1161	-1089		MY17	8048	-1089
88		-1081	-1089		MY18	8582	-1089
89		-948	-1089	189 DUM		9116	-1089
90		-868	-1089	190 RESE		9650	-1089
91		-767	-1089	191 DUM		9768	-1089
92		-687	-1089	192 DUM		9859	-1089
93		-585	-1089	192 Don 193 Vcon		9961	-1089
94		-505	-1089	194 Vcon		10041	-1089
	RVcc	-372	-1089	195 DUM		10209	-1099
96		-292	-1089	196 G2		10205	-801
97	RVcc	-212	-1089	190 G2		10104	-763
	RVcc	-131	-1089	198 G6		10214	-725
98						10101	
98 99		-51	-1089	199 G8		10104	-687

No. 1 201 G1	pad name	X 10104	Y -610	No. 301	pad name S388	X 7249	Y 99
201 G1		10104	-572	301	S388 S387	7249	110
203 G1		10104	-534	303	S386	7172	99
204 G1		10214	-496	304	S385	7134	110
205 G2		10104	-458 -420	305	S384	7096 7058	99
206 G2 207 G2		10214 10104	-420	306 307	S383 S382	7038	110
208 G2		10214	-343	308	S381	6981	110
209 G2	28	10104	-305	309	S380	6943	99
210 G3		10214	-267	310	S379	6905	110
211 G3 212 G3		10104 10214	-229 -191	311 312	S378 S377	6867 6829	99 110
212 G3		10214	-191	313	S376	6791	99
214 G3		10214	-114	314	\$375	6753	110
215 G4		10104	-76	315	S374	6714	99
216 G4		10214	-38	316	S373	6676 6638	110 99
217 G4 218 G4		10104 10214	0 38	317 318	S372 S371	6600	110
219 G4		10104	76	319	S370	6562	99
220 G5	50	10214	114	320	S369	6524	110
221 G5		10104	153	321	S368	6486	99
222 G5 223 G5		10214 10104	191 229	322	S367 S366	6447 6409	110
223 G.		10104	229	323	S365	6371	110
225 G6		10104	305	325	S364	6333	99
226 G6	52	10214	343	326	\$363	6295	110
227 Ge		10104	382	327	S362	6257	99
228 Ge 229 Ge		10214 10104	420	328 329	S361 S360	6218 6180	110
230 G7		10104	438	330	S359	6142	110
231 G7		10104	534	331	S358	6104	99
232 G7		10214	572	332	S357	6066	110
233 G7		10104	610 649	333 334	S356 S355	6028 5990	99
234 G7 235 G8		10214	649 687	334	S355 S354	5990	99
235 G8		10104	725	336	S354 S353	5913	110
237 G8	34	10104	763	337	S352	5875	99
238 G8		10214	801	338	S351	5837	110
239 DU 240 G8	UMMY23	10209 9919	1099 1104	339 340	S350 S349	5799 5761	99 110
240 G8		9919	994	340	S349 S348	5723	99
242 G9		9843	1104	342	S347	5684	110
243 G9		9805	994	343	S346	5646	99
244 G9		9766	1104 994	344	S345	5608	110
245 G9 246 G1	100	9728 9690	994 1104	345 346	S344 S343	5570 5532	110
	100	9652	994	347	\$342 \$342	5494	99
	104	9614	1104	348	S341	5455	110
	106	9576	994	349	S340	5417	99
	108	9538 9499	1104 994	350 351	S339 S338	5379 5341	110
	110 112	9499 9461	1104	352	\$338 \$337	5303	110
	112	9423	994	353	S336	5265	99
	116	9385	1104	354	S335	5227	110
	118	9347	994	355	S334	5188	99
	120 122	9309 9270	1104 994	356 357	S333 S332	5150 5112	110
	122	9232	1104	358	S331	5074	110
	126	9194	994	359	S330	5036	99
	128	9156	1104	360	S329	4998	110
	130 132	9118 9080	994	361	S328	4960 4921	99 110
	132	9080	1104 994	362	S327 S326	4921	99
	136	9003	1104	364	S325	4845	110
	138	8965	994	365	S324	4807	99
	140	8927	1104	366	S323	4769	110
267 G1 268 G1	142	8889 8851	994 1104	367	S322 S321	4731 4692	99 110
	144	8813	994	369		4692	99
270 G1	148	8775	1104	370	S319	4616	110
	150	8736	994	371	S318	4578	99
272 G1 273 G1	152	8698	1104 994	372 373		4540 4502	110
	154	8660 8622	994 1104	373	S316 S315	4502	110
275 G1	158	8584	994	375		4404	99
276 G1	160	8546	1104	376	S313	4387	110
	162	8507	994	377	S312	4349	99
278 G1 279 G1		8469 8431	1104 994	378 379		4311 4273	110
279 G1		8393	1104	380		4275	110
281 G1	170	8355	994	381	S308	4197	99
	172	8317	1104	382		4158	110
	174 176	8279 8240	994 1104	383 384	S306 S305	4120 4082	99 110
	TEST2	8240	1104	385		4082	99
	UMMY24	8088	1104	386		4006	110
287 DI	UMMY25	8012	1104	387	S302	3968	99
	UMMY26	7935	1104	388	S301	3929	110
	UMMY27	7859	1104	389	S300	3891	99
	UMMY28 UMMY29	7783 7706	1104 1104	390 391	S299 S298	3853 3815	110
	UMMY30	7630	1104	391	S298 S297	3777	110
293 S3		7554	994	393	S296	3739	99
294 S3		7516	1104	394	S295	3701	110
295 S3 296 S3	94	7477	994	395	S294 S293	3662	99
296 S3 297 S3		7439 7401	1104 994	396 397	S293 S292	3624 3586	110
297 SS		7363	1104	398	S292 S291	3548	110
	90	7325	994	399	S290	3510	99
300 S3		7287	1104	400	S289	3472	110

HITACHI

Rev. 1.0-1 / October 2002

Table 1 HD667B73 PAD Coordinate (Laced) cont.

No.	pad name	Х	Y	No.	pad name	X	Y	No.	pad name	Х	Y	No.	pad name	Х	Y
401	S288	3434	994	501	S188	-420	1104	601		-4235	1104	701	G167	-8393	110
402	S287	3395 3357	1104 994	502	S187	-458 -496	994	602	S87	-4273	994	702	G165	-8431	994
403 404	S286 S285	3357	994 1104	503 504	S186 S185	-496 -534	1104 994	603 604	S86 S85	-4311 -4349	1104 994	703	G163 G161	-8469	110-
404	S285	3281	994	505	S185	-572	1104	605	S84	-4387	1104	704	G159	-8546	1104
406	S283	3243	1104	506	S183	-610	994	606	S83	-4425	994	706	G157	-8584	994
407	S282	3205	994	507	S182	-649	1104	607	S82	-4464	1104	707	G155	-8622	1104
408	S281	3166	1104	508	S181	-687	994	608	S81	-4502	994	708	G153	-8660	994
409 410	S280 S279	3128 3090	994 1104	509 510	S180 S179	-725 -763	1104 994	609	S80 S79	-4540 -4578	1104 994	709 710	G151 G149	-8698 -8736	110-
411	S279 S278	3052	994	511	S179 S178	-801	1104	611	S78	-4578	1104	711	G149 G147	-875	110
412	S270 S277	3014	1104	512	S170	-839	994	612	S77	-4654	994	712	G145	-8813	994
413	S276	2976	994	513	S176	-877	1104	613	S76	-4692	1104	713	G143	-8851	110
414	S275	2938	1104	514	S175	-916	994	614	S75	-4731	994	714	G141	-8889	994
415	S274	2899	994	515	S174	-954	1104	615	S74	-4769	1104	715	G139	-8927	110
416	S273 S272	2861 2823	1104 994	516	S173 S172	-992 -1030	994 1104	616	\$73 \$72	-4807 -4845	994 1104	716	G137 G135	-8965	994 1104
417	\$272 \$271	2825	1104	517 518	S172 S171	-1050	994	617	S72 S71	-4843	994	717	G135 G133	-9003	994
419	S270	2747	994	519	S170	-1106	1104	619	S70	-4921	1104	719	G131	-9080	110
420	S269	2709	1104	520	S169	-1145	994	620	S69	-4960	994	720	G129	-9118	994
421	S268	2671	994	521	S168	-1183	1104	621	S68	-4998	1104	721	G127	-9156	110
422	S267	2632	1104	522	S167	-1221	994	622	S67	-5036	994	722	G125	-9194	99
423 424	\$266 \$265	2594 2556	994 1104	523 524	S166	-1259 -1297	1104 994	623	S66	-5074 -5112	1104 994	723 724	G123 G121	-9232 -9270	110
425	S265 S264	2518	994	525	S165 S164	-1297	1104	624 625	S65 S64	-5112	1104	724	G121 G119	-9270	110
426	S263	2480	1104	526	S163	-1373	994	626	S63	-5188	994	726	G117	-9347	99
427	S262	2442	994	527	S162	-1412	1104	627	S62	-5227	1104	727	G115	-9385	110
428	S261	2403	1104	528	S161	-1450	994	628	S61	-5265	994	728	G113	-9423	99
429	S260	2365	994	529	S160	-1488	1104	629	S60	-5303	1104	729	G111	-9461	110
430	S259	2327	1104	530	S159	-1526	994	630	S59	-5341	994	730	G109	-9499	99
431 432	S258 S257	2289 2251	994 1104	531 532	S158 S157	-1564 -1602	1104 994	631	S58 S57	-5379	1104 994	731 732	G107 G105	-9538 -9576	110
432 433	\$257 \$256	2251	994	532	S157 S156	-1602	994 1104	632	S57 S56	-5417	994 1104	732	G105 G103	-9576	110
434	\$250 \$255	2175	1104	534	S150 S155	-1679	994	634	S55	-5494	994	734	G105 G101	-9652	994
435	S254	2136	994	535	S154	-1717	1104	635	S54	-5532	1104	735	G99	-9690	110
436	S253	2098	1104	536	S153	-1755	994	636	S53	-5570	994	736	G97	-9728	994
437	S252	2060	994	537	S152	-1793	1104	637		-5608	1104	737	G95	-9766	110
438 439	S251 S250	2022	1104 994	538 539	S151	-1831 -1869	994 1104	638	S51 S50	-5646 -5684	994 1104	738 739	G93 G91	-9805 -9843	994 110
439	\$250 \$249	1984	1104	540	S150 S149	-1869	994	639 640		-5084	994	739	G91 G89	-9843	994
441	S249 S248	1908	994	541	S149 S148	-1946	1104	641	S48	-5761	1104	741	G87	-9919	110
442	S247	1869	1104	542	S147	-1984	994	642	S47	-5799	994	742	DUMMY39	-10209	109
443	S246	1831	994	543	S146	-2022	1104	643	S46	-5837	1104	743	G85	-10214	80
444	S245	1793	1104	544	S145	-2060	994	644	S45	-5875	994	744	G83	-10104	76
445 446	S244 S243	1755	994 1104	545 546	S144 S143	-2098 -2136	1104 994	645	S44 S43	-5913 -5951	1104 994	745 746	G81 G79	-10214	72:
440	\$245 \$242	1679	994	540	S143 S142	-2130	1104	647	S43	-5990	1104	740	G79 G77	-10104	649
448	S242 S241	1640	1104	548	S142 S141	-22173	994	648	S41	-6028	994	748	G75	-10104	610
449	S240	1602	994	549	S140	-2251	1104	649	S40	-6066	1104	749	G73	-10214	572
450	S239	1564	1104	550	S139	-2289	994	650		-6104	994	750	G71	-10104	534
451	S238	1526	994	551	S138	-2327	1104	651	S38	-6142	1104	751	G69	-10214	490
452 453	S237 S236	1488 1450	1104 994	552 553	S137 S136	-2365 -2403	994 1104	652	\$37 \$36	-6180 -6218	994 1104	752 753	G67 G65	-10104 -10214	458
454	\$235 \$235	1430	1104	554	S130	-2403	994	653 654	S35	-6257	994	754	G63	-10214	382
455	S233	1373	994	555	S134	-2480	1104	655	S34	-6295	1104	755	G61	-10214	343
456	S233	1335	1104	556	S133	-2518	994	656	S33	-6333	994	756	G59	-10104	30
457	S232	1297	994	557	S132	-2556	1104	657	S32	-6371	1104	757	G57	-10214	26
458	S231	1259	1104	558	S131	-2594	994	658	S31	-6409	994	758	G55	-10104	229
459 460	S230 S229	1221 1183	994 1104	559 560	S130 S129	-2632 -2671	1104 994	659	\$30 \$29	-6447 -6486	1104 994	759 760	G53 G51	-10214 -10104	19
461	\$229 \$228	1185	994	561	S129 S128	-2071	1104	661	S28	-6524	1104	761	G31 G49	-10104	132
462	\$227	1106	1104	562	S127	-2747	994	662	S27	-6562	994	762	G47	-10104	70
463	S226	1068	994	563	S126	-2785	1104	663	S26	-6600	1104	763	G45	-10214	3
464	S225	1030	1104	564	S125	-2823	994	664	S25	-6638	994	764	G43	-10104	(
465	S224 S223	992 954	994 1104	565	S124	-2861	1104 994	665	S24	-6676	1104 994	765	G41	-10214	-3
466 467	5225 5222	954 916	994	566 567	S123 S122	-2899 -2938	994 1104	666	\$23 \$22	-6714 -6753	994 1104	766 767	G39 G37	-10104 -10214	-76
467	\$222 \$221	877	1104	568	S122 S121	-2938	994	668	S22 S21	-6791	994	767	G35	-10214	-114
469	S220	839	994	569	S120	-3014	1104	669		-6829	1104	769	G33	-10214	-19
470	S219	801	1104	570	S119	-3052	994	670	S19	-6867	994	770	G31	-10104	-22
471	S218	763	994	571	S118	-3090	1104	671		-6905	1104	771	G29	-10214	-26
472 473	S217 S216	725 687	1104 994	572 573	S117 S116	-3128 -3166	994 1104	672	S17 S16	-6943 -6981	994 1104	772 773	G27 G25	-10104 -10214	-30 -34
474	\$216 \$215	687	994 1104	573	S116 S115	-3166	994	673		-6981	994	774	G25 G23	-10214	-34
475	S215 S214	610	994	575	S114	-3243	1104	675		-7058	1104	775	G25 G21	-10214	-42
476	S213	572	1104	576	S113	-3281	994	676	S13	-7096	994	776	G19	-10104	-45
477	S212	534	994	577	S112	-3319	1104	677		-7134	1104	777	G17	-10214	-49
478	S211 S210	496	1104	578	S111	-3357	994 1104	678		-7172	994	778	G15	-10104	-53
479 480	S210 S209	458 420	994 1104	579 580	S110 S109	-3395 -3434	994	679 680	S10 S9	-7210 -7249	1104 994	779 780	G13 G11	-10214	-57
480	S209 S208	382	994	580	S109 S108	-3434	1104	681	S9 S8	-7249	1104	780	GII G9	-10104	-61
482	S200 S207	343	1104	582	S107	-3510	994	682		-7325	994	782	G7	-10104	-68
483	S206	305	994	583	S106	-3548	1104	683	S6	-7363	1104	783	G5	-10214	-72
484	S205	267	1104	584	S105	-3586	994	684		-7401	994	784	G3	-10104	-76
485 486	S204 S203	229 191	994 1104	585 586	S104	-3624	1104 994	685		-7439 -7477	1104 994	785	G1 GTEST1	-10214	-80
486 487	S203 S202	191	994	586	S103 S102	-3662 -3701	994 1104	686	\$3 \$2	-7477	1104	/80	OIESII	-10214	-8/
487	S202 S201	155	1104	588	S102 S101	-3739	994	688	S2 S1	-7554	994				
489	\$201 \$200	76	994	589	S101	-3737	1104	689	DUMMY31	-7630	1104	AI	gnment mark	Х	Y
490	S200 S199	38	1104	590	S99	-3815	994	690	DUMMY32	-7706	1104			-10135	93
491	S198	-38	1104	591	S98	-3853	1104	691	DUMMY33	-7783	1104		Cross	10135	93
492	S197	-76	994	592	S97	-3891	994	692	DUMMY34	-7859	1104	Circ	cle (Positive)	-10119	110
493	S196	-114	1104	593	S96	-3929	1104	693		-7935	1104		le (Negative)	10119	110
494	S195	-153	994	594	S95	-3968	994	694		-8012	1104		(Positive)	-10029	110
495	S194	-191 -229	1104	595	S94	-4006 -4044	1104	695		-8088 -8164	1104	L	(Negative)	10029	110
496 497	S193 S192	-229	994 1104	596 597	S93 S92	-4044 -4082	994 1104	696 697	DUMMY38 G175	-8164	1104 1104				
497	S192 S191	-207	994	597	S92 S91	-4082	994	698		-8240	994				
499	S190	-343	1104	599	S90	-4120	1104	699	G171	-8317	1104				

HITACHI

Rev. 1.0-1 / October 2002

Pin Functions

Table 2	Pin Functio	nal D	escription		
Signals	Number of Pins	I/O	Connected to	Functions	
IM3-1, IM0/ID	4	I	GND or V _{CC}	Selects the MPU interface mode: IM3 IM2 IM1 IM0/ID MPU interface mode "GND" "GND" "GND" "GND" 68-system 16-bits bus interface "GND" "GND" "GND" "GND" 68-system 16-bit bus interface "GND" "GND" "GND" 80-system 8-bit bus interface "GND" "GND" "Vcc" 80-system 8-bit bus interface "GND" "GND" "Vcc" 80-system 8-bit bus interface "GND" "Occ" "Vcc" 80-system 8-bit bus interface "GND" "Vcc" "GND" ID Setting inhibited "Vcc" "GND" "GND" GND" Setting inhibited "Vcc" "GND" "GND" 68-system 18-bit bus interface "Vcc" "GND" "GND" 68-system 9-bit bus interface "Vcc" "GND" "GND" 80-system 18-bit bus interface "Vcc" "GND" "Vcc" 80-system 9-bit bus interface "Vcc" "GND" "Vcc" 80-system 9-bit bus interface "Vcc" "GND" "Vcc" 80-system 9-bit bus interface <td>DB pins DB17-10, 8- DB17-10, 8- DB17-10, 8- DB17-10 DB17-0 DB17-0 DB17-9 DB17-9 DB17-9 DB17-9 d as the</td>	DB pins DB17-10, 8- DB17-10, 8- DB17-10, 8- DB17-10 DB17-0 DB17-0 DB17-9 DB17-9 DB17-9 DB17-9 d as the
CS*	1	Ι	MPU	Selects the HD66773: Low: HD66773 is selected and can be accessed High: HD66773 is not selected and cannot be accessed Must be fixed at GND level when not in use.	1
RS	1	Ι	MPU	Selects the register. Low: Index/status High: Control When using SPI, fix it to Vcc or GND level.	
E/WR*/SCL	1	Ι	MPU	For a 68-system bus interface, serves as an enable sign activate data read/write operation. For an 80-system bus interface, serves as a write strob and writes data at the low level. For a synchronous clock interface, serves as the synchic clock signal.	e signal,
RW/RD*	1	Ι	MPU	For a 68-system bus interface, serves as a signal to sel read/write operation. Low: Write High: Read For an 80-system bus interface, serves as a read strobe and reads data at the low level. When using SPI, fix it to Vcc or GND level.	
DB0/SDI	1	I/O	MPU	Serves as a 18-bit bi-directional data bus. 8-bit bus interface: DB17-10 9-bit bus interface: DB17-9 16-bit bus interface: DB17-0 Fix unused pins to the Vcc or GND level as they are u data transfer. For a clock-synchronous serial interface, serves as the data input pin (SDI). The input level is read on the rist of the SCL signal.	serial

Rev. 1.0-1 / October 2002

C !	Number of	L/O	Compared and the	Energy 4th and a
Signals DB1/SDO	Pins	<u>I/O</u> I/O	Connected to MPU	Functions Serves as a 18-bit bi-directional data bus.
DB1/SDO	1	1/0	MPU	8-bit bus interface: DB17-10
				9-bit bus interface: DB17-10
				16-bit bus interface: DB17-10. 8-1
				18-bit bus interface: DB17-10. 8-1
				Fix unused pins to the Vcc or GND level as they used for
				data transfer.
				For a clock-synchronous serial interface, serves as a serial
				data output pin (SDO). Successive bit values are output on the falling edge of the SCL signal.
DB2-DB17	16	I/O	MPU	Serves as a 18-bit bi-directional data bus.
			-	8-bit bus interface: DB17-10
				9-bit bus interface: DB17-9
				16-bit bus interface: DB17-10, 8-1
				18-bit bus interface: DB17-0
				Fix unused pins to the to the Vcc or GND level as they used for
				data transfer.
OSC1, OSC2	2	I/O	Oscillation-	Connect an external resistor for R-C oscillation. When input
			resistor	the clock from outside, input to OSC1, and open OSC2.
RESET1*	3	Ι	MPU or Reset	Reset pin. Initializes the LSI when low. Must be reset after
RESET2*			generating	power-on. Input data from either one of RESET pins, and
RESET3*			circuit	leave other unused pins open.
TEST1	1	Ι	GND	Test pin. Must be fixed to GND level.
TEST2	1	Ι	GND	Test pin. Must be fixed to GND level.
Vcc, GND	2	-	Power supply	Logic Vcc: +2.2V to +3.3V, Logic ground GND: 0V
RVcc	1	-	Power supply	Vcc power supply for an internal RAM. Supply same level as Vcc.
AGND	1	-	Power supply	Analogue for ground side, AGND: 0 V
CGND	1	0	Opposed GND	Outputs GND level. Can be used as opposed GND of external
			of external	parts.
			parts	
Vci	1	Ι	Vcc or power	Power supply for analogue circuit. Connect to an external
			supply	power supply 2.5V to 3.3V.
Vci1	1	I/O	Capacitor for	Output internal reference voltage generated between Vci and
-			stabilization or	GND. Reference voltage of step-up circuit1. When not using
			power supply	an internal reference voltage, connect an external power
			1 · · · · · · · · · · · · · · · · · · ·	supply lower than 2.75V.
DDVDH	1	I/O	Capacitor for	Pressure up the voltage generated between Vci and GND
	-		stabilization or	two to three times through the step-up circuit 1, and outputs
			open	the pressured up voltage. Pressure up magnification can be
			. r -	set at an internal register. Connect a capacitor for
				stabilization. When not using a step-up circuit 1, leave it
				open.
Vci2	1	Ι	DDVDH or	Reference voltage for step-up circuit 2. Connect to DDVDH.
			power supply	When not using DDVDH, connect an external power supply
			I II-J	lower than 5.5V.
VGH	1	I/O	Capacitor for	Pressure up the voltage generated between DDVDH and
			stabilization or	GND two to four times through the step-up circuit 2, and
			power supply	outputs the pressured up voltage. Connect a capcitor for
				stabilization. When not using the step-up circuit 2, connect
				an external power supply lower than 16.5V.
Vci3	1	Ι	VGH or power	Reference voltage for the step-up circuit 3. Conect to VGH.
			supply	When not using VGH, connect an external power upply
			SUDDIV	

