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ABSTRACT

A method for modelling switching-converter
power stages is developed, whose starting point
i{g the unified state-space representation of the
gwitched networks and whose end result is either a
complete state-space description or its equivalent
small-signal low-frequency linear circuit model.

A new canonical circuit model is proposed,
whose fixed topology contains all the essential
input~output and control properties of any dc-to-
dc switching converter, regardless of its detailed
configuration, and by which different converters
can be characterized in the form of a table con-
veniently stored in a computer data bank to pro-
vide a useful tool for computer aided design and
optimization. The new canonical circuit model
predicts that, in general,switching action intro-
duces both zeros and poles into the duty ratio to
output transfer function in addition to those from
the effective filter network.

1. INTRODUCTION

1.1 Brief Review of Existing Modelling Techniques

In modelling of switching converters in
general, and power stages in particular, two
main approaches - one based on state-space
modelling and the other using an averaging
technique - have been developed extensively,
but there has been little correlation between
them. The first approach remains strictly in
the domain of equation manipulations, and
hence relies heavily on numerical methods and
computerized implementations. Its primary
advantage is in the unified description of all
power stages regardless of the type (buck, boost,
buck-boost or any other variation) through
utilization of the exact state-space equations
of the two switched models. _On the other hand,
Processing Systems."

based on equivalent circuit manipulations,
resulting in a single equivalent linear circuig
model of the power stage. This has the distinet
8dvantage of providing the circuit designer with
physical insight into the behaviour of the
original switched circuit, and of allowing the
powerful tools of linear circuit analysis and
synthesis to be used to the fullest extent in
design of regulators incorporating switching
converters.

1.2 Proposed New State-Space Averaging Approach

The method proposed in this paper bridges the
gap earlier considered to exist between the state-
space technique and the averaging technique of
modelling power stages by introduction of state-
space averaged modelling. At the same time it
offers the advantages of both existing methods -
the general unified treatment of the state-space
approach, as well as an equivalent linear circuit
model as its finmal result. Furthermore, it makes
certain generalizations possible, which otherwise
Could not be achieved.

The proposed state-space averaging method,
outlined in the Flowchart of Fig. 1, allows a
unified treatment of a large varlety of power
stages currently used, since the averaging step
in the state-space domain is very simple and clearly
defined (compare blocks la and 2a). It merely
consists of averaging the two exact state-space
descriptions of the switched models over a single
cycle T, where f_ = 1/T is the switching frequency
(block 2a). Hence there is no need for special
"know=how" in massaging the two switched circuit
models into topologically equivalent forms in order
to apply circuit-oriented procedure directly, as
required in [1] (block 1lc). Nevertheless, through
a hybrid modelling technique (block 2c), the cir-
cuit structure of the averaged circuit model
(block 2b) can be readily recognized from the
averaged state-space model (block 2a). Hence
all the benefits of the previous averaging
technique are retained. Even though this out-

In either case, a perturbation and linearization
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Fig. 1, Flowchart of averaged modelling approaches

process required to include the duty ratio
modulation effect proceeds in a very straightfor-
ward and formal manner, thus emphasizing the
corner-stone character of blocks 2a and 2b. At
this stage (block 2a or 2b) the steady-state (dc)
and line to output transfer functions are already
available, as indicated by blocks 6a and 6b
respectively, while the duty ratio to output
transfer function is available at the final-stage
model (4a or 4b) as indicated by blocks 7a and 7b.
The two final stage models (4a and 4b) then give
the complete description of the switching
converter by inclusion of both independent con-
trols, the line voltage variation and the duty
ratio modulation.

Even though the circuit transformation path

b might be preferred from the practical design
standpoint, the state-space averaging path a is
invaluable in reaching some general conclusions
about the small-