Rev. 1.0-1 / October 2002

Signals	Number of Pins	I/O	Connected to	Functions
VGL	1	I/O	Capacitor for stabilization or power supply	Outputs voltage generated between VGH and GND as same amount of negative voltage through the step-up circuit 3. Connect a capacitor for stabilization. When not usign the step-up circuit 3, connect an external power supply higher than -16.5 V.
Vci4	1	Ι	Vcc, or Vci1, or power supply	Reference voltage for a step-up circuit 4. Supply Vci or external power supply 2.5 to 3.3 V
VCL	1	I/O	Capacitor for stabilization or power supply	Outputs voltage generated between Vci4 and GND as same amount of negative voltage through the step-up circuit 4. Connect a capacitor for stabilization and VCL pin. A power supply for generating VcomL. When using external power supply while VcomL is negative, connect an external power supply more than -3.3V. When VcomL is higher than GND, stop step-up circuit 4 and connect GND.
VREG1OUT	1	I/O	Capacitor for stabilization or power supply	This pin generates and outputs a reference voltage for VREG1 between DDVDH and GND from the reference voltage between Vci and GND that is internally generated. The step-up factor can be set in an internal register. Connect a capacitor for stabilization. As it is the reference voltage for generating Vcom, connect a nexternal power supply lower than DDVDH whnenot using the amplifier circuit 1.
VREG2OUT	1	I/O	Capacitor for stabilization or power supply	This pin generates and outputs a reference voltage for VREG2 between GND and VGL from the reference voltage between Vci and GND that is internally generated. The step-up factor can be set in an internal register. Connect a capacitor for stabilization. As it is the reference voltage for generating VgoffOUT, connect an external power supply more than VGL when not using the amplifier circuit 2.
C11+, C11- to C23+,C23-	10		Step-up capacitor	Connect the step-up capacitors according to the step-up factor. When the internal step-up circuit is not used, leave this pin open.
C31+, C31-	2		Step-up capacitor	Connect a step-up capacitor for generating the VGL level from the VGH and GND levels. When the internal step-up circuit is not used, leave these pins open.
C41+, C41-	2		Step-up capacitor	Connect a step-up capacitor for generating the –Vci4 level from the Vci4 and GND levels. When the internal step-up circuit is not used, leave these pins open.
Vcom1 Vcom2	3	0	TFT-display counter electrode	A power supply for the TFT-display counter electrode. When the reversing Vcom alternation is not driven, the amplitude between VcomH and VcomL is output. The alternating cycle can be set by the M pin. Connect this pin to the TFT-display counter electrode.
VcomR	1	Ι	Variable resistor or open	A reference voltage of VcomH. When VcomH is externally adjusted, halt the internal adjuster of VcomH by setting the register and insert a variable resistor between VREG1OUT and GND. When this pin is not externally adjusted, leave it open and adjust VcomH by setting the internal register.
VcomH	1	0	Capacitor for stabilization	This pin indicates a high level of Vcom generated in driving the Vcom alternation. Connect this pin to the capacitor for stabilization.

Rev. 1.0-1 / October 2002

Signals	Number of Pins	I/O	Connected to	Functions
VcomL	1	0	Capacitor for stabilization or Open	The Vcom voltage when the Vcom alternation is not driven. When the Vcom alternation is driven, this pin indicates a low level of Vcom. An internal register can be used to adjust the voltage. Connect this pin to a capacitor for stabilization. When the VCOMG bit is low, the VcomL output stops and a capacitor for stabilization is not needed.
VgoffOUT	1	0	Vgoff or Open	An output power supply for driving the gate line of the gate driver. Alternation can be driven by synchronizing Vcom with the setting of the internal register. Set the internal register according to the structure of the TFT-display retention volume. For the amplitude at the alternation driving, this pin outputs a voltage between VcomH and VcomL with the VgoffL reference voltage.
Vgoff	1	Ι	VgoffOUT or power supply	This pin is a negative voltage at the TFT-gate off level. Connect VgoffOUT. When not using VgoffOUT, connect an external power supply which voltage is higher than VGL.
VgoffH	1	0	Capacitor for stabilization or Open	When the Vgoff alternation is driven, this pin indicates a high level of VgoffOUT. Connect this pin to a capacitor for stabilization. When the CAD bit is low, the VgoffH output stops and a capacitor for stabilization is not needed.
VgoffL	1	0	Capacitor for stabilization	The Vgoff voltage when the Vgoff alternation is not driven. When the Vgoff alternation is driven, this pin indicates a low level of VgoffOUT. An internal register can be used to adjust the voltage. Connect this pin to a capacitor for stabilization.
V0P V31P	2	I/O	Capacitor for stabilization	When an internal operation amplifier is ON, they output voltage from internal operation amplifier for positive polarity. Connect a capacitor for stabilization.
V0N V31N	2	I/O	Capacitor for stabilization	When an internal operation amplifier in ON, they output voltage form internal operation amplifier for negative polarity. Connect a capacitor for stabilization.
VGS	1	Ι	GND or external resistor	Reference voltage for grayscale voltage generating circuit. When adjusting level by each panel, connect an external variable resister.
S1–S396	396	0	LCD	Output signals for gate wiring. The SS bit can change the shift direction of the source signal. For example, if SS = 0, RAM address 0000 is output from S1. If SS = 1, it is output from S528. S1, S4, S7, display red (R), S2, S5, S8, display green (G), and S3, S6, S9, display blue (B) (SS = 0).
G1-176	176	0	LCD	They are the gate wiring output signals. Gate wiring selecting level, VGH, and the gate wiring non-selecting level, Vgoff.
GTEST1-2	2	0	LCD or Open	They are the dummy gate wring output signals. When CAD = High, gate wiring selecting level: output VGH and the gate wiring non-selecting level, Vgoff. When CAD bit = low, gate wiring selecting level output Vgoff level. When not using these pins, leave them open.

Rev. 1.0-1 / October 2002

Signals	Number of Pins	I/O	Connected to	Functions
TESTA1	1	I/O	Test pin	A test pin for the VcomH output. Leave it open or connect a capacitor for stabilization according to the display quality.
TESTA2	1	I/O	Test pin	A test pin for the VcomL output. Leave it open or connect a capacitor for stabilization according to the display quality.
TESTA3	1	I/O	Test pin	A test pin for the VgoffH output. Leave it open or connect a capacitor for stabilization according to the display quality.
TESTA4	1	I/O	Test pin	A test pin for the VcomL output. Leave it open or connect a capacitor for stabilization according to the display quality.
DCTEST	1	Ι	GND	A test pin. Must be connected to GND.
MTEST1	2	0	Test pin	A test pin. Must be lift open.
MTEST2				
VTESTS	1	I/O	Test pin	A test pin. Must be left open.
TS0-TS7	8	0	Test pin	A test pin. Must be left open.
VMONI	1	0	Test pin	A test pin. Must be left open.
TESTV1	1	Ι	Test pin	A test pin. Must be connected to GND.
REGP	1	I/O	Test pin	A test pin of VREG1OUT. Must be left open.

Block Function Description

System Interface

The HD66773 has three high-speed system interfaces: a 68-system, an 80-system 18-/16-/9-/8-bit bus, and a clock synchronous serial (SPI: Serial Peripheral Interface). The interface mode is selected by the setting of IM3-0 pins.

The HD66773 has three 16-bit registers: an index register (IR) 16-bit, a write data register (WDR), and a read data register (RDR). The IR stores index information from the control registers and the GRAM. The WDR temporarily stores data to be written into control registers and the GRAM, and the RDR temporarily stores data read from the GRAM. Data written into the GRAM from the MPU is first written into the WDR and then is automatically written into the GRAM by internal operation. Data is read through the RDR when reading from the GRAM, and the first read data is invalid and the second and the following data are normal.

Execution time for instruction excluding oscillation start is 0 clock cycle and instructions can be written in succession.

80-sy	stem	68-system	RS	Operation
WR*	RD*	R/W	KS	
0	1	0	0	Writes indexes into IR
1	0	1	0	Reads internal status
0	1	0	1	Writes into control registers and GRAM through WDR
1	0	1	1	Reads from GRAM through RDR

Table 3 Register Selection (8/9/16/18 Parallel Interface)

Table 4 Register Selection (Clock Peripheral Serial Interface)

Start	bytes	
R/W Bits	RS Bits	Operations
0	0	Writes indexes into IR
1	0	Reads internal status
0	1	Writes into control registers and GRAM through WDR
1	1	Reads from GRAM through RDR

HITACHI 12

Bit Operation

The HD66773 supports the following functions: a write data mask function that selects and writes data into the GRAM in bit units, and a logic operation function that performs logic operations or conditional determination on the display data set in the compare register and writes into the GRAM. For details, see the Graphics Operation Function section.

Address Counter (AC)

The address counter (AC) assigns address to the GRAM. When an address set instruction is written into the IR, the address information is sent from the IR to the AC.

After writing into the GRAM, the AC is automatically incremented by 1 (or decremented by 1). After reading from the data, the AC is not updated. A window address function allows for data to be written only to a window area specified by GRAM.

Hard dithering circuit

HD66773 is equipped with the circuit which transforms 18-bit into 16-bit for 1 pixel data.

Graphics RAM (GRAM)

The graphics RAM (GRAM) has 16 bits/pixel and stores the bit-pattern data of 132 x 176 words.

Grayscale Voltage Generator

The grayscale voltage circuit generates a LCD driver circuit that corresponds to the grayscale levels as specified in the grayscale gamma-adjusting resistor. 262,144 possible colors can be displayed when 1 byte = 18 bit. For details, see the gamma-adjusting resistor.

Power supply circuit for LCD operation

It generates the voltage of V0P, V0N, V31P, V31N, VGH, VGL, VgoffOUT, and Vcom level which are necessary for operating the LCD.

Oscillation Circuit (OSC)

The HD66773 can provide R-C oscillation simply through the addition of an external oscillation-resistor between the OSC1 and OSC2 pins. The appropriate oscillation frequency for operating voltage, display size, and frame frequency can be obtained by adjusting the external-resistor value. Clock pulses can also be supplied externally. Since R-C oscillation stops during the standby mode, current consumption can be reduced. For details, see the Oscillation Circuit section.

Liquid Crystal Display Driver Circuit

The liquid crystal display driver circuit consists of 396 source drivers (S1 to S396), and 176 gate driver (G1 to G176). Display pattern data is latched when 396-bit data has arrived. The latched data then enables the source drivers to generate drive waveform outputs. The shift direction of 396-bit data can be changed by the SS bit by selecting an appropriate direction for the device-mounting configuration.

Rev. 1.0-1 / October 2002

S/G	i pin	S1	одал ва 83 82 80 83 80			S5	S6	S7	S8	S9	S10	S11	S12		S385	S386	S387	S388	S389	S390	S391	S392	S393	S394	S395 S396	~~~~~				
GS=0	GS=1	DB 17	L	DB 0	DB. 17		DB 0	DE 17		DI	B DB		DE 0	5	DB 17	•••	DB 0	DB. 17	• • • •	DB 0	DB. 17	• • •	DB 0	DB. 17	D	B 0				
G1	G176	"0	000	"H	"00	01	"H	"0	002	"H	"00	03"	Н	• • • • • • • • • • •	"00)80'	"H	"0	081	"Н	"00)82'	"Η	"00	83"H]				
G2	G175	"0′	100	"Н	"01	01	"Η	"0	102	"H	"01	"0103"H		•••••	"0180"H			"0181"H			"0182"H			"0183"H						
G3	G174	"0	200	"Н	"02	201	"H	"0	202	"Н	"02	203"	Н	• • • • • • • • • • •	"0280"H			"0	281	ι"Н	"02	282	'H	"02	283"H					
G4	G173	"0	300	"Н	"03	801	"H	"0	302	"Н	"03	803"	Н	•••••	"03	380'	'H	"0	381	"Н	"03	382'	"Н	"03	83"H					
G5	G172	"0	400	"H	"04	01	"H	"0402"H		"04	03"	н	•••••	"04	180'	'H	"0	481	Ι"Н	"0∠	182'	"Η	"04	183"H						
G6	G171	"0	500	"Н	"05	01	Н	"0502"H		"05	603"	Н	•••••	"05	580'	'H	"0	581	Н	"05	82'	'H	"05	683"H						
G7	G170	"06	600	"Н	"06	601	"Н	"0602"H			"06	603"	Н		"06	80	'H	"0	681	"Н	"06	682	Ή	"06	683"H					
G8	G169	"0	700	"Н	"07	701	"Н	"0702"H			"07	'03"	Н		"07	780'	'H	"0	781	"Н	"07	782	Ή	"07	'83"H					
G9	G168	"0	800	"Н	"08	801	"Н	"0	802	"Н	"08	803"	Н	•••••	"08	380'	'H	"0	881	I"H	"08	382'	'Н	"08	383"H					
G10	G167	"0	900	"Н	"0901"H			"0	902	"H	"09	03"	Н	•••••	"09	980'	'H	"0	981	"Н	"09	982'	"Н	"09	83"H					
G11	G166	<u>"0A00"H</u>			"0A01"H			"0A02"H		"0A	"0A03"H		•••••	"0A	\80'	'H	"0	A81	"Н	"0A	\82	"Н	"0A83"							
G12	G165	"0B00"H			"0B01"H			"0B02"H		"OE	"0B03"H			"0E	380'	Ή	"0	381	"Н	"OE	382	"Н								
G13	G164	"00	C00)"H	"0C	:01	"Н	"0C02"H			"00	"0C03"H			"0C80"H		"Η	"0C81"H			"0C82"H			"00	283"H					
G14	G163	"0l	D00)"H	"0E	01	"Н	"0	D02	2"H	"O[003'	'H	•••••	"0D80"H			"0	D81	"Н	"0[282	"Н	"0D	83"H					
G15	G162	"0	E00)"H	"OE	01	"Н	"C	E02	2"H	"0E03"H		"H	•••••	"0E80"H		"Н	"0E81"H		I"H	I "0E82"I		32"H "0		83"H					
G16	G161	"0	F00)"H	"0F	01	"Н	"0	F02	2"H	"OF	"0F03"H		•••••	"0F80"H		"Н	"0F81"H		"Η										
G17	G160	"1	000	"Н	"10	01	"H	"1	002	"H	"1()03"	Ή	• • • • • • • • • • •	"1()80'	"H	"1	081	"Н	"1(082	"Н	1						
G18	G159	"1	100	"Н	"11	01"	Н	"1	102	"Н	"11	03"	Н	•••••	"11	80'	'H	"1	181	"Н	"1 <i>`</i>	182	"Н	"11	83"H					
G19	G158	"1:	200	"Н	"12	201	"Н	"1	202	"H	"12	203"	'H	• • • • • • • • • • •	"12	280	'H	"1	281	I"H	"1:	282	"Н	"12	283"H					
G20	G157	"1	300	"Н	"13	801	"Н	"1	302	"Н	"13	303"	'H	•••••	"13	380'	"H	"1	381	"Н	"1:	382	"Н	"13	83"H					
						Ē																				Ē				
G169	G8	"A	800)"H	"A8	301	"Н	"A	802	"Н	"A	803	"Н	•••••	"A	380	"Н	"A	881	I"Н	"At	\882"H		882"H		"A8	383"H	٦		
G170	G7	"A	900)"H	"A9	901	"Н	"A	902	"Н		903			"A	980	"Н	"A	.981	I"Н	"A9	982	"Н		83"H	٦				
G171	G6	"A	A00)"H	"AA	\01	"Н	"A	A02	"Н		403			"AA	\80'	'H	"A	.A8	1"H	"A/	\82	"Н	"A/	483"H					
G172	G5	"AB00"H "AB01"H				B02			303						"A	B8	1"H				"Al	383"H	1							
G173	G4	"AC00"H "AC01"H					C02						"AB80"H "AC80"H					H <u>"AB82"H</u> H "AC82"H												
G174	G3	"AD00"H "AD01"			"Н	"A	D02	"Н		<u>"AC03"H</u> "AD03"H			· "AD80"H			_					2"H									
G175	G2						E02						"AE80"H							E82		<mark>н</mark> "АЕ83"Н								
G176	G1	"AE00"H "AE01"H "AF00"H "AF01"H				"A	F02	"H		F03			"Al	-80	"Н	"A	\F8	1"H	"A	F82	2"H	"A	-83"H							

Table 5: Relationship between GRAM address and display position (SS = "0")

18-bit interface & hard dithering mode

Figure 4

9-bit interface & hard dither mode

Figure 5 Note: n = lower eight bit of address (0 to 132)

8-bit interface / SPI

Rev. 1.0-1 / October 2002

			<u> </u>		_	-					_				<u>`</u>				_			<i>,</i>	_		_
S/G pir	0 0 0 0		20		S6			S9			S12				S387		S389	S390	S391					S396	
GS=0	GS=1	DB.	C	0B D	В	DE	DB		DB 17	DB	• • • •	DB 17		DB.	••	DB 17	B DB DE			DB.	•••	DB 17	DB.	••••	DB 17
G1	G176	"00	83"H	"(082	2"H	"0	081	"H	"00)80"	Н		 "00)3"	н	"00)02'	'H	"00	01'	'H	"00	000"⊢	1
G2	G175	"018	83"H	"()182	2"H	"0	181	"Н	"0180"H				 "01)3"	Н	"01	02'	Ή	"01	01'	'H	"01	1	
G3	G174	"028	83"H	"()282	2"Н	"0	281	"Н	"02	280"	Н		 "0203"H			"02	202'	'H	"02	201'	Ή	"02	200"H	1
G4	G173	"038	83"H	"()382	2"H	"0	381	"Н					 "03)3"	Н		302'		"03	601'	'H	"03	800"H	1
G5	G172	"048	83"H	"()482	2"H	"0	"0481"H			180"	Н		 "04("04	02'	'H	"04	-01'	Ή	"04	-00"H	1
G6	G171	"058	83"H	"0	582	"Н	"0	"0581 H			580"	Н		 "050		_	"05	02"	Н	"05	01	Н	"05	500"H	1
G7	G170	"068	83"H	"()682	2"H	"0681"H			"06	680"	Н		 "06)3"	Н	"06	602'	Ή	"06	601'	'H	"06	600"H	1
G8	G169	"078	83"H	"()782	2"H	"0781"H			"07	780"	Н		 "07)3"	Н	"07	' 02'	Ή	"07	'01'	Ή	"07	′00"H	1
G9	G168	"088	83"H	"()882	2"H	"0881"H			"08	380"	Н		 "08)3"	н	"08	302'	Ή	"08	601'	'H	"08	800"H	1
G10	G167	"098	83"H	"()982	2"H	"0981"H			"09	980"	Н		 "09)3"	Н	"09	902'	Ή	"09	01'	Ή	"09	1	
G11	G166	"0A83"H			"0A82"H			481	"Н	"0A	\80"	Н		 "0A	03"	Н	"0A	\02'	'H	"0A	.01'	Ή	"0A00"H		1
G12	G165				"0B82"H			381	"Н	"0B80"H			 "0B03"H		Н	"0E	302'	'H	"0B01"H			"0B00"H		1	
G13	G164	"0C	:83" ⊦	I "()C82	2"H	"0	C81	"Н	"0C80"H			 "0C03"H		Н	"0C	202	'H				"0C00"H			
G14	G163	"0D	83"H	1 "()D82	2"H	"0	D81	"Н	"OE	080	Ή		 "0D03"H			"0E)02'	'H	"0E	01	'H	"0D00"H		
G15	G162	"0E	:83"H)E82		"0	E81	"H	"0E80"H			 		'H	"0E02"H		"H	"0E	01	"H	"0E00"		1	
G16	G161	"0F	83"⊦	1 "()F82	2"H	"0	F81	"Н	"OF	-80"	Ή		 "0F03"		Н	"0F02"H		'H	"0F01"H		'H			1
G17	G160	"10	83"H	"	1082	2"H	"1	081	"Н	"10)80"	Н		 "10	03"	Н	"10)02'	'H	"10	01'				ł
G18	G159	"11	83"H		1182	2"H	"1	181'	"H	"11	80"	Н		 "11			"11	02"	Н	"11	01'	Ή	"11	00"H	1
G19	G158	"12	83"H	"'	1282	2"H	"1	281	"Н	"12	280"	Н		 "12	03"	Н	"12	202'	'H	"12	:01'	Ή	"12	200"	1
G20	G157	"13	83"H	"	1382	2"H	"1	381	"Н	"13	380"	Н		 "13	03"	н	"13	302'	'H	"13	01'	'H	"13	00"H	1
					-						-							-							
G169	G8	"A8	383"H	1 "A	882	2"H	"A	881	"Н	"A8	380'	'H		 "A8	03'	'H	"A8	302'	'H	"A8	301	"Н	"A8	300"H	+
G170	G7)83"H		982			981			980'			 "A9				902'		"A9				900"H	
G171	G6		\83"H		A82			A81			\80'			 "AA			"AA			"AA				\00"H	
G172	G5	"AB83"H "AB82"H			"A	B81	"Н		380'			 "AB	03'		"AE			"AE	301	"Н	"AB00"H				
G173	G4	"AC83"H "AC82"H								 			1			"AC									
G174	G3	"AD83"H "AD82"H							 "AD03"H						"Al)00"H	_					
G175	G2	"AE83"H "AE82"H						· · · · ·	 "AE03"H																
G176	G1	"AE83"H "AE82"H "AF83"H "AF82"H			"AF81"H "AF80"H					 "AF03"H "AF02"H				'H	"AF	01	"Н		-00"H						

Table 6: Relationship between GRAM address and display position (SS = "1", \underline{BGR} = "1")

18-bit interface & hard dither mode

16-bit interface

Figure 8 Note: n = lower eight bite of address (0 to 132)

Figure 9

Instructions

Outline

The HD66773 uses the 18-bit bus architecture. Before the internal operation of the HD66773 starts, control information of 18-/16-/9-/8-bit is temporarily stored in the registers described below to allow high-speed interfacing with a high-performance microcomputer. The internal operation of the HD66773 is determined by signals sent from the microcomputer. These signals, which include the register selection signal (RS), the read/write signal (R/W), and the data bus signals (IB15 to IB0), make up the HD66773 instructions. When using an internal RAM, HD66773 selects 18-bit. There are eight categories of instructions that:

- Specify the index
- Read the status
- Control the display
- Control power management
- Process the graphics data
- Set internal GRAM addresses
- Transfer data to and from the internal GRAM
- Set grayscale level for the internal grayscale gamma adjustment

Normally, instructions that write data are used most. However, an auto-update of internal GRAM addresses after each data write can lighten the microcomputer program load. Because instructions are executed in 0 cycles, data could be written in succession.

As indicated below, assignment to 16-bit instruction ()B15-0) depends on its instruction. Follow the data format of the interface used and execute the instruction.

18-bit interface

Figure 11

16-bit interface

Figure 12

9-bit interface

8-bit interface/SPI (transfer two times/pixel)

Figure 14

Detail description

Please be noticed that instructions description indicated below are descriptions for instruction bit (IB15-0) mounted on each interface.

Index / Status / Display control Instruction

Index (IR)

The index instruction specifies the RAM control indexes (R00h to R3Bh). It sets the register number in the range of 000000 to 111111 in binary form. But do not access to Index register and instruction bits which do not have it's own index register.

R/W	RS	IB15	IB14	IB13	IB12	IB11	IB10	IB9	IB8	iB7	IB6	IB5	IB4	IB3	IB2	IB1	IB0
w	0	*	*	*	*	*	*	*	*	*	ID6	ID5	ID4	ID3	ID2	ID1	ID0

Figure 15 Index Instruction

Status Read (SR)

The status read instruction reads the internal status of the HD66773. **L7–0:** Indicates the driving raster-row position where the liquid crystal display is being driven.

R/W_F	RS IB1	5 IB14	IB13	IB12	IB11	IB10	IB9	IB8	IB7	IB6	IB5	IB4	IB3	IB2	IB1	IB0
R	0 L	7 L6	L5	L4	L3	L2	L1	L0	0	0	0	0	0	0	0	0

Figure 16 Status Read Instruction

Start Oscillation (R00 h)

The start oscillation instruction restarts the oscillator from the halt state in the standby mode. After issuing this instruction, wait at least 10 ms for oscillation to stabilize before issuing the next instruction. (See the Standby Mode section.)

If this register is read forcibly, *0773H is read.

R/W	RS	IB15	IB14	IB13	IB12	IB11	IB10	IB9	IB8	IB7	IB6	IB5	IB4	IB3	IB2	IB1	IB0
w	1	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	1
R	1	0	0	0	0	0	1	1	1	0	1	1	1	0	0	1	1

Figure 17 Start Oscillation Instruction

Driver Output Control (R01 h)

R/W_RS	IB15	IB14	IB13	IB12	IB11	IB10	IB9	IB8	IB7	IB6	IB5	IB4	IB3	IB2	IB1	IB0
W 1	0	0	0	0	0	SM	GS	SS	0	0	0	NL4	NL3	NL2	NL1	NL0

Figure 18 Driver Output Control Instruction

GS: Selects the output shift direction of the gate driver. When GS = 0, G1 shifts to G176. When GS = 1, G176 shifts to G1. '

SM: Change scan order of gate driver. Select the order according to the mounting method. See "Scan Mode Setting" for details see the page 76.

SS: Selects the output shift direction of the source driver. When SS = "0", S1 shifts to S396. When SS = "1", S396 shifts to S1. When SS = "0", $\langle R \rangle \langle G \rangle \langle B \rangle$ color is assigned from S1. Set SS bit and BGR bit when changing the dot order of R, G and B. When SS = 1, $\langle R \rangle \langle G \rangle \langle B \rangle$ color is assigned from S396. Rewrite the RAM when intending to change the SS bit or RGB bit.

NL4–0: Specify number of lines for the LCD drive. Number of lines for the LCD drive can be adjusted for every eight raster-rows. GRAM address mapping does not depend on the setting value of the drive duty ratio. Select the set value for the panel size or higher.

NL4	NL3	NL2	NL1	NL0	Display Size	Number of LCD Driver Lines	Gate Driver Used
0	0	0	0	0	Setting disabled	Setting disabled	Setting disabled
0	0	0	0	1	396 x 16 dots	16	G1 to G16
0	0	0	1	0	396 x 24 dots	24	G1 to G24
0	0	0	1	1	396 x 32 dots	32	G1 to G32
0	0	1	0	0	396 x 40 dots	40	G1 to G40
0	0	1	0	1	396 x 48 dots	48	G1 to G48
0	0	1	1	0	396 x 56 dots	56	G1 to G56
0	0	1	1	1	396 x 64 dots	64	G1 to G64
0	1	0	0	0	396 x 72 dots	72	G1 to G72
0	1	0	0	1	396 x 80 dots	80	G1 to G80
0	1	0	1	0	396 x 88 dots	88	G1 to G88
0	1	0	1	1	396 x 96 dots	96	G1 to G96
0	1	1	0	0	396 x 104 dots	104	G1 to G104
0	1	1	0	1	396 x 112 dots	112	G1 to G112
0	1	1	1	0	396 x 120 dots	120	G1 to G120
0	1	1	1	1	396 x 128 dots	128	G1 to G128
1	0	0	0	0	396 x 136 dots	136	G1 to G136
1	0	0	0	1	396 x 144 dots	144	G1 to G144
1	0	0	1	0	396 x 152 dots	152	G1 to G152
1	0	0	1	1	396 x 160 dots	160	G1 to G160
1	0	1	0	0	396 x 168 dots	168	G1 to G168
1	0	1	0	1	396 x 176 dots	176	G1 to G176

Table 7: NL Bits and Drive Duty

Note: Blank period (when all gates output Vgoff level) of 8H period will be inserted to the gates after all gates are scanned.

LCD-Driving-Waveform Control (R02 h)

R/W	RS	IB15	IB14	IB13	IB12	IB11	IB10	IB9	IB8	IB7	IB6	IB5	IB4	IB3	IB2	IB1	IB0
w	1	0	0	0	0	FLD1	FLD0	B/C	EOR	0	0	NW5	NW4	NW3	NW2	NW1	NWO

Figure 19 LCD-Driving-Waveform Control Instruction

FLD1-0: Set number of the field that the n field inter-laced driving. For details, see the "Inter-laced" drive section. (P76)

FLD1	FLD0	Number of field
0	0	Setting disabled
0	1	1 field
1	0	Setting disabled
1	1	3 field

Table 8

B/C: When B/C = 0, a B-pattern waveform is generated and alternates in every frame for LCD drive. When B/C = 1, a n raster-row waveform is generated and alternates in each raster-row specified by bits EOR and NW5–NW0 in the LCD-driving-waveform control register. For details, see the "n-raster-row Reversed AC Drive" section. (P75)

EOR: When the C-pattern waveform is set (B/C = 1) and EOR = 1, the odd/even frame-select signals and the n-raster-row reversed signals are EORed for alternating drive. EOR is used when the LCD is not alternated by combining the set values of the number of the LCD drive raster-row and the "n raster-row". For details, see the "n-raster-row Reversed AC Drive" section.

NW5–0: Specify the number of raster-rows n that will alternate at the C-pattern waveform setting (B/C = 1). NW5–NW0 alternate for every set value + 1 raster-row, and the first to the 64th raster-rows can be selected.

Rev.1.0-1 / October 2002

HD66773

Power Control 1 (R03h) Power Control 2 (R04h)

R/W	RS	DB15	DB14	DB13	DB12	DB11	DB10	DB9	DB8	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0
w	1	0	0	0	0	0	BT2	BT1	BT0	DC2	DC1	DC0	AP2	AP1	AP0	SLP	STB
w	1	CAD	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Figure 20 Power Control Instruction

BT2–0: The output factor of step-up circuit is selected. Adjust scale factor of the step-up circuit by the voltage used. Lower amplification of the step-up circuit consumes less current.

DC2-0: The operating frequency in the step-up circuit is selected. When the step-up operating frequency is high, the driving ability of the step-up circuit and the display quality become high, but the current consumption is increased. Adjust the frequency considering the display quality and the current consumption.

AP2–0: The amount of fixed current from operational amplifier for the power supply is adjusted. When the amount of fixed current is large, the LCD driving ability and the display quality become high, but the current consumption is increased. Adjust the fixed current considering the display quality and the current consumption. During no display, when AP2-0 = "000", the current consumption can be reduced by ending the operational amplifier and step-up circuit operation.

SLP: When SLP = 1, the HD66773 enters the sleep mode, where the internal display operations are halted except for the R-C oscillator, thus reducing current consumption.

During the sleep mode, the other GRAM data and instructions cannot be updated although they are retained.

STB: When STB = 1, the HD66773 enters the standby mode, where display operation completely stops, halting all the internal operations including the internal R-C oscillator. Further, no external clock pulses are supplied. For details, see the Standby Mode section. Only the following instructions can be executed during the standby mode.

- a. Standby mode cancel (STB = "0")
- b. Start oscillation

During the standby mode, the GRAM data and instructions may be lost. To prevent this, they must be set again after the standby mode is canceled. Serial transfer to the common driver is possible when it is in standby mode. Transfer the data again after it has been released from standby mode.

CAD: Set up based on retention capacitor configuration of the TFT panel.

CAD = "0" Set this up when use Cst composition.

CAD = "1" Set this up when use Cadd composition.

Rev.1.0-1 / October 2002

BT2	BT1	BT0	DDVDH Output	VGH Output	Notes*	Capacitor connect pin
0	0	0	2 x Vci1	3 x Vci2	VGH = Vci1 x 6	DDVDH, VGH, VGL, VCL, C11±, C21±, C22±, C31±, C41±
0	0	1	2 x Vci1	4 x Vci2	VGH = Vci1 x 8	DDVDH, VGH, VGL, VCL, C11±, C21±, C22±, C23±, C31±, C41±
0	1	0	3 x Vci1	3 x Vci2	VGH = Vci1 x 9	DDVDH, VGH, VGL, VCL, C11±, C12±, C21±, C22±, C31±, C41±
0	1	1	3 x Vci1	2 x Vci2	VGH = Vci1 x 6	DDVDH, VGH, VGL, VCL, C11±, C12±, C21±, C22±, C31±, C41±
1	0	0	2 x Vci1	Vci1 + 2 x Vci2	VGH = Vci1 x 5	DDVDH, VGH, VGL, VCL, C11±, C21±, C22±, C31±, C41±
1	0	1	2 x Vci1	Vci1 + 3 x Vci2	VGH = Vci1 x 7	DDVDH, VGH, VGL, VCL, C11±, C21±, C22±, C23±, C31±, C41±
1	1	0	Step-up stopped	3 x Vci2	$VGH = Vci2 \ge 3$	DDVDH, VGH, VGL, VCL, C21±, C22±, C31±, C41±
1	1	1	Setting prohibited	Setting prohibited	Setting prohibited	_

Table 9 BT Bits and DDVDH and VGH Outputs

Note: The step-up factors of VGH are derived from Vci1 when DDVDH and Vci2 are shorted. The conditions of DDVDH \leq 5.5 V and VGH \leq 16.5 V must be satisfied.

Tab	le 10	DC B	its and Step-up Cycle	
DC2	DC1	DC0	Step-up Cycle in Step-up Circuit 1	Step-up Cycle in Step-up Circuits 2/3/4
0	0	0	DCCLK divided by 15	DCCLK divided by 60
0	0	1	DCCLK divided by 30	DCCLK divided by 60
0	1	0	DCCLK divided by 60	DCCLK divided by 60
0	1	1	DCCLK divided by 30	DCCLK divided by 240
1	0	0	DCCLK divided by 15	DCCLK divided by 120
1	0	1	DCCLK divided by 30	DCCLK divided by 120
1	1	0	DCCLK divided by 60	DCCLK divided by 120
1	1	1	DCCLK divided by 60	DCCLK divided by 240

Table 11 AP Bits and Amount of Current in Operational Amplifier

AP2	AP1	AP0	Amount of Current in Operational Amplifier
0	0	0	Operation of the operational amplifier and step-up circuit stops.
0	0	1	Small
0	1	0	Small or medium
0	1	1	Medium
1	0	0	Medium or large
1	0	1	Large
1	1	0	Setting inhibited
1	1	1	Setting inhibited

Rev.1.0-1 / October 2002

HD66773

Power Control 3 (R0Ch) Power Control 4 (R0Dh) Power Control 5 (R0Eh)

R/W	RS	IB15	IDB14	IB13	IB12	IB11	IB10	IB9	IB8	IB7	IB6	IB5	IB4	IB3	IB2	IB1	IB0
w	1	0	0	0	0	0	0	0	0	0	0	0	0	0	VC2	VC1	VC0
w	1	0	0	0	0	VRL3	VRL2	VRL1	VRL0	0	0	0	PON	VRH3	VRH2	VRH1	VRH0
w	1	0	0	VCO MG	VDV4	VDV3	VDV2	VDV1	VDV0	0	0	0	VCM4	VСM3	VCM2	VCM1	VСМ0

Figure 21

VC2-0: Adjust reference voltage of VREG1OUT, VREG2OUT and VciOUT to optional rate of Vci. Also, when VC2-0 = "111", it is possible to stop the internal reference voltage generator. It is possible to apply any voltage.

VRL3-0: Set magnification of amplification for VREG2OUT voltage (voltage for the reference while generating Vgoff.) It allows magnify the amplification of Vci output voltage from -1.5 to -6.5 times.

PON: This is an operation starting bit for the booster circuit 3. PON = 0 is to stop and PON = 1 to start operation.

VRH3-0: Set magnification of amplification for VREG1OUT voltage (VCOM, reference voltage for gryascale voltage) It allows magnify the amplification of REGP from 1.33 to 2.775 times.

VCOMG: When VCOMG = 1, VcomL voltage can output to negative voltage (-5V).

When VCOMG = 0, VcomL voltage becomes GND and stops the amplifier of the negative voltage. Therefore, low power consumption is accomplished. Also, When VCOMG = 0, setting of the VDV4-0 is invalid. In this case, adjustment of Vcom/Vgoff A/C amplitude must be adjusted with VcomH using VCM4-0.

VDV4-0: Sets amplification factors for Vcom and Vgoff while Vcom AC drive is being performed. It is possible to set up from 0.6 to 1.23 times of VREG1. When VCOMG = 0, the set up is invalid.

VCM4-0: Set VcomH voltage (voltage of higher side when Vcom is driven in A/C.) It is possible to amplify from 0.4 to 0.98 times of VREG1 voltage. Also, when setting up VCM4-0 = "11111", stop the internal volume adjustment and adjust VcomH with external resistance from VcomR.

VC2	VC1	VC0	Internal Reference Voltage (REGP) of VREG1OUT and Vci1
0	0	0	Vci
0	0	1	0.92 x Vci
0	1	0	0.87 x Vci
0	1	1	0.83 x Vci
1	0	0	0.76 x Vci
1	0	1	0.73 x Vci
1	1	0	0.68 x Vci
1	1	1	Vci1: Hi-Z REGP: GND

Table 12 VC Settings and Internal Reference Voltage

Note: Leave these settings open because the voltage other than that for halting the internal circuit is output for REGP.

Figure 22 Output timing of GTEST1, and 2

Rev.1.0-1 / October 2002

VRH3	VRH2	VRH1	VRH0	VREG1OUT Voltage
0	0	0	0	REGP x 1.33 times
0	0	0	1	REGP x 1.45 times
0	0	1	0	REGP x 1.55 times
0	0	1	1	REGP x 1.65 times
0	1	0	0	REGP x 1.75 times
0	1	0	1	REGP x 1.80 times
0	1	1	0	REGP x 1.85 times
0	1	1	1	Stopped
1	0	0	0	REGP x 1.9000 times
1	0	0	1	REGP x 2.175 times
1	0	1	0	REGP x 2.325 times
1	0	1	1	REGP x 2.475 times
1	1	0	0	REGP x 2.625 times
1	1	0	1	REGP x 2.700 times
1	1	1	0	REGP x 2.775 times
1	1	1	1	Stopped

Table 13 VRH Bits and VREG1OUT Voltage

Notes: 1. Adjust VC2-0 and VRH3-0 so that the VREG1OUT voltage is lower than 5.0 V.

VRL3	VRL2	VRL1	VRL0	VREG2OUT Voltage
0	0	0	0	Vci x –1.5
0	0	0	1	Vci x- 2.0 times
0	0	1	0	Vci x – 2.5 times
0	0	1	1	Vci x – 3.0 times
0	1	0	0	Vci x- 3.5 times
0	1	0	1	Vci x –4.0 times
0	1	1	0	Vci x –4.5 times
0	1	1	1	Stopped
1	0	0	0	Vci x –5.0 times
1	0	0	1	Vci x –5.5 times
1	0	1	0	Vci x –6.0times
1	0	1	1	Vci x –6.5 times
1	1	0	0	Setting inhibited
1	1	0	1	Setting inhibited
1	1	1	0	Setting inhibited
1	1	1	1	Stopped
Notes:	1. Adjus	t Vci and V	/RL3-0 so t	hat the VREG2OUT voltage is higher than -16.0 V.

Rev.1.0-1 / October 2002

VCM4	VCM3	VCM2	VCM1	VCM0	VcomH Voltage
0	0	0	0	0	VREG1OUT x 0.40
0	0	0	0	1	VREG1OUT x 0.42
0	0	0	1	0	VREG1OUT x 0.44
:		:		:	: :
0	1	1	0	0	VREG1OUT x 0.64
0	1	1	0	1	VREG1OUT x 0.66
0	1	1	1	0	VREG1OUT x 0.68
0	1	1	1	1	The internal volume stops, and VcomH can be adjusted from VcomR by an external variable resistor.
1	0	0	0	0	VREG1OUT x 0.70
1	0	0	0	1	VREG1OUT x 0.72
1	0	0	1	0	VREG1OUT x 0.74
:		:		:	: :
1	1	1	0	0	VREG1OUT x 0.94
1	1	1	0	1	VREG1OUT x 0.96
1	1	1	1	0	VREG1OUT x 0.98
1	1	1	1	1	The internal volume stops, and VcomH can be adjusted from VcomR by an external variable resistor.

Table 15VCM4-0 Bits and VcomH Voltage

Note: Adjust VREG1OUT and VCM4-0 so that the VcomH voltage is lower than VDH.

VDV4	VDV3	VDV2	VDV1	VDV0	Vcom Amplitude
0	0	0	0	0	VREG1OUT x 0.60 times
0	0	0	0	1	VREG1OUT x 0.63 times
0	0	0	1	0	VREG1OUT x 0.66 times
:		:	:		: :
0	1	1	0	0	VREG1OUT x 0.96 times
0	1	1	0	1	VREG1OUT x 0.99 times
0	1	1	1	0	VREG1OUT x 1.02 times
0	1	1	1	1	Setting inhibited
1	0	0	0	0	VREG1OUT x 1.05 times
1	0	0	0	1	VREG1OUT x 1.08 times
1	0	0	1	0	VREG1OUT x 1.11 times
1	0	0	1	1	VREG1OUT x 1.14 times
1	0	1	0	0	VREG1OUT x 1.17 times
1	0	1	0	1	VREG1OUT x 1.20 times
1	0	1	1	0	VREG1OUT x 1.23 times
1	0	1	1	1	 Setting inhibited
1	1	*	*	*	

Table 16VDV4-0 Bits and Vcom Amplitude

Note: Adjust VREG1OUT and VDV4-0 so that the Vcom and Vgoff amplitudes are lower than 6.0 V.

Entry Mode (R05h)

Compare Register (R06h)

R/	W	RS	IB15	<u>I</u> B14	IB13	IB12	IB11	IB10	IB9	IB8	IB7	IB6	IB5	IB4	IB3	IB2	IB1	IB0
١	w	1	DIT	0	0	BGR	0	0	нwм	0	0	0	I/D1	I/D0	AM	LG2	LG1	LG0
\ \	w	1	CP15	CP14	CP13	CP12	CP11	CP10	CP9	CP8	CP7	CP6	CP5	CP4	СРЗ	CP2	CP1	CP0

Figure 23

The write data sent from the microcomputer is modified in the HD66773 written to the GRAM. The display data in the GRAM can be quickly rewritten to reduce the load of the microcomputer software processing. For details, see the Graphics Operation Function section. (See page 64.)

HWM: When HWM= "1", data can be written to the GRAM at high speed. In high-speed write mode, four words of data are written to the GRAM in a single operation after writing to RAM four times. Write to RAM four times, otherwise the four words cannot be written to the GRAM. Thus, set the lower 2 bits to 0 when setting the RAM address. For details, see High Speed RAM Write Mode section. (See page 58)

I/D1-0: When I/D1-0 = "1", the address counter (AC) is automatically incremented by 1 after the data is written to the GRAM. When I/D1-0 = "0", the AC is automatically decremented by 1 after the data is written to the GRAM. The increment/decrement setting of the address counter by I/D1-0 is done independently for the upper (AD15-8) and lower (AD7-0) addresses. The direction of moving through the addresses when the GRAM is written to is set by the AM bit.

AM: Set the automatic update method of the AC after the data is written to the GRAM. When AM = "0", the data is continuously written horizontally. When AM = "1", the data is continuously written vertically. When window address range is specified, the GRAM in the window address range can be written to according to the I/D1-0 and AM settings.

DIT: Hard dither mode is selected when DIT= "1".Use hard dither mode when 18-/9-bit or I/F mode is selected.

Note: When a window address range has been set the GRAM can only be written to within that range.

Figure 24 Address Direction Settings

LG2–0: Compare the data read from the GRAM or write data written from the microcomputer with the compare registers (CP15–0) by a compare/logical operation and write the results to GRAM. For details, see the "Graphic Operation function".

CP15–0: Sets the compare register for the compare operation with the data read from the GRAM or written by the microcomputer. *This function can not be used when using 18-/9-bit interface. Set LG2-0 = "000" when using 18-/9-bit interface.

BGR: In the writing of 18 bits of data to RAM, this bit may be used to reverse the it order from R, G, and B to B, G, and R. Please be aware that setting BGR to 1 will convert the order of the CP15-0 and WM15-0 bits in the same way.

Note1) Data processing when it is not LG2-0 = "000", is available only when using 8-/16-bit interface. For the bit assignment for each interface, see the section parallel transfer.

2) The write data mask (WM15-0) is set by the register in the RAM write data mask section. Write data mask operation is available only with 8-/16-bit interface.

Figure 25

Display Control (R07h)

R/W	RS	DB15	DB14	DB13	DB12	DB11	DB10	DB9	DB8	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0
w	1	0	0	0	PT1	PT0	VLE2	VLE1	SPT	0	0	GON	DTE	CL	REV	D1	D0

Figure 26 Display Control Instruction

PT1-0: Normalize the source outputs when non-displayed area of the partial display is driven. For details, see the Screen-division Driving Function section.

VLE2–1: When VLE1 = "1", a vertical scroll is performed in the 1^{st} screen. When VLE2 = "1", a vertical scroll is performed in the 2^{nd} screen. Vertical scrolling on the two screens cannot be controlled at the same time.

VLE2	VLE1	2 nd Screen	1 st Screen					
0	0	Fixed display	Fixed display					
0	1	Fixed display	Scroll display					
1	0	Scroll display	Fixed display					
1	1	Setting disabled						

Table	17
Lanc	1/

CL: When CL = "1", HD66773 selects 8-color mode. For details, see the 8-color Display Mode section.

CL	Number of Display Colors						
0	65,536						
1	8						
Table 18							

SPT: When SPT = "1", the 2-division LCD drive is performed. For details, see the Screen-division Driving Function section.

Rev. 1.0-1 / October 2002

REV: Displays all character and graphics display sections with reversal when REV = "1". Since the grayscale level can be reversed, display of the same data is enabled on normally-white and normally-black panels. Source output level is indicated below.

_		Source output level											
	GRAM	Display area		non-display area									
REV	data			PT1-0	=(0.*)	PT1-0	= (1.0)	PT1-0 = (1.1)					
	uuu	VCOM = "L"	VCOM ="H"	VCOM = "L"	VCOM ="H"	VCOM = "L"	VCOM ="H"	VCOM = "L"	VCOM ="H"				
	16'h0000	V31	V0										
0				V31	V0	GND	GND	Hi-z	Hi-z				
	16'hFFFF	vó	V31										
	16'h0000	V0	V31										
1				V31	V0	GND	GND	Hi-z	Hi-z				
	16'hFFFF	V3'1	V0										

Figure 27

		Source output level								
REV	REV GRAM		D1-0 = (1.1)		D1-0 = (1.0)		D1-0 = (0.1)		= (0.0)	
	data	VCOM = "L"	VCOM ="H"	VCOM = "L"	VCOM ="H"	VCOM = "L"	VCOM ="H"	VCOM = "L"	VCOM ="H"	
	16'h0000	V31	V0							
0				V31	V0	GND	GND	GND	GND	
	16'hFFFF	\mathbf{v}_{0}	V31							
	16'h0000	V0	V31							
1				V31	V0	GND	GND	GND	GND	
	16'hFFFF	V31	V 0							

Figure 28

GON: Gate off level becomes VGH when GON = "0".

D1–0: Display is on when D1 = "1" and off when D1 = "0". When off, the display data remains in the GRAM, and can be displayed instantly by setting D1 = "1". When D1 = "0", the display is off with all of the source outputs set to the GND level. Because of this, the HD66773 can control the charging current for the LCD with AC driving.

When D1-0 = "01", the internal display of the HD66773 is performed although the display is off. When D1-0 = "00", the internal display operation halts and the display is off.

Control the display on/off while control GON and DTE. For details, see the Instruction Set Up Flow.

GON	DTE	D1	D0	HD66773 Internal Display Operation	Source output	Gate output
0	0	0	0	Halt	GND	VGH
0	0	0	1	Operate	GND	VGH
1	0	0	1	Operate	GND	VGOFF
1	0	1	1	Operate	Grayscale level output	VGOFF
1	1	1	1	Operate	Grayscale level output	Gate selective line:VGH, Gate non-selective line: VGOFF

Table 19 Bits and Operation

Notes: 1. Writing from the microcomputer to the GRAM is independent from the state of D1-0.

2. When it is the standby mode, D1-0 = "00". However, the register contents of D1-0 are not modified.

Frame Cycle Control (R0Bh)

R/W	RS	iB15	IB14	IB13	IB12	IB11	IB10	IB9	IB8	IB7	IB6	IB5	IB4	IB3	IB2	IB1	IB0
w	1	NO1	NO0	SDT1	SDT0	EQ1	EQ0	DIV1	DIV0	0	0	0	0	RTN3	RTN2	RTN1	RTN0

Figure 29

RTN3-0: Set the 1H period.

DIV1-0: Set the division ratio of clocks for internal operation (DIV1-0). Internal operations are driven by clocks which frequency are divided according to the DIV1-0 setting. Frame frequency can be adjusted along with the 1H period (RTN3-0). When changing drive line count, adjust the frame frequency. For details, see the Frame Frequency Adjustment Function section.

EQ1-0: Sets equalinzing period.

Table	20
Table	4 U

14510 20				
RTN3	RTN2	RTN1	RTN0	Clock cycles per Rster-row
0	0	0	0	16
0	0	0	1	17
0	0	1	0	18
1	1	1	0	30
1	1	1	1	31

Table 21

DIV0	Division Ratio	Internal Operation Clock Frequency
0	1	fosc/1
1	2	fosc/2
0	4	fosc/4
1	8	fosc/8
	DIV0 0 1 0 1	DIV0 Division Ratio 0 1 1 2 0 4 1 8

*fosc = R-C oscillation frequency

٦

Table 22

EQ1	EQ2	EQ period
0	0	No EQ
0	1	1 clock cycle
1	0	2 clock cycle
1	1	3 clock cycle

-Formula for the fram frequency

Frame frequency =	fosc	ri 1_1
	Clock cycles per raster-row x division ratio x (Line + 8)	[Hz]
fosc:	CR oscillation frequency	
	Number of drive raster-row (NL bits)	
Divisi	ion ratio: DIV bit	
Clock	cycles per raster-row: RTN bits	

Note) Equalization is available only when VcomL is larger than 0V. Set EQ = "00", when VcomL is smaller than 0V.

Rev. 1.0-1 / October 2002

4 clock cycle

Table 23	SDT1	SDT0	Delay amount of the source output
	0	0	1 clock cycle
	0	1	2 clock cycle
	1	0	3 clock cycle

1

SDT1-0: Set delay amount from the gate output signal falling edge of the source outputs.

1

NO1-0: Sets amount of non-overlap of the gate output.

Rev. 1.0-1 / October 2002

Gate Scan Position (R0Fh)

R/W	RS	DB15	DB14	DB13	DB12	DB11	DB10	DB9	DB8	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0
w	1	0	0	0	0	0	0	0	0	0	0	0	SCN4	SCN3	SCN2	SCN1	SCN0

Figure 32

SCN4-0: Set the scanning starting position of the gate driver.

					Scanning	start position
SCN4	SCN3	SCN2	2 SCN1	SCN0	When GS=0	When GS=1
0	0	0	0	0	G1	G176
0	0	0	0	1	G9	G169
0	0	0	1	0	G17	G161
					-	
1	0	1	0	0	G161	G17
1	0	1	0	1	G169	G9

Figure 33: Relationship between NL and SCN set up value

Rev. 1.0-1 / October 2002

Vertical Scroll Control (R11h)

R/W	RS	IB15	IB14	IB13	IB12	IB11	IB10	IB9	IB8	IB7	IB6	IB5	IB4	IB3	IB2	IB1	IB0
w	1	0	0	0	0	0	0	0	0	VL7	VL6	VL5	VL4	VL3	VL2	VL1	VL0

Figure 34

VL7-0: Specify scroll length at the scroll display for vertical smooth scrolling. Any raster-row from the first to 176^{th} can be scrolled for the number of the raster-row. After 176^{th} raster-row is displayed, the display restarts from the first raster-row. The display-start raster-row (VL7-0) is valid when VLE1 = "1" or VLE2 = "1". The raster-row display is fixed when VLE2-1 = "00".

VL7	VL6	VL5	VL4	VL3	VL2	VL1	VL0	Scroll length
0	0	0	0	0	0	0	0	0 raster-row
0	0	0	0	0	0	0	1	1 raster-row
0	0	0	0	0	0	1	0	2 raster-row
								Ē
1	0	1	0	1	1	1	0	174 raster-row
1	0	1	0	1	1	1	1	175 raster-row
						T	11.04	

Note: Do not set any higher raster-row than 175 ("AF"H)

Table 26

1st Screen Driving Position (R14h)

2nd Screen Driving Position (R15h)

R/W RS IB15 IB14 IB13 IB12 IB11 IB10 IB9 IB8 IB7 IB6	IB5 IB4 IB3 IB2 IB1 IB0
W 1 SE17 SE16 SE15 SE14 SE13 SE12 SE11 SE10 SS17 SS16	SS15 SS14 SS13 SS12 SS11 SS10
W 1 SE27 SE26 SE25 SE24 SE23 SE22 SE21 SE20 SS27 SS26	SS25 SS24 SS23 SS22 SS21 SS20

Figure 35

SS17–0: Specify the driving start position for the first screen in a line unit. The LCD driving starts from the set value + 1 gate driver.

SE17–0: Specify the driving end position for the first screen in a line unit. The LCD driving is performed to the set value + 1 gate driver. For instance, when SS17-10 = "07"H and SE17-10 = "10"H are set, the LCD driving is performed from G8 to G17, and non-selection driving is performed for G1 to G7, G18, and others. Ensure that $SS17-10 \le SE17-10 \le AFH$. For details, see the Screen-division Driving Function section.

SS27–0: Specify the driving start position for the second screen in a line unit. The LCD driving starts from the set value + 1 gate driver. The second screen is driven when SPT = "1".

SE27–0: Specify the driving end position for the second screen in a line unit. The LCD driving is performed to the set value + 1 gate driver. For instance, when SPT = "1", SS27–20 = "20"H, and SE27–20 = "4F"H are set, the LCD driving is performed from G33 to G80. Ensure that SS17–10 \leq SE17–10 \leq SS27–20 \leq SE27–20 \leq "AF"H. For details, see the Screen-division Driving Function section.

Horizontal RAM Address Position (R16h)

Vertical RAM Address Position (R17h)

R/W	RS	IB15	IB14	IB13	IB12	IB11	IB10	IB9	IB8	IB7	IB6	IB5	IB4	IB3	IB2	IB1	IB0
w	1	HEA7	HEA6	HEA5	HEA4	HEA3	HEA2	HEA1	HEA0	HSA7	HSA6	HSA5	HSA4	HSA3	HSA2	HSA1	HSA0
w	1	VEA7	VEA6	VEA5	VEA4	VEA3	VEA2	VEA1	VEA0	VSA7	VSA6	VSA5	VSA4	VSA3	VSA2	VSA1	VSA0

HSA7-0/HEA7-0: Specify the horizontal start/end positions of a window for access in memory. Data can be written to the GRAM from the address specified by HEA7-0 from the address specified by HSA7-0. Note that an address must be set before RAM is written to. Ensure "00"h \leq HSA7-0 \leq HEA7-0 \leq "83"h.

VSA7-0/VEA7-0: Specify the vertical start/end positions of a window for access in memory. Data can be written to the GRAM from the address specified by VEA7-0 from the address specified by VSA7-0. Note that an address must be set before RAM is written to. Ensure "00"h \leq VSA7-0 \leq VEA7-0 \leq "AF"h.

Figure 37 Window Address Setting Range

Note: 1. Ensure that the window address area is within the GRAM address space.

- 2. In high-speed write mode, data are written to GRAM in four-words. Thus, dummy write operations should be inserted depending on the window address
 - area. For details, see the High-Speed Burst RAM Write Function section.
- 3. Set RAM address within the window address area. In high-speed write mode, set RAM address within the area containing dummy area. For details, see the High-Speed RAM Write Function section.

RAM Write Data Mask (R20h)

R/W	RS	IB15	IB14	IB13	IB12	IB11	IB10	IB9	IB8	IB7	IB6	IB5	IB4	IB3	IB2	IB1	IB0
		WМ	wм	WM	WМ	WM	WМ	WM	WМ								
w	1	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

Figure 38 RAM Write Data Mask Instruction

WM15–0: In writing to the GRAM, these bits mask writing in a bit unit. This function is useful only when using 8- or 16-bit interface. When WM15 = "1", this bit masks the write data of WD15 and does not write to the GRAM. Similarly, the WM14 to 0 bits mask the write data of WD14 to WD0 in a bit unit. For details, see the Graphics Operation Function section.

RAM Address Set (R21h)

R/W	RS	IB15	IB14	IB13	IB12	IB11	IB10	IB9	IB8	IB7	IB6	IB5	IB4	IB3	IB2	IB1	IB0
w	1	AD15	AD14	AD13	AD12	AD11	AD10	AD9	AD8	AD7	AD6	AD5	AD4	AD3	AD2	AD1	AD0

Figure 39RAM Address Set Instruction

AD15–0: Initially set GRAM addresses to the address counter (AC). Once the GRAM data is written, the AC is automatically updated according to the AM and I/D bit settings. This allows consecutive accesses without resetting addresses. Once the GRAM data is read, the AC is not automatically updated. GRAM address setting is not allowed in the standby mode. Ensure that the address is set within the specified window address.

Table 27 GRAM Address Range in Eight-grayscale Mode

AD15 to AD0	GRAM Setting
"0000"H to "0083"H	Bitmap data for G1
"0100"H to "0183"H	Bitmap data for G2
"0200"H to "0283"H	Bitmap data for G3
"0300"H to "0383"H	Bitmap data for G4
"AC00"H to "AC83"H	Bitmap data for G173
"AD00"H to "AD83"H	Bitmap data for G174
"AE00"H to "AE83"H	Bitmap data for G175
	Bitmap data for G176
"AF00"H to "AF83"H	Billinap uala ibi G170

Write Data to GRAM (R22h)

R/W	RS				_														
w	1	RAM	write	data (\	ND17-	0) *A	llocat	ion ac	cordi	ng to I	DB17-0	0 pin c	lepend	ds on	interfa	ace. (Ir	ndicate	ed bel	ow)
		DB17	DB16	DB15	DB14	DB13	DB12	DB11	DB10	DB9	DB8	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0
		WD 17	WD 16	WD 15	WD 14	WD 13	WD 12	WD 11	WD 10	WD 9	WD 8	WD 7	WD 6	WD	WD 4	WD 3	WD 2	WD 1	WD 0

Figure 40

WD17–0: Transforms all the GRAM data into 18-bit, and writes the data. Format for trnasforming data into 18-bit depends on the interface used.

HD66773 selects the grayscale level according to the GRAM data. After writing data to GRAM, address is automatically updated according to AM bit and I/D bit. Access to GRAM during stand-by mode is not available. When using 18/9-bit interface, write data to GRAM after enable an internal hardware dither process circuit (DIT bit = "1").

Note: Write data into GAM after setting DIT = "1".

Figure 41

Figure 44

Rev. 1.0-1 / October 2002

Table 28 GRAM Data and Grayscale Level

GRAM Da	ata Set-up R/B	Selected Grayscale N	Р	GRAM Da	ata Set-up R/B	Selected Grayscal N	Р
000000	00000	VO	V31	010000	01000	V8	V23
000001	-	V0 – V1	V31 - V30	010001	-	V8 – V9	V23 – V22
000010	00001	V1	V30	010010	01001	V9	V22
000011	-	V1 –V2	V30 – V29	010011	-	V9 –V10	V22 – V21
000100	00010	V2	V29	010100	01010	V10	V22
000101	-	V2 – V3	V29 – V28	010101	-	V10 – V11	V21 – V20
000110	00011	V3	V28	010110	01011	V11	V20
000111	-	V3 – V4	V28 – V27	010111	-	V11 – V12	V20 – V19
001000	00100	V4	V27	011000	01100	\/12	V19
001001	-	V4 – V5	V27 – V26	011001	-	V12 – V13	V19 – V18
001010	00101	V5	V26	011010	01101	V13	V18
001011	-	V5 – V6	V26 – V25	011011	-	V13 – V14	V18 – V17
001100	00110	V6	V25	011100	01110	V14	V17
001101	-	V6 – V7	V25 – V24	011101	-	V14 – V15	V17 – V16
001110	00111	V7	V24	011110	01111	V15	V16
001111	-	V7 – V8	V24 – V23	011111	-	V15 – V16	V16 – V15
GRAM D G	ata Set-up R/B	Selected Gravscal N	Р	GRAM Da	ita Set-up R/B	Selected Grayscal N	Р
100000	10000	146	V15	110000	11000	V24	 V7
100001	-	V16 – V17	V15 – V14	110001	-	V24 – V25	V7 – V6
100010	10001	V17	V14	110010	11001	V25	V6
100011	-	V17 –V18	V14 – V13	110011	-	V25 –V26	V6 – V5
100100	10010	V18	V13	110100	11010	V26	V5
100101	-		V13 – V12	110101	-	V26 – V27	V5 – V4
100110	10011	V19	V12	110110	11011	V27	V4
100111	-	V19 – V20	V12 – V11	110111	-	V27 – V28	V4 – V3
101000	10100	\/20	V11	111000	11100	V28	V3
101001	-	V20 – V21	V11 – V10	111001	-	V28 – V29	V3 – V2
101010	10101	V21	V10	111010	11101	V29	V2
101011	-	V21 – V22	V10 – V9	111011	-	V29 – V30	V2 – V1
101100	10110	V22	V9	111100	11110	V30	V1
101101	-	V22 – V23	V9 – V8	111101	-	V30 – V31	V1 – V0
							1/0
101110	10111	V23	V8	111110	11111	V31	V0

"N" = Negative level

"P" = Positive level

Read Data from GRAM (R22h)

Γ	R/W	RS																				_
R 1 RAM read data (WD15-0) *Allocation according to I													17-0 pi	in dep	ends d	on inte	rface. ((Indica	ted be	 elow)	I	
Ľ			L																	1	<u> </u>]

Figure 45 Read Data from GRAM Instruction

RD15–0: Read 16-bit data from the GRAM. When the data is read to the microcomputer, the first-word read immediately after the GRAM address setting is latched from the GRAM to the internal read-data latch. The data on the data bus (DB17–0) becomes invalid and the second-word read is normal. When bit processing, such as a logical operation, is performed within the HD66773, only one read can be processed since the latched data in the first word is used. Data read function and logical operation function are usable only when using 8-/16-bit interface. When using 9-/18-bit interface, this function can not be used.

16-bit interface

Figure 48 GRAM Read Sequence

Gamma Control (R30h to R3Bh)

R/W	RS	IB15	IB14	IB13	IB12	IB11	IB10	IB9	IB8	IB7	IB6	IB5	IB4	IB3	IB2	IB1	IB0
w	1	0	0	0	0	0	РКР 12	РКР 11	РКР 10	0	0	0	0	0	PKP 02	PKP 01	PKP 00
w	1	0	0	0	0	0	PKP 32	PKP 31	PKP 30	0	0	0	0	0	PKP 22	PKP 21	PKP 20
w	1	0	0	0	0	0	РКР 52	РКР 51	РКР 50	0	0	0	0	0	PKP 42	PKP 41	РКР 40
w	1	0	0	0	0	0	PRP 12	PRP 11	PRP 10	0	0	0	0	0	PRP 02	PRP 01	PRP 00
w	1	0	0	0	0	0	PKN 12	РКN 11	РКN 10	0	0	0	0	0	PKN 02	PKN 01	PKN 00
w	1	0	0	0	0	0	PKN 32	PKN	PKN 30	0	0	0	0	0	PKN 22	PKN 21	PKN 20
w	1	0	0	0	0	0	PKN 52	PKN 51	PKN 50	0	0	0	0	0	PKN 42	PKN 41	PKN 40
w	1	0	0	0	0	0	PRN 12	PRN 11	PRN 10	0	0	0	0	0	PRN 02	PRN 01	PRN 00
w	1	0	0	0	VRP 14	VRP 13	VRP 12	VRP 11	VRP 10	0	0	0	0	VRP 03	VRP 02	VRP 01	VRP 00
w	1	0	0	0	VRN 14	VRN 13	VRN 12	VRN 11	VRN 10	0	0	0	0	VRN 03	VRN 02	VRN 01	VRN 00
	w w w w w w w w	W 1 W 1 W 1 W 1 W 1 W 1 W 1 W 1 W 1 W 1 W 1 W 1 W 1 W 1 W 1	W 1 0 W 1 0 W 1 0 W 1 0 W 1 0 W 1 0 W 1 0 W 1 0 W 1 0 W 1 0 W 1 0 W 1 0 W 1 0 W 1 0 W 1 0	W 1 0 0 W 1 0 0 W 1 0 0 W 1 0 0 W 1 0 0 W 1 0 0 W 1 0 0 W 1 0 0 W 1 0 0 W 1 0 0 W 1 0 0 W 1 0 0 W 1 0 0 W 1 0 0 W 1 0 0 W 1 0 0 W 1 0 0	W 1 0 0 0 W 1 0 0 0 W 1 0 0 0 W 1 0 0 0 W 1 0 0 0 W 1 0 0 0 W 1 0 0 0 W 1 0 0 0 W 1 0 0 0 W 1 0 0 0 W 1 0 0 0 W 1 0 0 0 W 1 0 0 0 W 1 0 0 0 W 1 0 0 0 W 1 0 0 0	W 1 0 0 0 0 0 W 1 0 0 0 0 0 0 W 1 0 0 0 0 0 0 W 1 0 0 0 0 0 0 W 1 0 0 0 0 0 0 W 1 0 0 0 0 0 0 W 1 0 0 0 0 0 0 W 1 0 0 0 0 0 0 W 1 0 0 0 0 0 0 W 1 0 0 0 0 0 0 W 1 0 0 0 0 0 0 W 1 0 0 0 0 0 0	W 1 0 0 0 0 0 0 0 W 1 0 0 0 0 0 0 0 W 1 0 0 0 0 0 0 0 W 1 0 0 0 0 0 0 W 1 0 0 0 0 0 0 W 1 0 0 0 0 0 0 W 1 0 0 0 0 0 0 W 1 0 0 0 0 0 0 W 1 0 0 0 0 0 0 W 1 0 0 0 0 0 0 W 1 0 0 0 0 0 0 W 1 0 0 0	W 1 0 0 0 0 0 0 0 PKP 12 W 1 0 0 0 0 0 0 0 PKP 32 W 1 0 0 0 0 0 0 0 PKP 32 W 1 0 0 0 0 0 0 0 PKP 52 W 1 0 0 0 0 0 0 12 W 1 0 0 0 0 0 0 12 W 1 0 0 0 0 0 0 0 12 W 1 0 0 0 0 0 0 0 12 W 1 0 0 0 0 0 0 0 0 0 W 1 0 0 0 0 0 0 <td>W 1 0 0 0 0 0 0 PKP PKN $P11$ D D</td> <td>W 1 0 0 0 0 0 0 PKP PKN P</td> <td>W 1 0 0 0 0 0 0 PKP PKN P</td> <td>W 1 0 0 0 0 0 0 121 121 121 121 121 121 121 111 0 0 0 W 1 0 0 0 0 0 0 12 111 10 0 0 W 1 0 0 0 0 0 0 9879 $9KP$ $9KP$</td> <td>W 1 0</td> <td>W 1 0</td> <td>W 1 0</td> <td>W 1 0 0 0 0 0 PKP PKP PKP PKP PKP 0 <!--</td--><td>W 1 0 0 0 0 0 12 11 10 0</td></td>	W 1 0 0 0 0 0 0 PKP PKN $P11$ D	W 1 0 0 0 0 0 0 PKP PKN P	W 1 0 0 0 0 0 0 PKP PKN P	W 1 0 0 0 0 0 0 121 121 121 121 121 121 121 111 0 0 0 W 1 0 0 0 0 0 0 12 111 10 0 0 W 1 0 0 0 0 0 0 9879 $9KP$	W 1 0	W 1 0	W 1 0	W 1 0 0 0 0 0 PKP PKP PKP PKP PKP 0 </td <td>W 1 0 0 0 0 0 12 11 10 0</td>	W 1 0 0 0 0 0 12 11 10 0

Table 29

PKP52-00: Gamma micro adjustment register for the positive polarity output

PRP12-00: Gradient adjustment register for the positive polarity output

VRP14-00: Adjustment register for amplification adjustment of the positive polarity output

PKN52-00: Gamma micro adjustment register for the negative polarity output

PRN12-00: Gradient adjustment register for the negative polarity output

VRN14-0: Adjustment register for the amplification adjustment of the negative polarity output.

For details, see the Gamma Adjustment Function.

Register		1					Unne	r Code							Low	er Code				Instructions
No.	Register	R/W	RS	IB15	IB14	IB13	IB12	IB11	IB10	IB9	IB8	IB7	IB6	IB5	IB4	IB3	IB2	IB1	IB0	instructions
R	Index	0	0	*	*	*	*	*	*	*	*	*	ID6	ID5	ID4	ID3	ID2	ID1	ID0	Sets the index register value.
SR	Status read	1	0	L7	L6	L5	L4	L3	L2	L1	L0	0	0	0	0	0	0	0	0	Reads the driving raster-row position (L7-0).
Dool	Oscillation Start	0	1	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	1	Sets the index register value. Reads the driving raster-row position (L7-0). Starts the oscillation mode while stand-by period.
R00h	Device code read	1	1	0	0	0	0	0	1	1	1	0	1	1	1	0	0	1	1	Reads "0773"H.
R01h	Driver output control	0	1	0	0	0	0	0	SM	GS	SS	0	0	0	NL4	NL3	NL2	NL1	NL0	Sets the gate driver shitg direction (GS), source driver shift direction (SS), and number of driving lines (NL4-0).
R02h	LCD drive AC control	0	1	0	0	0	0	FLD1	FLD0	B/C	EOR	0	0	NW5	NW4	NW3	NW2	NW1	NW0	Sets the LCD drive AC waveform (B/C), number of interfaced field (FLD1-0), EOR output (DOR)m and the number of n-raster-rows (NW5-0) at C-pattern
R03h	Power control (1)	0	1	0	0	0	0	0	BT2	BT1	BT0	DC2	DC1	DC0	AP2	AP1	AP0	SLP	STB	Sets the stadby mode (STB), LCD power on (AP2-0), sleep mode (SLP), boosting cycle DC2-0, boosting output multiplying factor (BT3-0).
R04h	Power control (2)	0	1	CAD	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	Sets the configuration of retention bolume (CAD).
R05h	Entry mode	0	1	DIT	0	0	BGR	0	0	нуум	0	0	0	VD1	VD0	AM	LG2	LG1	LG0	Specifies the logical operation (LG2-0), AC counter mode (AM), increment/decrement mode (I/D1-0), high-speed-wirite mode (HWM),BGR mode, and hard dither mode (DIT).
R06h	Compare register	0	1	CP15	CP14	CP13	CP12	CP11	CP10	CP9	CP8	CP7	CP6	CP5	CP4	CP3	CP2	CP1	CP0	Sets the compare regiser (CP15-0).
R07h	Display control	0	1	0	0	0	PT1	PT0	VLE2	VLE1	SPT	0	0	GON	DTE	CL	REV	D1	D0	Specifies display on (D1-0), reversed display (REV), number of display colors (CL), DISPTMG enable (DTE), gate output on (GON), screen division driving (ST/PT)), and verticla scrol (VLE2-1), and source output condition (PT1-0).
R0Bh	Frame cycle control	0	1	NO1	NO0	SDT1	SDT0	EQ1	EQ0	DIV1	DIV0	0	0	0	0	RTN3	RTN2	RTN1	RTN0	Sets the 1H period (RTN3-0) and operating clock grequency-division ratio (DV1-0), the equalizing period (EQ1-0), delay volume of the source output (STD1-0), non-overlap volume of the gate output (NO1-0).
R0Ch	Power control (3)	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	VC2	VC1	VC0	Sets an adjustment factor for the Vci voltage (VC2-0).
R0Dh	Power control (4)	0	1	0	0	0	0	VRL3	VRL2	VRL1	VRL0	0	0	0	PON	VRH3	VRH2	VRH1	VRH0	Sets the amplification factor for VREGOUT1 voltage (VRH4-0) and for VREGOUT2 voltage (VRL3-0). Step-up circuit 3 starts operation (VCM4-0).
R0Eh	Power control (5)	0	1	0	0	VCOMG	VDV4	VDV3	VDV2	VDV1	VDV0	0	0	0	VCM4	VCM3	VCM2	VCM1	VCM0	Sets VcomH voltage (VCM4-0), AC-cycle oscillation of Vcom and Vgoff (VDV4-0) and voltage fo VCOM (VCOMG).
R0Fh	Gate scan starting position	0	1	0	0	0	0	0	0	0	0	0	0	0	SCN4	SCN3	SCN2	SCN1	SCN0	Sets the scanning starting position (SCN4-0) of the gate driver.
R11h	vertical scroll control	0	1	0	0	0	0	0	0	0	0	VL7	VL6	VL5	VL4	VL3	VL2	VL1	VL0	Specifies the screen display scroll volume (VL7-0).
R14h	First display drive position	0	1	SE17	SE16	SE15	SE14	SE13	SE12	SE11	SE10	SS17	SS16	SS15	SS14	SS13	SS12	SS11	SS10	Sets 1st-screen driving start (SS17-10) and end (SE17-10).
R15h	Second display drive position	0	1	SE27	SE26	SE25	SE24	SE23	SE22	SE21	SE20	SS27	SS26	SS25	SS24	SS23	SS22	SS21	SS20	Sets 2nd-screen driving start (SS27-10) and end (SE27-10).
R16h	Horizontal RAM address position	0	1	HEA7	HEA6	HEA5	HEA4	HEA3	HEA2	HEA1	HEA0	HSA7	HSA6	HSA5	HSA4	HSA3	HSA2	HSA1	HSA0	Sets the start (HSA7-0) and end (HEA7-0) of the horizontal RAM address
R17h	Vertical RAM address position	0	1	VEA7	VEA6	VEA5	VEA4	VEA3	VEA2	VEA1	VEA0	VSA7	VSA6	VSA5	VSA4	VSA3	VSA2	VSA1	VSA0	Sets the start (VSA7-0) and end (VEA7-0) fo the vertical RAM address range.
R20h	RAM write data mask	0	1	WM15	WM14	WM13	WM12	WM11	WM10	WM9	WM8	WM7	WM6	WM5	WM4	WM3	WM2	WM1	WM0	Specifies write data mask (WM15-0) at RAM write.
R21h	RAM address set	0	1				AD15-8	3 (Upper)						AD7-	0 (Lowe	r)	•		Initially sets the RAM address to the address counter (AC).
2001	RAM data write	0	1			١	Write Da	ta (Uppe	ər)						Write D	ata (Lov	ver)			Write data to RAM.
R22h	RAM data read	1	1				Read Da	ta (Uppe	er)						Read D	ata (Lov	ver)			Read data to RAM.
R30h	control (1)	0	1	0	0	0	0	0	PKP12	PKP11	PKP10	0	0	0	0	0	PKP02	PKP01	PKP00	Adjust the Gamma control.
R31h	control (2)	0	1	0	0	0	0	0	PKP32	PKP31	PKP30	0	0	0	0	0	PKP22	PKP21	PKP20	Adjust the Gamma control.
R32h	control (3)	0	1	0	0	0	0	0	PKP52	PKP51	PKP50	0	0	0	0	0	PKP42	PKP41	PKP40	Adjust the Gamma control.
R33h	control (4)	0	1	0	0	0	0	0	PRP12	PRP11	PRP10	0	0	0	0	0	PRP02	PRP01	PRP00	Adjust the Gamma control.
R34h	control (5)	0	1	0	0	0	0	0	PKN12	PKN11	PKN10	0	0	0	0	0	PKN02	PKN01	PKN00	Adjust the Gamma control.
R35h	control (6)	0	1	0	0	0	0	0	PKN32	PKN31	PKN30	0	0	0	0	0	PKN22	PKN02	PKN20	Adjust the Gamma control.
R36h	control (7)	0	1	0	0	0	0	0	PKN52	PKN51	PKN50	0	0	0	0	0	PKN42	PKN41	PKN40	Adjust the Gamma control.
R37h	control (8)	0	1	0	0	0	0	0	PRN12	PRN11	PRN10	0	0	0	0	0	PRN02	PRN01		Adjust the Gamma control.
R3Ah	control (9)	0	1	0	0	0	VRP14	VRP13	PRP 12		VRP10	0	0	0	0	VRP03	VRP02			Adjust the Gamma control.
R3Bh	control (10)	0	1	0	0	0	VRN14	VRN13		VRN11		0	0	0	0	VRN03	VRN02			Adjust the Gamma control.

Rev. 1.0-1 / October 2002

Note1: "*" means "Don't care". Note2: High-speed write mode is available only for RAM write. HD66773

Reset Function

The HD66773 is internally initialized by RESET input. While resetting, inside of HD66773 is busy and it does not accept instructions from MPU or data access from GRAM. The reset input must be held for at least 1 ms. Do not access the GRAM or initially set the instructions until the R-C oscillation frequency is stable after power has been supplied (10 ms).

Instruction Set Initialization:

- 1. Start oscillation executed
- 2. Driver output control (NL4–0 = "10101", SS = "0", CS = "0")
- 3. LCD driving AC control (FLD1-0 = "01", B/C = "0", EOR = "0", NW5–0 = "00000")
- 4. Power control 1 (BT2-0 = "000", DC2–0 = "000", AP2–0 = "000": LCD power off, SLP = "0", STB = "0": Standby mode off)
- 5. Power control 2 (CAD = "0")
- 6. Entry mode set (DIT = "0", BGR = "0", HWM = "0", I/D1-0 = "11": Increment by 1, AM = "0": Horizontal move, LG2–0 = "000": Replace mode)
- 7. Compare register (CP15–0: "000000000000000")
- 8. Display control (PT1-0 = "00", VLE2–1 = "00": No vertical scroll, SPT = "0", GON = "0", DTE = "0", CL = "0": 260,000 color mode, REV = "0", D1–0 = "00": Display off)
- 9. Frame cycle control (NO1-0 = "00", SDT1-0 = "00", EQ1-0 = "00": no equalizer, DIV1-0 = "00": 1divided clock, RTN3-0 = "0000": 16 clock cycle in 1H period)
- 10. Power control 3 (VC2-0 = "000")
- 11. Power control 4 (VRL3-0 = "0000", PON= "0", VRH3-0= "00000")
- 12. Power control 5 (VCOMG = "0", VDV4-0 = "00000", VCM4-0 = "00000"
- 13. Gate scanning starting position (SCN4-0 = 00000)
- 14. Vertical scroll (VL7–0 = "0000000")
- 15. 1st screen division (SE17-10 = "11111111", SS17-10 = "00000000")
- 16. 2nd screen division (SE27-20 = "11111111", SS27-20 = "00000000")
- 17. Horizontal RAM address position (HEA7-0 = "10000011", HSA7-0 = "00000000")
- 18. Vertical RAM address position (VEA7-0 = "101011111", VSA7-0 = "00000000")
- 19. RAM write data mask (WM15-0 = "0000H": No mask)
- 20. RAM address set (AD15–0 = "0000H")
- 21. Gamma control

(PKP02-00 = "000", PKP12-10 = "000", PKP22-20 = "000", PKP32-30 = "000", PK42-40 = "000", PKP52-50 = "000", PRP02-00 = "000", PRP12-10 = "000") (PKN02-00 = "000", PKN12-10 = "000", PKN22-20 = "000", PKN32-30 = "000", PKN42-40 = "000", PKN52-50 = "000", PRN02-00 = "000", PRN12-10 = "000") (VRP03-00 = "0000", VRP14-10 = "0000", VRN03-00 = "0000", VRN14-10 = "0000")

GRAM Data Initialization:

This is not automatically initialized by reset input but must be initialized by software while display is off (D1-0 = 00).

Output Pin Initialization:

- 1. LCD driver output pins (Source output): Output GND level LCD driver output pins (Gate outputs): Output VGH level
- 2. Oscillator output pin (OSC2): Outputs oscillation signal

System Interface

The following interfaces are available as system interface. It is determined by setting bits of IM3-0. Instructions and RAM accesses can be performed via the system interface.

Table 31IM bits

IM3	IM2	IM1	IM0	MPU-Interface Mode	DB Pin
0	0	0	0	68-system 16-bit interface	DB17 to 10, 8 to 1
0	0	0	1	68-system 8-bit interface	DB17 to 10
0	0	1	0	80-system 16-bit interface	DB17 to 10 8 to 1
0	0	1	1	80-system 8-bit interface	DB17 to 10
0	1	0	*	Clocked serial peripheral interface (SPI)	DB1 to 0
0	1	1	*	Setting inhibited	—
1	0	0	0	68-system 18-bit interface	DB17-0
1	0	0	1	68-system 9-bit interface	DB17-9
1	0	1	0	80-system 18-bit interface	DB17-0
1	0	1	1	80-system 9-bit interface	D17-9
1	1	*	*	Setting inhibited	_

1) 18-bit Bus Interface

Setting the IM3/2/1/0 (interface mode) to the Vcc/GND/GND/GND level allows 68-system 18-bit parallel data transfer. Setting the IM3/2/1/0 to the Vcc/GND/Vcc/GND level allows 80-system 18-bit parallel data transfer. Only in write mode these data transfer is valid.

Figure 49 18-bit microcomputer and interface

Data format for 18-bit interface

Instruction

Figure 50

RAM data write

Figure 51

2) 16-bit Bus Interface

Setting the IM3/2/1/0 (interface mode) to the GND/GND/GND/GND level allows 68-system 18-bit parallel data transfer. Setting the IM3/2/1/0 to the GND/GND/Vcc/GND level allows 80-system 16-bit parallel data transfer.

Figure 52 16-bit microcomputer and interface

Data format for 16-bit interface

Instruction

RAM data write

Figure 54

3) 9-bit Bus Interface

Setting the IM3/2/1/0 to the Vcc/GND/GND/Vcc level allows 68-system 9-bit parallel data transfer using pins DB17–DB9. Setting the IM3/2/1/0 to the Vcc/GND/Vcc/Vcc level allows 80-system 9-bit parallel data transfer. The 16-bit instructions and RAM data are divided into eight upper/lower bits and the transfer starts from the upper eight bits. Fix unused pins DB8–DB0 to the Vcc or GND level. Note that the upper bytes must also be written when the index register is written to. This transfer mode is available only for write mode.

Note: Transfer synhronization function for an 9-bit bus interface

The HD66773 supports the transfer synchronization function that resets the upper/lower counter to count upper/lower 9-bit data transfer in the 9-bit interface. Noise causing transfer mismatch between the upper/lower bits can be corrected by a reset triggered by consecutively writing a "00"H instruction four times. The next transfer starts from the upper 9 bits. Executing synchronizationn function periodically can recover any runaway in the display system.

4) 8-bit Bus Interface

Setting the IM3/2/1/0 to the GND/GND/GND/Vcc level allows 68-system E-clock-synchronized 8-bit parallel data transfer using pins DB17–DB10. Setting the IM3/2/1/0 to the GND/GND/Vcc/Vcc level allows 80-system 8-bit parallel data transfer. The 16-bit instructions and RAM data are divided into eight upper/lower bits and the transfer starts from the upper eight bits. Fix unused pins DB9–DB0 to the Vcc or GND level. Note that the upper bytes must also be written when the index register is written to.

Note: Transfer synchronization function for an 8-bit bus interface

The HD66773 supports the transfer synchronization function that resets the upper/lower counter to count upper/lower 8-bit data transfer in the 8-bit bus interface. Noise causing transfer mismatch between the eight upper and lower bits can be corrected by a reset triggered by consecutively writing a 00H instruction four times. The next transfer starts from the upper eight bits. Executing synchronization function periodically can recover any runaway in the display system.

Clock synchronized serial interface (SPI)

Setting the IM3/2/1 to the GND/Vcc/DNF level allows clock-synchronized serial data (SPI) transfer, using the chip select line (CS*), serial transfer clock line (SCL), serial input data (SDI), and serial output data (SDO). For a serial interface, the IM0/ID pin function uses an ID pin. If the chip is set up for serial interface, the DB17-2 pins which are not used must be fixed at Vcc or GND.

The HD66773 initiates serial data transfer by transferring the start byte at the falling edge of CS^* input. It ends serial data transfer at the rising edge of CS^* input.

The HD66773 is selected when the 6-bit chip address in the start byte transferred from the transmitting device matches the 6-bit device identification code assigned to the HD66773. The HD66773, when selected, receives the subsequent data string. The least significant bit of the identification code can be determined by the ID pin. The five upper bits must be "01110". Two different chip addresses must be assigned to a single HD66773, because the seventh bit of the start byte is used as a register select bit (RS): that is, when RS = "0", data can be written to the index register or status can be read, and when RS = "1", an instruction can be issued or data can be written to or read from RAM. Read or write is selected according to the eighth bit of the start byte (R/W bit). The data is received when the R/W bit is 0, and is transmitted when the R/W bit is 1.

After receiving the start byte, the HD66773 receives or transmits the subsequent data byte-by-byte. The data is transferred with the MSB first. All HD66773 instructions are 16 bits. Two bytes are received with the MSB first (DB15 to 0), then the instructions are internally executed. After the start byte has been received, the first byte is fetched internally as the upper eight bits of the instruction and the second byte is fetched internally as the lower eight bits of the instruction.

Four bytes of RAM read data after the start byte are invalid. The HD66773 starts to read correct RAM data from the fifth byte.

Table 32Start Byte Format

Transfer Bit	S	1	2	3	4	5	6	7	8
Start byte format	Transfer start	Devi	ce ID c	ode				RS	R/W
		0	1	1	1	0	ID		

Note: ID bit is selected by the IM0/ID pin.

Table 33RS and R/W Bit Function

RS	R/W	Function
0	0	Sets index register
0	1	Reads status
1	0	Writes instruction or RAM data
1	1	Reads instruction or RAM data

Data format for serial interface

Status read, instruction read, RAM data read

Figure 65

RAM data write

Figure 67

d) Status Read / Instruction Read

Note: Two byte of the read data after the start byte is invalid. The HD66773 starts to read the correct data from the second byte.

Figure 68: Procedure for Transfer on Clock-Synchronized Serial Bus Interface (2)

High-Speed Burst RAM Write Function

The HD66773 has a high-speed burst RAM-write function that can be used to write data to RAM in onefourth the access time required for an equivalent standard RAM-write operation. This function is especially suitable for applications that require the high-speed rewriting of the display data, for example, display of color animations, etc.

When the high-speed RAM-write mode (HWM) is selected, data for writing to RAM is once stored to the HD66773 internal register. When data is selected four times per word, all data is written to the on-chip RAM. While this is taking place, the next data can be written to an internal register so that high-speed and consecutive RAM writing can be executed for animated displays, etc.

Figure 69 Flow of Operation in High-Speed Consecutive Writing to RAM

Note: When a high-speed RAM write is canceled, the next instruction must only be executed after the RAM write execution time has elapsed.

Figure 70

Rev. 1.0-1 / October 2002

C) Example of the Operation of High-Speed Consecutive Writing to RAM (8-bit bus interface) CS * (input) WR (input) RAM DB17-10 Index data (1) data (1) data (2) data (2) data (3) data (3) data (4) data (1) data (2) data (2) data (3) data (3) data (4) data data data (input/ (R22) (4) (1) (4) output) Uppe Upp Upp Upp Uppe Jpp Uppe RAM write execution time * RAM write execution time RAM RAM RAM write data data data (64-bit) (1) - (4) (5) - (8) RAM address "0004"H "0000"H (AC15-0) * The lower two bits of the address must be set in the following way in high-speed write mode. When ID0 = "0", the lower two bits of the address must be set to "11". When ID1 = "0", the lower two bits of the address must be set to "00".

By using high-speed burst RAM write function, data is written to RAM each four words. Therefore when using 8-bit bus interface, data will be stored 8 times to internal register before written to RAM

Figure 71

Rev. 1.0-1 / October 2002

When high-speed RAM write mode is used, note the following.

- Notes: 1. The logical and compare operations cannot be used.
 - 2. Data is written to RAM each four words. When an address is set, the lower two bits in the address must be set to the following values.

*When ID0 = "0", the lower two bits in the address must be set to "11" and be written to RAM.

*When ID0 = "1", the lower two bits in the address must be set to "00" and be written to RAM.

- 3. Data is written to RAM each four words. If less than four words of data is written to RAM, the last data will not be written to RAM.
- 4. When the index register and RAM data write (R22h) have been selected, the data is always written first. RAM cannot be written to and read from at the same time. HWM must be set to "0" while RAM is being read.
- 5. High-speed and normal RAM write operations cannot be executed at the same time. The mode must be switched and the address must then be set.
- 6. When high-speed RAM write is used with a window address-range specified, dummy write operation may be required to suit the window address range-specification. Refer to the High-Speed RAM Write in the Window Address section.

	Normal RAM Write (HWM = "0")	High-Speed RAM Write (HWM = "1")
Logical operation function	Can be used (Available only with 8-16-bit interface)	Cannot be used
Compare operation function	Can be used (Available only with 8-/16-bit interface)	Cannot be used
BGR function	Can be used	Can be used
Write mask function	Can be used (Available only with 8-/16-bit interface)	Can be used
RAM address set	Can be specified by word	ID0 bit=0: Set the lower two bits to 11
		ID0 bit=1: Set the lower two bits to 00
RAM read	Can be read by word (Available only with 8-/16-bit interface)	Cannot be used
RAM write	Can be written by word	Dummy write operations may have to be inserted according to a window address-range specification
Window address	Can be set by word	Horizontal area (HAS/HSE): more than four words
		The number of horizontal writing: 4 x n times (N>2)
External display interface	Can be used	Can be used
AM setting	AM = 1/0	AM = 0

Table 34 Comparison between Normal and High-Speed RAM Write Operations

High-Speed RAM Write in the Window Address

When a window address range is specified, RAM data which is in an optional window area can be rewritten consecutively and quickly by inserting dummy write operations so that RAM access counts become 4N as shown in the tables below.

Dummy write operations may have to be inserted as the first and last operations for a row of data, depending on the horizontal window-address range specification bits (HSA1 to 0, HEA1 to 0). Number of dummy write operations of a row must be 4N.

HSA1	HSA0	Number of Dummy Write Operations to be Inserted at the Start of a Row
0	0	0
0	1	1
1	0	2
1	1	3

 Table 35
 Number of Dummy Write Operations in High-Speed RAM Write (HSA Bits)

Table 36 Number of Dummy Write Operations in High-Speed RAM Write (HEA Bit	Table 36	Number of Dummy	Write Operations in	n High-Speed RAM Write (HEA Bits)
--	----------	-----------------	---------------------	--------------------------	-----------

HEA1	HEA0	Number of Dummy Write Operations to be Inserted at the End of a Row
0	0	3
0	1	2
1	0	1
1	1	0

Each row of access must consist of $4 \times N$ operations, including the dummy writes. Horizontal access count =first dummy write count + write data count + last dummy write count = $4 \times N$

Rev. 1.0-1 / October 2002

An example of high-speed RAM write with a window address-range specified is shown below.

The window address-range can be rewritten to consecutively and quickly by inserting two dummy writes at the start of a row and three dummy writes at the end of a row, as determined by using the window address-range specification bits (HSA1 to 0=10, HEA1 to 0=00).

Note: The address set for the high-speed RAM write must be "00" or "11" according to the value of the ID0 bit. Only RAM in the specified window address-range will be over written.

Figure 72: Example of the High-Speed RAM Write with a Window Address-Range Specification

Window Address Function

When data is written to the on-chip GRAM, a window address-range which is specified by the horizontal address register (start: HSA7-0, end: HEA7-0) or the vertical address register (start: VSA7-0, end: VEA7-0) can be written to consecutively.

Data is written to addresses in the direction specified by the AM bit (increment/decrement). When image data, etc. is being written, data can be written consecutively without thinking a data wrap by doing this.

The window must be specified to be within the GRAM address area described below. Addresses must be set within the window address.

Figure 73 Example of Address Operation in the Window Address Specification

Graphics Operation Function

The HD66773 can greatly reduce the load of the microcomputer graphics software processing through the internal graphics-bit operation function. This function supports the following:

- 1. A write data mask function that selectively rewrites some of the bits in the 16-bit write data.
- 2. A logical operation writes function that writes the data sent from the microcomputer and the original RAM data by a logical operation.
- 3. A conditional write function that compares the original RAM data or write data and the comparebit data and writes the data sent from the microcomputer only when the conditions match. Even if the display size is large, the display data in the graphics RAM (GRAM) can be quickly rewritten. The graphics bit operation can be controlled by combining the entry mode register, the bit set value of the RAM-write-data mask register, and the read/write from the microcomputer.

	Bit Se	etting		
Operation Mode	I/D	AM	LG2-0	Operation and Usage
Write mode 1	0/1	0	000	Horizontal data replacement, horizontal-border drawing
Write mode 2	0/1	1	000	Vertical data replacement, vertical-border drawing
Write mode 3	0/1	0	110 111	Conditional horizontal data replacement, horizontal-border drawing
Write mode 4	0/1	1	110 111	Conditional vertical data replacement, vertical-border drawing
Read/write mode 1	0/1	0	001 010 011	Horizontal data write with logical operation, horizontal- border drawing
Read/write mode 2	0/1	1	001 010 011	Vertical data write with logical operation, vertical-border drawing
Read/write mode 3	0/1	0	100 101	Conditional horizontal data replacement, horizontal-border drawing
Read/write mode 4	0/1	1	100 101	Conditional vertical data replacement, vertical-border drawing

Table 37Graphics Operation

Note: When using 18-/9-bit bus interface, only write mode 1 and 2 are available. When using 16-/8-bit bus interface, all the operation modes are usable.

Figure 74 Data Processing Flow of the Graphic Operation

Write-data Mask Function

The HD66773 has a bit-wise write-data mask function that controls writing the 16-bit data from the microcomputer to the GRAM. Bits that are 0 in the write-data mask register (WM15–0) cause the corresponding DB bit to be written to the GRAM. Bits that are 1 prevent writing to the corresponding GRAM bit to the GRAM; the data in the GRAM is retained. This function can be used when only one-pixel data is rewritten or the particular display color is selectively rewritten.

Graphics Operation Processing

1. Write mode 1: AM = "0", LG2–0 = "000"

This mode is used when the data is horizontally written at high speed. It can also be used to initialize the graphics RAM (GRAM) or to draw borders. The write-data mask function (WM15–0) is also enabled in these operations. After writing, the address counter (AC) automatically increments by 1 (I/D = "1") or decrements by 1 (I/D = "0"), and automatically jumps to the counter edge one-rasterrow below after it has reached the left or right edge of the GRAM.

Operation Examples:

Figure 76 Writing Operation of Write Mode 1

2. Write mode 2: AM = "1", LG2–0 = "000"

This mode is used when the data is vertically written at high speed. It can also be used to initialize the GRAM, develop the font pattern in the vertical direction, or draw borders. The write-data mask function (WM11–0) is also enabled in these operations. After writing, the address counter (AC) automatically increments by 256, and automatically jumps to the upper-right edge (I/D = "1") or upper-left edge (I/D = "0") following the I/D bit after it has reached the lower edge of the GRAM.

Operation Examples:

```
1) I/D = "1", AM = "1", LG2-0 = "000"
2) WM15-0 = "07FF"H
3) AC = "0000"H
```


Note: 1. The bits in the GRAM indicated by '*' are not changed.

2. After writing to address "AF00"H, the AC jumps to "000"H.

Figure 77 Writing Operation of Write Mode 2

3. Write mode 3: AM = "0", LG2–0 = "110"/"111"

This mode is used when the data is horizontally written by comparing the write data and the set value of the compare register (CP15–0). When the result of the comparison in a word unit satisfies the condition, the write data sent from the microcomputer is written to the GRAM. In this operation, the write-data mask function (WM15–0) is also enabled. After writing, the address counter (AC) automatically increments by 1 (I/D = "1") or decrements by 1 (I/D = "0"), and automatically jumps to the counter edge one-raster-row below after it has reached the left or right edge of the GRAM.

Operation Examples:

Figure 78 Writing Operation of Write Mode

4. Write mode 4: AM = "1", LG2–0 = "110"/ "111"

This mode is used when a vertical comparison is performed between the write data and the set value of the compare register (CP15–0) to write the data. When the result by the comparison in a word unit satisfies the condition, the write data sent from the microcomputer is written to the GRAM. In this operation, the write-data mask function (WM15–0) are also enabled. After writing, the address counter (AC) automatically increments by 256, and automatically jumps to the upper-right edge (I/D = "1") or upper-left edge (I/D = "0") following the I/D bit after it has reached the lower edge of the GRAM.

Operation Examples:

1) I/D = "1", AM = "1", LG2-0 = "111" (unmatched write) 2) CP15-0 = "2860"H 2) WM15-0 = "0000"H 3) AC = "0000"H WM0 WM15 Write-data mask: 0 0 CP0 CP15 Compare register: 00 000 0 Ø (Unmatched) Conditional replacement **DB17 DB10** DB8 DB1 0 0 ·R) Write data (1): Ô 1 10 (C) 1 Compare Conditional operation (Matched) replacement $(\hat{\mathbf{C}})$ (R)Write data (2): 0 1 1 01000 0 0 1 000 0 Compare operation "0000"H "0001"H "0000"⊢ Write data (1) Write data (2) "0100"H Ξ Ξ GRAM "AF00"H

Note: 1. The bits in the GRAM indicated by '*' are not changed.2. After writing to address "AF00"H, the AC jumps to "0001"H.

Figure 79 Writing Operation of Write Mode 4

Rev. 1.0-1 / October 2002

5. Read/Write mode 1: AM = "0", LG2–0 = "001"/ "010" / "011"

This mode is used when the data is horizontally written at high speed by performing a logical operation with the original data. It reads the display data (original data), which has already been written in the GRAM, performs a logical operation with the write data sent from the microcomputer, and rewrites the data to the GRAM. This mode reads the data during the same access-pulse width (68-system: enabled high level, 80-system: RD* low level) as the write operation since reading the original data does not latch the read data into the microcomputer but temporarily holds it in the read-data latch. However, the bus cycle requires the same time as the read operation. The write-data mask function (WM15–0) is also enabled in these operations. After writing, the address counter (AC) automatically increments by 1 (I/D = "1") or decrements by 1 (I/D = "0"), and automatically jumps to the counter edge one-raster-row below after it has reached the left or right edges of the GRAM.

Operation Examples:

1) I/D = "1", AM = "0", LG2-0 = "001"(OR)

2) WM15-0 = "0000"H

3) AC = "0000"H

Figure 80 Writing Operation of Read/Write Mode 1

Rev. 1.0-1 / October 2002

6. Read/Write mode 2: AM = "1", LG1–0 = "001"/ "010" / "011"

This mode is used when the data is vertically written at high speed by performing a logical operation with the original data. It reads the display data (original data), which has already been written in the GRAM, performs a logical operation with the write data sent from the microcomputer, and rewrites the data to the GRAM. This mode can read the data during the same access-pulse width (68-system: enabled high level, 80-system: RD* low level) as for the write operation since the read operation of the original data does not latch the read data into the microcomputer and temporarily holds it in the read-data latch. However, the bus cycle requires the same time as the read operation. The write-data mask function (WM15–0) is also enabled in these operations. After writing, the address counter (AC) automatically increments by 256, and automatically jumps to the upper-right edge (I/D = "1") or upper-left edge (I/D = "0") following the I/D bit after it has reached the lower edge of the GRAM.

Operation Examples:

1) I / D = "1", AM = "1", LG2-0 = "001"(OR) 2) WM15-0 = "FFE0"H 3) AC = "0000"H

Note: 1. The bits in the GRAM indicated by '*' are not changed. 2. After writing to address "AF00"H, the AC jumps to "0001"H.

Figure 81 Writing Operation of Read/Write Mode 2

Rev. 1.0-1 / October 2002

7. Read/Write mode 3: AM = 0, LG2–0 = "100"/"101"

This mode is used when the data is horizontally written by comparing the original data and the set value of compare register (CP15–0). It reads the display data (original data), which has already been written in the GRAM, compares the original data and the set value of the compare register in byte units, and writes the data sent from the microcomputer to the GRAM only when the result of the comparison satisfies the condition. This mode reads the data during the same access-pulse width (68-system: enabled high level, 80-system: RD* low level) as write operation since reading the original data does not latch the read data into the microcomputer but temporarily holds it in the read-data latch. However, the bus cycle requires the same time as the read operation. The write-data mask function (WM15–0) is also enabled in these operations. After writing, the address counter (AC) automatically increments by 1 (I/D = "1") or decrements by 1 (I/D = "0"), and automatically jumps to the counter edge one-raster-row below after it has reached the left or right edges of the GRAM.

Operation Examples:

Figure 82 Writing Operation of Read/Write Mode 3

Rev. 1.0-1 / October 2002

8. Read/Write mode 4: AM = "1", LG2–0 = "100" / "101"

This mode is used when the data is vertically written by comparing the original data and the set value of the compare register (CP15–0). It reads the display data (original data), which has already been written in the GRAM, compares the original data and the set value of the compare register in byte units, and writes the data sent from the microcomputer to the GRAM only when the result of the compare operation satisfies the condition. This mode reads the data during the same access-pulse width (68-system: enabled high level, 80-system: RD* low level) as the write operation since reading the original data does not latch the read data into the microcomputer but temporarily holds it in the read-data latch. However, the bus cycle requires the same time as the read operation. The write-data mask function (WM15–0) is also enabled in these operations. After writing, the address counter (AC) automatically increments by 256, and automatically jumps to the upper-right edge (I/D = "1") or upper-left edge (I/D = "0") following the I/D bit after it has reached the lower edge of the GRAM.

Operation Examples:

1) I / D = "1", AM = "1", LG2-0 = "101" (unmatched write) 2) CP15-0 = "2860"H

2) WM15-0 = "0000"H

3) AC = "0000"H

Figure 83 Writing Operation of Read/Write Mode 4

Setting scan mode

Shift direction of gate signal can be changed by SM bit and GS bit setting. By conbination of these bit setting, LCD panel and HD66773 can be connected in many ways.

Figure 84 Scan mode setting

Gamma Adjustment Function

The HD66773 incorporates gamma adjustment function for the 262,144-color display. Gamma adjustment is implemented by deciding the 8-grayscale level with angle adjustment and micro adjustment register. Also, angle adjustment and micro adjustment is fixed for each of the internal positive and negative polarity. Set up by the liquid crystal panel's specification.

Figure 85: Gamma Adjustment Function

Structure of Grayscale Amplifier

Indicating structure of the grayscale amplifier as below. Determine 8 levels (VIN0-VIN7) by the gradient adjuster and the micro adjustment register. Also, dividing these levels with ladder resistors generates V0 to V31.

HITACHI 76

Gamma Adjustment Register

This block is the register to set up the grayscale voltage adjusting to the gamma specification of the LCD panel. This register can independent set up to positive/negative polarities and there are three types of register groups to adjust gradient, amplitude, and micro-adjustment on number of the grayscale, characteristics of the grayscale voltage. (Using the same setting for Reference-value and R.G.B.) Following graphics indicates the operation of each adjusting register.

1. Gradient adjusting register

The gradient-adjusting resistor is to adjust around middle gradient, specification of the grayscale number and the grayscale voltage without changing the dynamic range. To accomplish the adjustment, it controls the variable resistor (VRP (N) / VRL (N)) of the ladder resistor for the grayscale voltage generator. Also, there is an independent resistor on the positive/negative polarities in order for corresponding to asymmetry drive.

2. Amplitude adjusting register

The amplitude-adjusting resistor is to adjust amplitude of the grayscale voltage. To accomplish the adjustment, it controls the variable resistor (VRP (N)0 /VRP(N)1) of the ladder resistor for the grayscale voltage generator located at lower side of the ladder resistor. (Adjust upper side by input VDH level.) Also, there is an independent resistor on the positive/negative polarities as well as the gradient-adjusting resistor.

3. Micro-adjusting register

The micro-adjusting register is to make subtle adjustment of the grayscale voltage level. To accomplish the adjustment, it controls the each reference voltage level by the 8 to 1 selector towards the 8-leveled reference voltage generated from the ladder resistor. Also, there is an independent resistor on the positive/negative polarities as well as other adjusting resistors.

Output signal list

Resistor Classification	For Positive Polarity	For Negative Polarity	Set-up Contents
Gradient	PRP0[2:0]	PRN0[2:0]	Variable Resistor VR HP(N)
Adjustment	PRP1[2:0]	PRN1[2:0]	Variable Resistor VR LP(N)
Amplitude	VRP0[3:0]	VRN0[3:0]	Variable Resistor VRP(N)0
Adjustment	VRP1[4:0]	VRN1[4:0]	Variable Resistor VRP(N)1
	PKP0[2:0]	PKN0[2:0]	8 to 1 selector voltage level for the grayscale 1
	PKP1[2:0]	PKN1[2:0]	8 to 1 selector voltage level for the grayscale 8
Micro- adjustment	PKP2[2:0]	PKN2[2:0]	8 to 1 selector voltage level for the grayscale 20
aujustment	PKP3[2:0]	PKN3[2:0]	8 to 1 selector voltage level for the grayscale 43
	PKP4[2:0]	PKN4[2:0]	8 to 1 selector voltage level for the grayscale 55
	PKP5[2:0]	PKN5[2:0]	8 to 1 selector voltage level for the grayscale 62

Table 38: Output Signal List

Ladder Resistor / 8 to 1 Selector

Block configuration

This block outputs the reference voltage of the grayscale voltage. There are two ladder resistors including the variable resistor and the 8 to 1 selector selecting voltage generated by the ladder resistor. The gamma registers control the variable resistors and 8 to 1 selector resistors. Also, there are pins that connect to the external variable resistor. And it allows compensating the dispersion of length between one panel to another.

Variable Resistor

There are 2 types of the variable resistors that is for the gradient adjustment (VRHP (N) / VRLP (N)), for the amplitude adjustment (VRP (N)0/VRP(N)1). The ohmic value is set by the gradient adjustment and amplitude adjustment resistor as below.

Table 39: Gradient Ad	ljustment (1)	Table 40 Gradient A	djustment (2)	Table 41 Amplitude Adj	ustment (1)	Table42 Amplitude	Adjustment (2)
Register Value PRP (N)0[2.0]	Resistance Value VRHP(N)	Register Value PRP (N)1[2.0]	Resistance Value VRLP (N)	Register Value VRP (N)0[3:0]	Resistance Value VRP (N) 0	Register Value PRP (N)[4.0]	Resistance Value VRP (N) 1
000	0R	000	0R	0000	0R	00000	0R
001	4R	010	1R	0001	2R	00001	1R
010	8R	011	2R	0010	4R	00010	2R
011	12R	100	16R				
101	20R	101	20R	1101	26R	11101	29R
110	24R	110	24R	1110	28R	11110	30R
111	28R	111	28R	1111	30R	11111	31R

The 8 to 1 Selector

In the 8 to 1 selector, the voltage level can be selected from the levels which are generated by ladder resistors. And output the six types of the reference voltage, the VIN1- to VIN6. Following figure explains the relationship between the micro-adjusting register and the selecting voltage.

Register Value	Selected Voltage					
PKP (N) [2:0]	VINP (N) 1	VINP (N) 2	VINP (N) 3	VNIP (N) 4	VNIP (N) 5	VINP (N) 6
000	KVP (N) 1	KVP (N) 9	KVP (N) 17	KVP (N) 25	KVP (N) 33	KVP (N) 41
001	KVP (N) 2	KVP (N) 10	KVP (N) 18	KVP (N) 26	KVP (N) 34	KVP (N) 42
010	KVP (N) 3	KVP (N) 11	KVP (N) 19	KVP (N) 27	KVP (N) 35	KVP (N) 43
011	KVP (N) 4	KVP (N) 12	KVP (N) 20	KVP (N) 28	KVP (N) 36	KVP (N) 44
100	KVP (N) 5	KVP (N) 13	KVP (N) 21	KVP (N) 29	KVP (N) 37	KVP (N) 45
101	KVP (N) 6	KVP (N) 14	KVP (N) 22	KVP (N) 30	KVP (N) 38	KVP (N) 46
110	KVP (N) 7	KVP (N) 15	KVP (N) 23	KVP (N) 31	KVP (N) 39	KVP (N) 47
111	KVP (N) 8	KVP (N) 16	KVP (N) 24	KVP (N) 32	KVP (N) 40	KVP (N) 48

Table 43

Table 44	Voltage formula	(positive	polarity)
	, onuge for mana	(posicire	point iv, j

Pins	Formula		Micro-adjsting	Reference
			register value	voltage
KVP0		V*VRP0/SUMRP	-	VINP0
KVP1		V*(VRP0+5R)/SUMRP	PKP02-00 = "000"	4
KVP2		V*(VRP0+9R)/SUMRP	PKP02-00 = "001"	1
KVP3	1	V*(VRP0+13R)/SUMRP	PKP02-00 = "010"	-
KVP4		V*(VRP0+17R)/SUMRP	PKP02-00 = "011"	VINP1
KVP5		V*(VRP0+21R)/SUMRP	PKP02-00 = "100"	4
KVP6		V*(VRP0+25R)/SUMRP	PKP02-00 = "101"	-
KVP7		V*(VRP0+29R)/SUMRP	PKP02-00 = "110"	-
KVP8		V*(VRP0+33R)/SUMRP	PKP02-00 = "111"	
KVP9		V*(VRP0+33R+VRHP)/SUMRP	PKP12-10 = "000"	-
KVP10		V*(VRP0+34R+VRHP)/SUMRP	PKP12-10 = "001"	-
KVP11		V*(VRP0+35R+VRHP)/SUMRP	PKP12-10 = "010"	-
VP12		V*(VRP0+36R+VRHP)/SUMRP	PKP12-10 = "011"	VINP2
KVP13		V*(VRP0+37R+VRHP)/SUMRP	PKP12-10 = "100"	VIII 2
		V*(VRP0+38R+VRHP)/SUMRP	PKP12-10 = "101"	-
VP15		V*(VRP0+39R+VRHP)/SUMRP	PKP12-10 = "110"	
KVP16		V*(VRP0+40R+VRHP)/SUMRP	PKP12-10 = "111"	
KVP17	VREG10UT-	V*(VRP0+45R+VRHP)/SUMRP	PKP22-20 = "000"	
KVP18	VREG10UT-	V*(VRP0+46R+VRHP)/SUMRP	PKP22-20 = "001"	
KVP19	VREG10UT-	V*(VRP0+47R+VRHP)/SUMRP	PKP22-20 = "010"	
KVP20	VREG10UT-	V*(VRP0+48R+VRHP)/SUMRP	PKP22-20 = "011"	VINP3
KVP21	VREG10UT-	V*(VRP0+49R+VRHP)/SUMRP	PKP22-20 = "100"	
KVP22	VREG10UT-	V*(VRP0+50R+VRHP)/SUMRP	PKP22-20 = "101"	
KVP23	VREG10UT-	V*(VRP0+51R+VRHP)/SUMRP	PKP22-20 = "110"	
	VREG10UT-	V*(VRP0+52R+VRHP)/SUMRP	PKP22-20 = "111"	
KVP25	VREG10UT-	V*(VRP0+68R+VRHP)/SUMRP	PKP32-30 = "000"	
KVP26	VREG10UT-	V*(VRP0+69R+VRHP)/SUMRP	PKP32-30 = "001"	
√VP27	VREG1OUT-	V*(VRP0+70R+VRHP)/SUMRP	PKP32-30 = "010"	
KVP28	VREG1OUT-	V*(VRP0+71R+VRHP)/SUMRP	PKP32-30 = "011"	VINP4
KVP29	VREG1OUT-	V*(VRP0+72R+VRHP)/SUMRP	PKP32-30 = "100"	VIINE4
VP30	VREG1OUT-	V*(VRP0+73R+VRHP)/SUMRP	PKP32-30 = "101"	
KVP31	VREG1OUT-	V*(VRP0+74R+VRHP)/SUMRP	PKP32-30 = "110"	
VP32	VREG1OUT-	V*(VRP0+75R+VRHP)/SUMRP	PKP32-30 = "111"	
VP33	VREG1OUT-	V*(VRP0+80R+VRHP)/SUMRP	PKP42-00 = "000"	
KVP34		V*(VRP0+81R+VRHP)/SUMRP	PKP42-40 = "001"	1
VP35	VREG1OUT-	V*(VRP0+82R+VRHP)/SUMRP	PKP42-40 = "010"	1
		V*(VRP0+83R+VRHP)/SUMRP	PKP42-40 = "011"	
KVP37		V*(VRP0+84R+VRHP)/SUMRP	PKP42-40 = "100"	VINP5
KVP38	1	V*(VRP0+85R+VRHP)/SUMRP	PKP42-40 = "101"	1
KVP39		V*(VRP0+86R+VRHP)/SUMRP	PKP42-40 = "110"	1
KVP40		V*(VRP0+87R+VRHP)/SUMRP	PKP42-40 = "111"	
VP41	1	V*(VRP0+87R+VRHP+VRLP)/SUMRP	PKP52-50 = "000"	
VP42	VREG10UT-	V*(VRP0+91R+VRHP+VRLP)/SUMRP	PKP52-50 = "001"	
VP43	VREG10UT-	V*(VRP0+95R+VRHP+VRLP)/SUMRP	PKP52-50 = "010"	1
VP44	VREG10UT-	V*(VRP0+99R+VRHP+VRLP)/SUMRP	PKP52-50 = "011"	
(VP45	VREG10UT-	V*(VRP0+103R+VRHP+VRLP)/SUMRP	PKP52-50 = "100"	VINP6
VP46	VREG1OUT-	V*(VRP0+107R+VRHP+VRLP)/SUMRP	PKP52-50 = "101"	1
(VP47	VREG10UT-	V*(VRP0+111R+VRHP+VRLP)/SUMRP	PKP52-50 = "110"	1
(VP48	VREG10UT-	V*(VRP0+115R+VRHP+VRLP)/SUMRP	PKP52-50 = "111"	1
(VP49	VREG1OUT-	V*(VRP0+120R+VRHP+VRLP)/SUMRP	-	VINP7

SUMRP: Total of the positive polarity ladder resistance = 128 R + VRHP + VRLP + VRP0 + VRP1 SUMRN: Total of the negative polarity ladder resistance = 128 R + VRLN + VRNL + VRHN0 + VRN1

V: Voltage difference between VREG1OUT - VGS

Table 45: Voltage Formula (Positive Po	Polarity)
--	-------------------

	Formula
grayscale voltage	Formula
V0	VINP0
V1	V3D+(VINP1-V3D)*(8/24)
V2	V4+(V3D-V4)*(16/24)
V3	V4+(V3D-V4)*(8/24)
V4	VINP2
V5	V10+(V4-V10)*(20/24)
V6	V10+(V4-V10)*(16/24)
V7	V10+(V4-V10)*(12/24)
V8	V10+(V4-V10)*(8/24)
V9	V10+(V4-V10)*(4/24)
V10	VINP3
V11	V21+(V10-V21)*(21/24)
V12	V21+(V10-V21)*(19/24)
V13	V21+(V10-V21)*(17/24)
V14	V21+(V10-V21)*(15/24)
V15	V21+(V10-V21)*(13/24)
V16	V21+(V10-V21)*(11/24)
V17	V21+(V10-V21)*(9/24)
V18	V21+(V10-V21)*(7/24)
V19	V21+(V10-V21)*(5/24)
V20	V21+(V10-V21)*(3/24)
V21	VINP4
V22	V27+(V21-V27)*(20/24)
V23	V27+(V21-V27)*(16/24)
V24	V27+(V21-V27)*(12/24)
V25	V27+(V21-V27)*(8/24)
V26	V27+(V21-V27)*(4/24)
V27	VINP5
V28	VINP6+(V27-VINP6)*(780/960)
V29	VINP6+(V27-VINP6)*(600/960)
V30	VINP6+(V27-VINP6)*(280/960)
V31	VINP7

V3D: V3D = V4+(VINP1-V4)+(540/960)

Pins	Formula		Micro-adjsting	Reference
			register value	voltage
KVN0		V*VRN0/SUMRN	-	VINN0
KVN1		V*(VRN0+5R)/SUMRN	PKN02-00 = "000"	
KVN2		V*(VRN0+9R)/SUMRN	PKN02-00 = "001"	
KVN3		V*(VRN0+13R)/SUMRN	PKN02-00 = "010"	
KVN4		V*(VRN0+17R)/SUMRN	PKN02-00 = "011"	VINN1
KVN5	VREG1OUT-	V*(VRN0+21R)/SUMRN	PKN02-00 = "100"	
KVN6	VREG1OUT-	V*(VRN0+25R)/SUMRN	PKN02-00 = "101"	
KVN7	VREG10UT-	V*(VRN0+29R)/SUMRN	PKN02-00 = "110"	
KVN8		V*(VRN0+33R)/SUMRN	PKN02-00 = "111"	
KVN9		V*(VRN0+33R+VRHN)/SUMRN	PKN12-10 = "000"	
KVN10		V*(VRN0+33R+VRHN)/SUMRN	PKN12-10 = "001"	
KVN11		V*(VRN0+35R+VRHN)/SUMRN	PKN12-10 = "010"	
KVN12		V*(VRN0+36R+VRHN)/SUMRN	PKN12-10 = "011"	VINN2
KVN13		V*(VRN0+37R+VRHN)/SUMRN	PKN12-10 = "100"	
KVN14	VREG1OUT-	V*(VRN0+38R+VRHN)/SUMRN	PKN12-10 = "101"	
KVN15	VREG1OUT-	V*(VRN0+39R+VRHN)/SUMRN	PKN12-10 = "110"	
KVN16		V*(VRN0+40R+VRHN)/SUMRN	PKN12-10 = "111"	
KVN17		V*(VRN0+45R+VRHN)/SUMRN	PKN22-20 = "000"	
KVN18		V*(VRN0+46R+VRHN)/SUMRN	PKN22-20 = "001"	
KVN19		V*(VRN0+47R+VRHN)/SUMRN	PKN22-20 = "010"	
KVN20		V*(VRN0+48R+VRHN)/SUMRN	PKN22-20 = "011"	VINN3
KVN21		V*(VRN0+49R+VRHN)/SUMRN	PKN22-20 = "100"	
KVN22	VREG1OUT-	V*(VRN0+50R+VRHN)/SUMRN	PKN22-20 = "101"	
KVN23	VREG1OUT-	V*(VRN0+51R+VRHN)/SUMRN	PKN22-20 = "110"	
KVN24	VREG1OUT-	V*(VRN0+52R+VRHN)/SUMRN	PKN22-20 = "111"	
KVN25		V*(VRN0+68R+VRHN)/SUMRN	PKN32-30 = "000"	
KVN26		V*(VRN0+69R+VRHN)/SUMRN	PKN32-30 = "001"	
KVN27	VREG10UT-	V*(VRN0+70R+VRHN)/SUMRN	PKN32-30 = "010"	
KVN28	VREG10UT-	V*(VRN0+71R+VRHN)/SUMRN	PKN32-30 = "011"	VINN4
KVN29	VREG10UT-	V*(VRN0+72R+VRHN)/SUMRN	PKN32-30 = "100"	
KVN30	VREG1OUT-	V*(VRN0+73R+VRHN)/SUMRN	PKN32-30 = "101"	
KVN31	VREG10UT-	V*(VRN0+74R+VRHN)/SUMRN	PKN32-30 = "110"	
KVN32	VREG1OUT-	V*(VRN0+75R+VRHN)/SUMRN	PKN32-30 = "111"	
KVN33	VREG1OUT-	V*(VRN0+80R+VRHN)/SUMRN	PKN42-00 = "000"	
KVN34		V*(VRN0+81R+VRHN)/SUMRN	PKN42-00 = "001"	
KVN35		V*(VRN0+82R+VRHN)/SUMRN	PKN42-00 = "010"	
KVN36	VREG1OUT-	V*(VRN0+83R+VRHN)/SUMRN	PKN42-00 = "011"	VINN5
		V*(VRN0+84R+VRHN)/SUMRN	PKN42-00 = "100"	
	VREG1OUT-	V*(VRN0+85R+VRHN)/SUMRN	PKN42-00 = "101"	
KVN39	VREG1OUT-	V*(VRN0+86R+VRHN)/SUMRN	PKN42-00 = "110"	
KVN40	VREG10UT-	V*(VRN0+87R+VRHN)/SUMRN	PKN42-00 = "111"	
KVN41	VREG10UT-	V*(VRN0+87R+VRHN+VRLN)/SUMRN	PKN52-50 = "000"	
KVN42	VREG1OUT-	V*(VRN0+91R+VRHN+VRLN)/SUMRN	PKN52-50 = "001"	
KVN43	VREG1OUT-	V*(VRN0+95R+VRHN+VRLN)/SUMRN	PKN52-50 = "010"	
KVN44	VREG1OUT-	V*(VRN0+99R+VRHN+VRLN)/SUMRN	PKN52-50 = "011"	VINN6
KVN45	VREG1OUT-	V*(VRN0+103R+VRHN+VRLN)/SUMRN	PKN52-50 = "100"	
KVN46	VREG1OUT-	V*(VRN0+107R+VRHN+VRLN)/SUMRN	PKN52-50 = "101"	
KVN47	VREG1OUT-	V*(VRN0+111R+VRHN+VRLN)/SUMRN	PKN52-50 = "110"	
KVN48	VREG10UT-	V*(VRN0+115R+VRHN+VRLN)/SUMRN	PKN52-50 = "111"	
KVN49	VREG1OUT-	V*(VRN0+120R+VRHN+VRLN)/SUMRN	-	VINN7

Table 46: Voltage Formula (Negative Polarity)

SUMRP: Total of the positive polarity ladder resistance = 128 R + VRHP + VRLP + VRP0 + VRP1 SUMRN: Total of the negative polarity ladder resistance = 128 R + VRLN + VRNL + VRHN0 + VRN1 V: Voltage difference between VREG10UT - VGS

grayscale voltage	Formula
V0	VINP0
V1	V3D+(VINP1-V3D)*(8/24)
V2	V4+(V3D-V4)*(16/24)
V3	V4+(V3D-V4)*(8/24)
V4	VINP2
V5	V10+(V4-V10)*(20/24)
V6	V10+(V4-V10)*(16/24)
V7	V10+(V4-V10)*(12/24)
V8	V10+(V4-V10)*(8/24)
V9	V10+(V4-V10)*(4/24)
V10	VINP3
V11	V21+(V10-V21)*(21/24)
V12	V21+(V10-V21)*(19/24)
V13	V21+(V10-V21)*(17/24)
V14	V21+(V10-V21)*(15/24)
V15	V21+(V10-V21)*(13/24)
V16	V21+(V10-V21)*(11/24)
V17	V21+(V10-V21)*(9/24)
V18	V21+(V10-V21)*(7/24)
V19	V21+(V10-V21)*(5/24)
V20	V21+(V10-V21)*(3/24)
V21	VINP4
V22	V27+(V21-V27)*(20/24)
V23	V27+(V21-V27)*(16/24)
V24	V27+(V21-V27)*(12/24)
V25	V27+(V21-V27)*(8/24)
V26	V27+(V21-V27)*(4/24)
V27	VINP5
V28	VINP6+(V27-VINP6)*(780/960)
V29	VINP6+(V27-VINP6)*(600/960)
V30	VINP6+(V27-VINP6)*(280/960)
V31	VINP7

V3D: V3D = V4+(VINP1-V4)+(540/960)

Relationship between RAM Data and Output

Figure 92: Relationship between Source Output and Vcom

The 8-color Display Mode

The HD66773 carries 8-color display mode. Using grayscale levels are V0 and V31 and all other level (V1 to V30) power supplies are halt. So that it attempts to lower power consumption. Also, during the 8-color mode, the Gamma micro adjustment register, PKP00-PKP52 and PKN00-PKN52 are invalid. Rewrite the data of GRAM R/B to 00000 or 11111, G to 000000 or 111111 before set the mode in order to select V0/V31. The level power supply (V1-V30) is in OFF condition during the 8-color mode.

Figure 93: Grayscale Control

Rev. 1.0-1 / October 2002

8 colors -> 262,144 colors

Instruction Setting Flow

Continue to the display on flow.

Continue to the display off flow.

Figure 95

Flow of Power-Supply Setting

Apply the power in a sequence as shown in figure 103. Stabilizing time of oscillation circuit and stabilizing time of step-up circuit and operation amplifier depend on the external resistor and external capacity.

Figure 97 Flow of Power-Supply Setting

Oscillation Circuit

The HD66773 can oscillate between the OSC1 and OSC2 pins using an internal R-C oscillator with an external oscillation resistor. Note that in R-C oscillation, the oscillation frequency is changed according to the external resistance value, wiring length, or operating power-supply voltage. If Rf is increased or power supply voltage is decrease, the oscillation frequency decreases. For the relationship between Rf resistor value and oscillation frequency, see the Electric Characteristics Notes section.

1) External Clock Mode

2) External resistance oscillation mode

Note: The Rf resistance must be located near the OSC1/OSC2 pin on the master side. And other signals must not run across between OSC1 and OSC2.

Figure 98: Oscillation Circuits

n-raster-row Reversed AC Drive

The HD66773 supports not only the LCD reversed AC drive in a one-frame unit but also the n-raster-row reversed AC drive which alternates in an n-raster-row unit from one to 64 raster-rows. When a problem affecting display quality occurs, the n-raster-row reversed AC drive can improve the quality.

Determine the number of the raster-rows n (NW bit set value +1) for alternating after confirmation of the display quality with the actual LCD panel. However, if the number of AC raster-row is reduced, the LCD alternating frequency becomes high. Because of this, the charge or discharge current is increased in the LCD cells.

Note: In an n-raster-row driving EOR should be "1" so that DC bias voltage is not applied.

Interlace Drive

HD66773 supports the interlace drive to protect from the display flicker. It splits one frame into n fields and drives. Determine the n fields (FLD bit stetting value) after confirming on the actual LCD display. Following table indicates n fields: the gate selecting position when it is 1 or 3. And the diagram below indicates the output waveform when the 3-field interlace drive is active.

Table 53

Figure 100: Gate output Timing on the 3 Field Interlace

Rev. 1.0-1 / October 2002

AC Drive Timing

Following diagram indicates the timing of changing polarity on the each A/C drive method. LCD drive polarity is changed after every frame. After the A/C this timing, the blank (all outputs from the gate: Vgoff output) in 8H period is inserted. Also, LCD drive polarity is change after every field when it is on the interlace drive and a blank is inserted in every timing. The amount of blanking periods becomes 8H in a frame. When the reversed n-raster-row is driving, a blank period of the 8H period is inserted after all screens are drawn

Figure 101

Frame Frequency Adjusting Function

The HD66773 has an on-chip frame-frequency adjustment function. The frame frequency can be adjusted by the instruction setting (DIV, RTN) during the LCD driver as the oscillation frequency is always same.

If the oscillation frequency is set to high, animation or a static image can be displayed in suitable ways by changing the frame frequency. When a static image is displayed, the frame frequency can be set low and the low-power consumption mode can be entered. When high-speed screen switching for an animated display, etc. is required, the frame frequency can be set high.

Relationship between LCD Drive Duty and Frame Frequency

The relationship between the LCD drive duty and the frame frequency is calculated by the following expression. The frame frequency can be adjusted in the 1H period adjusting bit (RTN) and in the operation clock division bit (DIV) by the instruction.

	(Formula for the fram	ne frequency)	
		fosc	
	Frame Frequency =	Clock cycles per raster-row x division ratio x (Line+8)	[Hz]
		fosc: R-C oscillation frequency	
		Line: Numbers of raster-rows (NL bit)	
		Clock cycles per raster-row: RTN bit	
		Division ratio: DIV bit	

Example of Calculation

In case of maximum frame frequency = 60 Hz; Driver raster-row: 176 1H period: 16 clock (RTN3 to 0 = "0000") Operation clock division ratio: 1 division fosc = 60Hz x (0+16) clock x 1 division x (176+8) lines = 177 [kHz]

In this case, the CR oscillation frequency becomes 177 kHz. The external resistance value of the R-C oscillator must be adjusted to be 177 kHz.

Screen-division Driving Function

The HD66773 can select and drive two screens at any position with the screen-driving position registers (R14 and R15). Any two screens required for display are selectively driven and reducing LCD-driving voltage and power consumption.

For the 1^{st} division screen, start lines (SS17 to 10) and end lines (SE17 to 10) are specified by the 1^{st} screen-driving position register (R14). For the 2^{nd} division screen, start line (SS27 to 20) and end lines (SE27 to 20) are specified by the 2^{nd} screen-driving position register (R15). The 2^{nd} screen control is effective when the SPT bit is 1. The total count of selection-driving lines for the 1^{st} and 2^{nd} screens must be the number of LCD drive raster-rows or less.

Driving on 2 screens

Driving raster-row: NL4-0 = "10101" (176 lines) 1st screen setting: SS17-10 = "00"H, SE17-10 = "06"H 2nd screen setting: SS27-20 = "19"H, SE27-20 = "29"H, SPT = "1"

Restrictions on the 1st/2nd Screen Driving Position Register Settings

The following restrictions must be satisfied when setting the start line (SS17 to 10) and end line (SE17 to 10) of the 1^{st} screen driving position register (R14) and the start line (SS27 to 20) and end line (SE27 to 20) of the 2^{nd} screen driving position register (R15) for the HD66773. Note that incorrect display may occur if the restrictions are not satisfied.

Table 54: Restrictions on the 1st/2nd Screen Driving Position Register Settings

 1^{st} Screen Driving (SPT = 0)

Register setting	Display operation
(SE17 to 10) - (SS17 to 10) = NL	Full screen display
	Normally displays (SE17 to 10) to (SS17 to 10)
(SE17 to 10) – (SS17 to 10) < NL	Partial display
	Normally displays (SE17 to 10) to (SS17 to 10)
	In all other display area refers to the output level
	based on the PT setting. (non-display)
(SE17 to 1) – (SS17 to 10) > NL	Setting disabled

Note 1: SS17 to $10 \le$ SE17 to $10 \le$ AFH Note 2: Setting SE27 to 20 and SS27 to 20 are invalid.

Table 55

 2^{nd} Screen Driving (SPT = 1)

Register setting	Display operation
((SE17 to 10) – (SS17 to 10))	Full screen display
+ ((SE27 to 20) - (SS27-20)) = NL	Normally displays (SE27 to 20) to (SE17 to 10)
((SE17 to 10) – (SS17 to 10))	Partial display
+ ((SE27 to 20) – (SS27 to 20)) < NL	Normally displays (SE27 to 20) to (SS17 to 10)
	In all other display area refers to the output level
	based on the PT setting. (non-display)
((SE17 to 10) – (SS17 to 10))	Setting disabled
+((SE27 to 20) - (SS27 to 20)) > NL	-

Note 1: SS17 to 10 <= SE17 to 10 < SS27 to 20 <= SE27 to 20 <= AFH Note 2: (SE27 to 20) – (SS17 to 10) <= NL

Rev. 1.0-1 / October 2002

The driver output can not be set for non-display area during the partial display. Determine based on characteristic of the display panels.

PT1	PT0	Source output i	Gate output in non-	
F 11	F10	Positive polarity	Negative polarity	display area
0	0	V31	V0	Normal operation
0	1	V31	V0	Vgoff
1	0	GND	GND	Vgoff
1	1	Hi-z	Hi-z	Vgoff

Table 56

Refer to the following flow to set up the partial display.

Figure 103

Configuration of Internal Power-Supply Generation Circuit

Figure 90 shows a configuration of the voltage generation circuit for HD66773. The step-up circuits consist of step-up circuits 1 to 4. Step-up circuit 1 doubled or triples the voltage supplied to Vci1, and that voltage is doubled, tripled, or quadrupled in step-up circuit2. Step-up circuit 3 reverses the VGH level with reference to GND and generates the VGL level. Step-up circuit 4 reverses the Vci level with reference to GND and generates the VCL level. These step-up circuits generate power supplies required for TFT liquid crystal display operation. Reference voltages VDH, Vcom, and Vgoff for the HD66773 grayscale voltage are amplified in amplification circuits 1 and 2 from the internal-voltage adjustment circuit, or REGP, REGN, and generate each level depending on that voltage. The Vcom and Vgoff voltages can be alternated with any voltages. Connect Vcom to the panel.

Note 1) The capcitor is 0.1uF (B characteristics). Use the 1 uF (B characteristics) capacitor for other positions. Connect the capacitor for stabilization to TESTA1 through TESTA4 according to the display quality and power consumption. Note 2) Insert a shot-key barrier diode. (VF =0.4V/20mA, VR \geq 30V / Hitachi product:HRC0203B, HSC226)

Specification of capacitor connected to HD66773

Table 57

The following table indicates the specification of capacitor connected to HD66773.

Capacity of capacitor	Recommendation resist pressure for capacitor	Connect pins
	6V	VREG1OUT, Vci1, ^{Note1} C41-/+, ^{Note1} VCL, V _{COM} H, ^{Note1} V _{COM} L
1F (B character)	10V	DDVDH, C11-/+, C12-/+, C21-/+, C22-/+, C23-/+
	25V	VREG2OUT, VGH, VGL, DC31-/+, VgoffH, VgoffL
0.1F (B character)	25V	NOTE2 (TESTA3), NOTE2 (TESTA4)
0.1F (B character)	6V	V0P, V0N, V31P, V31N

Note1: According to the mode set HD66773, there is one cases in which capacitor is unnecessary.

2: Connect a capacitor for stabilization according to the picture quality and power consumption.

Pattern Diagrams for Voltage Setting

Figure 105 shows a pattern diagram for the HD66773 voltage setting and an example of waveforms.

Figure 105 Pattern Diagram and an Example of Waveforms

Rev.1.0-1 / October 2002

Absolute Maximum Ratings

Table 58

Item	Symbol	Unit	Value	Notes*
Power supply voltage (1)	Vcc	V	-0.3 to + 4.6	1, 2
Power supply voltage (2)	Vci-GND	V	-0.3 to + 4.6	1, 2
Power supply voltage (3)	DDVDH- GND	V	-0.3 to + 6.0	1, 2
Power supply voltage (4)	GND-VCL	V	-0.3 to + 4.6	1, 2
Power supply voltage (5)	DDVDH- VCL	V	-0.3 to + 9.0	1
Power supply voltage (6)	VGH- GND	V	-0.3 to + 18.5	1, 2
Power supply voltage (7)	GND- VGL	V	-0.3 to + 18.5	1, 2
Input voltage	Vt	V	-0.3 to Vcc + 0.3	1
Operating temperature	Topr	°C	-40 to + 85	1, 3
Storage temperature	Tstg	°C	-55 to + 110	1

Notes: 1. If the LSI is used above these absolute maximum ratings, it may become permanently damaged. Using the LSI within the following electrical characteristic limit is strongly recommended for normal operation. If these electrical characteristic conditions are also exceeded, the LSI will malfunction and cause poor reliability.

2. Indicate the voltage form GND

3. DC characteristics and AC characteristics of shipping chips and shipping wafer are guaranteed at 85 °C.

Rev.1.0-1 / October 2002

DC Characteristics (V $_{\rm CC}$ = 2.2 to 3.3 V, Ta = –40 to +85°C*1)

Table 59

Item	Symbol	Unit	Test Condition	Min	Тур	Max	Notes
Input high voltage	V _{IH}	V	$V_{cc} = 2.2$ to 3.3 V	0.7 V _{CC}	_	V _{CC}	2, 3
Input low voltage (1) (OSC1 pin)	V_{IL1}	V	$V_{CC} = 2.2$ to 3.3 V	-0.3		$0.15V_{CC}$	2, 3
Input low voltage (2) (OSC1 pin)	V _{IL2}	V	$V_{\rm CC} = 2.2$ to 3.3 V	-0.3		$0.15V_{CC}$	2, 3
(Except OSC1 pin)			Vcc = 2.4 to $3.3V$	-0.3	_	$0.2 V_{CC}$	2, 3
Output high voltage (1) (DB0-17 pins)	$V_{\rm OH1}$	V	IOH = -0.1 mA	-0.75Vcc	—	—	2
Output low voltage (1)	V _{OL1}	V	Vcc = 2.2V to 2.4V,	_	—	0.2Vcc	2
(DB0-17 pins)			$I_{OL} = 0.1 \text{mA}$				
			Vcc = 2.4V to 3.3V,	_		0.15Vcc	2
			$I_{OL} = 0.1 \text{mA}$				
I/O leakage current	I_{Li}	μA	Vin = 0 to Vcc	- 1		1	4
Current consumption during normal operation (Vcc – GND)	I _{OP}	μΑ	Ta = 25°C, 260,000 colors display, Vcc = 3V, CR oscillation; fosc = 176kHz (176 line drive), RAM data: 0000h, AP=001, CAD=1, VCOMG=1 VCI1 = 0.92 x VCI (VC2-0 = 001), DDVDH = 2 x VCI1, VGH = 3 x VCI2 (BT2-0 = 000), Step up circuit 1 = 60 divided cycle, Step up circuit 2, 3, and 4 = 240 divided cycle (DC2-0 = 000), VREG10UT = REGP x 1.65 = 4.55V, (VRH = 0011) VCOMH = VREG10UT x 0.76 = 3.46V, (VCM = 10011), VCOML = 3.46 – (VREG10UT x 1.23) = - 2.13V, (VDV = 10110), VREG20UT = VCI x -5.5 = - 16.5V, (VRL = 1001), VgoffL = -16.5V, VgoffH = -16.5V + 5.59V = -10.9V		90	200	5
Current consumption during standby mode (Vcc – GND)	$\mathrm{I}_{\mathrm{VGL}}$	μA	V _{cc} = 3V, VGL = -5.5V, Ta = 25°C	_	_	40	5
Current consumption during	\mathbf{I}_{ST}	μΑ	Vcc = 3V, Ta <= 50°C		0.1	5	- 5
standby mode (VGL – GND)			Vcc = 3V, Ta >50°C			20	-5
Output voltage deviation	Vo	mV			5		7
Dispersion of the average output voltage	V	mV		—		35	8

AC Characteristics (V_{CC} = 2.2 to 3.3 V, Ta = -40 to +85°C*¹)

Clock Characteristics (V_{CC} = 2.2 to 3.3 V)

Table 60

Item	Symbol	Unit	Test Condition	Min	Тур	Max	Notes
External clock frequency	Fcp	kHz	$V_{CC} = 2.2$ to 3.3 V	100	176	600	8
External clock duty ratio	Duty	%	$V_{cc} = 2.2$ to 3.3 V	45	50	55	8
External clock rise time	Trep	μs	$V_{CC} = 2.2$ to 3.3 V			0.2	8
External clock fall time	Tfcp	μs	$V_{CC} = 2.2$ to 3.3 V	_		0.2	8
R-C oscillation clock	f _{osc}	kHz	$Rf = 240k\Omega$, $V_{CC} = 3 V$	184	229	274	9

80-system Bus Interface Timing Characteristics

Normal Write Mode (HWM=0) (Vcc = 2.2 to 2.4 V)

Table 61

Item		Symbol	Unit	Test Condition	Min	Тур	Max
Bus cycle time	Write	t _{CYCW}	ns	Figure 1	600		_
	Read	t _{CYCR}	ns	Figure 1	800		_
Write low-level pulse width		PW_{LW}	ns	Figure 1	90		
Read low-level pulse width		PW_{LR}	ns	Figure 1	350		
Write high-level pulse width		$\mathrm{PW}_{\mathrm{HW}}$	ns	Figure 1	300		
Read high-level pulse width		$\mathrm{PW}_{\mathrm{HR}}$	ns	Figure 1	400		_
Write/Read rise/fall time		t _{wRr, WRf}	ns	Figure 1			25
Setup time		t _{AS}	ns	Figure1	10		_
(RS to CS*, WR*, RD*)							
Address hold time		t _{AH}	ns	Figure 1	5		_
Write data set up time		t _{DSW}	ns	Figure 1	60		
Write data hold time		t _H	ns	Figure 1	15		
Read data delay time		t _{DDR}	ns	Figure 1			200
Read data hold time		t _{DHR}	ns	Figure 1	5		_

High-Speed Write Mode (HWM=1) (Vcc = 2.2 to 2.4 V)

Table 62 Item		Symbol	Unit	Test	Min	Тур	Max
				Condition			
Bus cycle time	Write	t _{CYCW}	ns	Figure 1	200		
	Read	t _{CYCR}	ns	Figure 1	800	—	
Write low-level pulse width		$\mathrm{PW}_{\mathrm{LW}}$	ns	Figure 1	90	—	_
Read low-level pulse width		PW_{LR}	ns	Figure 1	350	—	_
Write high-level pulse width		$\mathrm{PW}_{\mathrm{HW}}$	ns	Figure 1	90	—	_
Read high-level pulse width		PW_{HR}	ns	Figure 1	400	_	_
Write/Read rise/fall time		t _{wRr, WRf}	ns	Figure 1	_	_	25
Set up time		t _{AS}	ns	Figure 1	10	_	_
(RS to CS*, WR*, RD*)							
Address hold time		t _{AH}	ns	Figure 1	5		
Write data set up time		t _{DSW}	ns	Figure 1	60	_	_
Write data hold time		t _H	ns	Figure 1	15	_	_
Read data delay time		t _{DDR}	ns	Figure 1		_	200
Read data hold time		t _{DHR}	ns	Figure 1	5	_	_

Rev.1.0-1 / October 2002

Normal Write Mode (HWM=0) (Vcc = 2.2 to 2.4 V) Table 63

Item		Symbol	Unit	Test Condition	Min	Тур	Max	Note
Bus cycle time	Write	t _{CYCW}	ns	Figure 2	200			
	Read	t _{CYCR}	ns	Figure 2	300	_	_	
Write low-level pulse width		PW_{LW}	ns	Figure 2	40			
Read low-level pulse width		PW _{LR}	ns	Figure 2	150			
Write high-level pulse width		PW_{HW}	ns	Figure 2	100			
Read high-level pulse width		PW_{HR}	ns	Figure 2	100	_	_	
Write/Read rise/fall time		t _{wRr. WRf}	ns	Figure 2			25	
Set up time		4		Eisen 2	10	—	—	When using status read
(RS to CS*, WR*, RD*)		t _{AS}	ns	Figure 2 -	0	_	_	When not using status read
Address hold time		t _{AH}	ns	Figure 2	2	_	_	
Write data setup time		t _{DSW}	ns	Figure 2	60	_	_	
Write data hold time		t _H	ns	Figure 2	2	_		
Read data delay time		t _{DDR}	ns	Figure 2		_	100	
Read data hold time		t _{DHR}	ns	Figure 2	5			

High-Speed Write Mode (HWM=1)

(Vcc = 2.4 to 3.3 V)

Table 64

Item		Symbol	Unit	Test Condition	Min	Тур	Max	Note
Bus cycle time	Write	t _{CYCW}	ns	Figure 2	100		_	
	Read	t _{CYCR}	ns	Figure 2	300		—	
Write low-level pulse width		PW_{Lw}	ns	Figure 2	40		_	
Read low-level pulse width		PW_{LR}	ns	Figure 2	150		_	
Write high -level pulse width		PW_{HW}	ns	Figure 2	40		_	
Read high -level pulse width		PW_{HR}	ns	Figure 2	100		_	
Write/Read rise/fall time		t _{WRr} , _{WRf}	ns	Figure 2	_		25	
Set up time		4		E: 2	10	—	—	When using status read
(RS to CS*, WR*, RD*)		t _{AS}	ns	Figure 2 –	0			When not using status read
Address hold time		t _{AH}	ns	Figure 2	2	—	_	
Write data set up time		t _{DSW}	ns	Figure 2	60			
Write data hold time		t _H	ns	Figure 2	2			
Read data delay time		t _{DDR}	ns	Figure 2			100	
Read data hold time		t _{DHR}	ns	Figure 2	5		_	

Reset Timing Characteristics

 $(V_{CC} = 2.2 \text{ to } 3.3 \text{ V})$

Table 65

Item	Symbol	Unit	Test Condition	Min	Тур	Max
Reset low-level width	t _{RES}	ms	Figure 2	1		_
Reset rise time	t _{rRES}	μs	Figure 2			10

Electrical Characteristics Notes

- 1. For bare die and wafer products, specified up to 85°C.
- 2. The following three circuits are I pin, I/O pin, O pin configurations.

Pins: RESET*, CS*, E/WR/SCL, RW/RD, RS,

OSC1, IM3-1, IM0/ID, TEST1, TEST2,

Pins: OSC2

Pins: DB17 -DB2, DB1 / SD0 , DB0/SDI

- 3. The TEST1, TEST2/TESTV1, DCTEST pin must be grounded and the IM3/IM2/IM1 and IM0/ID pins must be grounded or connected to Vcc.
- 4. This exclude the current flowing through output drive MOSs.
- 5. This exclude the current flowing through the input/output units. The input level must be fixed high or low because through current increases if the CMOS input is left floating. Even if the CS pin is low or high when an access with the interface pin is not performed, current consumption does not change.
- 6. The following show the relationship between the operation frequency (fosc) and current consumption (Icc) (figure).
- 7.Dispersion of the average output voltage is the difference of the average of output voltage between chips next to each other.
- 8. Applies to the external clock input (figure).

Figure 107 External Clock Supply

9. Applies to the internal oscillator operations using external oscillation resistor Rf (figure and table).

Shorten these pin's wiring as much as possible, because the number of oscillation wave changes according to the capacity of OSC1, OSC2 pins.

Figure 108 Internal Oscillation

(Referential Data)

Table 66

R-C Oscillation Frequency: fosc (kHz)

Oscillation Resistance (k W)	Vcc = 2.0 V	Vcc = 2.4 V	Vcc = 3.0V	Vcc = 3.3V
110kΩ	362.6	399.4	438.5	447.6
150kΩ	285.4	313.3	337.4	343.4
180kΩ	252.2	274.0	294.9	302.1
200 kΩ	230.4	251.5	268.7	274.8
240 kΩ	201.3	216.8	229.4	234.8
270 kΩ	181.3	195.1	206.9	210.2
300 kΩ	166.1	178.2	187.5	191.1
390 kΩ	133.7	142.3	148.9	151.6
430 kΩ	121.6	129.0	135.2	137.3

AC Characteristics Test Load Circuits Data bus: DB17 to DB0

HITACHI 108

Rev.1.0-1 / October 2002

80-system Bus Operation

Figure 110 80-system Bus Timing

Maintenance history report P = page, L = line, - = blank

$\frac{1 - pa_{2}}{\text{Rev}}$	$\frac{1}{2} = 1 \text{ ine, } - = 1$	Page	Maintenance history
0.1	2002.5.24	1 450	First edition
1.0	2002.10.17	1	Description: line 4/ Change "1.8V" to "2.2V".
		2	Low-power operation supports: Change "Vcc = 1.8 to 3.3V" to "2.2 to 3.3V" Output power supply voltage: Change "VcomH-GND = VDH max" to
			"VREGIOUT (max).
		8	Connect pin of RESET 1, 2, and 3: Change "MUP or Reset generating Circuit" to "MPU or RESET generating circuit". Functions of Vcc, GND: Change "1.8V" to "2.2V".
			Connect pin of DDVDH: Change "Capacitor for stabilization or power supply" to "Capacitor for stabilization or open".
			Functions of DDVDH: Change " connect an external power supply lower than 5.5V" to "leave it open".
		13	Power supply circuit for LCD opeartion: Change "VDH, VGH, VGL, VgoffOUT, Vcom" to "V0P, V0N, V31P, V31N, VGH, VGL, VgoffOUT, Vcom".
		22	Index (IR): line 1/ Change "(R00h to R4h)" to "(R00h to R3B)".
		26	Table 10: Step-up Cycle in Step-up Circuit 1/ Change "DCCLKdivided by 15" to "DCCLK divided by 60", change "DCCLK dividedby 60" to "DCCLK divided 15".Table 10: Step-up Cycle in Step-up Circuit 2/ Change "DCCLK
			divided by 240" to "DCCLK divdied by 60", change "DCCLK divided by 60" to "DCCLK divided by 240".
		27	VC2-0: Change "VC2-0= "1111"" to "VC2-0 = "111"".
			VRL3-0: Change "(voltate for the reference voltage, VREG2 while generating Vgoff.)" to "(voltage for the reference while generating Vgoff.)".
			VRH3-0: Change "VREGOUT1" to "VREG1OUT".
			Change "(REGP from 1.33 to 2.85 times)" to "(REGP from 1.33 to 2.775 times)".
			VCOMG: "When VCOMG = 0 and when Vcom is driven in A/C, setting of the VDV4-0 is invalid.": Delete "when Vcom is driven in A/C" from the sentence.
			VDV4-0: "When Vcom is not driven in A/C, the set up is invalid." Delete "When Vcom is not driven in A/C" from the sentence.
		29	Table 13: VREG1OUT Voltage/ Change as follows. REGP x 2.325 times \rightarrow REGP x 2.175
			$\begin{array}{l} \text{REGP x 2.475 times} \rightarrow & \text{REGP x 2.325} \\ \text{REGP x 2.625 times} \rightarrow & \text{REGP x 2.475} \end{array}$
			REGP x 2.700 times \rightarrow REGP x 2.625 REGP x 2.775 times \rightarrow REGP x 2.700
		34	REGP x 2.850 times \rightarrow REGP x 2.775 Delete Table 19, and 20 in rev. 0.1.
			Table 19 Bits and Operation: Add GON and DTE to the table.
		35	Table 22 Add "Note" under the table.

Rev	Date	Page	Maintenance history
1.0	2002.10.17	37	Figure 33: Right figure: Change "SCN4-0 = 00111" to "SCN4-0 =
			01110".
		59	Table 36: AM setting for High-speed RAM write: Change " $AM = 1/0$ "
			to "AM = 0"".
		73	Figure 84: the bottom figure: Change the length of right and left
			arrows. (Refer to the figure.)
		76	Figure 87: Change "VRP0 2 ~ 30-R" to "VRP0 0 ~ 30R". Change
			"VRN0 2 ~ 30R" to "VRN0 0 ~ 30R".
		79	Table 41: Change register value "VRP (N)0 [4:0]" to "VRP(0)[3:0].
		81	Table 45: Change Formula for V1 from "V4+V3D+(VINP1-
			V4)*(8/24)" to "V3D+(VINP1-V3D)*(8/24)".
		83	Table 47: Change Formulq for V1 form "V4+(V3D+(VINP1-
			V4)*(8/24)" to "V3D+(VINP1-V3D)*(8/24)".
		90	Add a new figure.
		99	Figure 104: Delete shotkey diode between Vci and Vci2
		101	Figure 105: Change "Vcc $(1.8 \sim 3.3V)$ " to " $(2.2 \sim 3.3V)$ " in upper
			figure. Change "Vcom (3.0 ~ VDH)" to "Vcom (3.0 ~ VREG1OUT) in
			upper figure. Change "VDH" to "VREG1OUT" in lower figure.
		103	Change "Vcc = $1.8V \sim 3.7V$ " to "Vcc = $2.2V \sim 3.3V$ " for DC
			characteristics
			Add a row of "Current consumptiion during standby mode (VGL-
			GND)
		104	Delete 68 Bus interface timing characteristics Table 57,58,59, and 60
			in rev.0.1.
			Table 61 and 62: Change " $Vcc = 1.8$ " to " $Vcc = 2.4$ ".
			Table 61 and 62: Change Test Condition "Figure 2" to "Figure 1".
		105	Table 63 and 64: Change Test Condition "Figure2" to "Figure1".
			Table 65: Change "Vcc = 1.8 to 3.3 V" to "Vcc = 2.2 to 3.3 V".
			Table 65: Change Test Condition from "Figure 4" to "Figure 2".
			Table 65: Change Unit for Reset rise time from "ns" to "s"
			Table 65: Change Max for Reset rise time from "100" to "10".
		107	Delete Figure 107 "R-C oscillation frequencies" and note 7 in Rev. 0.1.
		108	Fill in contents of Table 66 "R-C Oscillation Frequency: fosc (kHz).
			Delete Figure 110 <reference data=""> and note 11 in Rev. 0.1.</reference>
			Delete Figure 112 "Load Circuit" in Rev. 0.1.
		109	Delete Figure 113 "68-system Bus Operation" in Rev. 0.1.
			Dlete Figure 115 "Clock Synchronized Serial Interface Timing" in
			Rev. 0.1.
		110	Add a new page "Writing Example of HD66773 (260,000 color mode).
1.0-1	2002.10.28	3	Correct pin name "YM0N1" to "VM0NI"
		4	Correct Figure 2.
		5	Correct Table 1. (No.55 to No.62)
		99	Correct Figue 104.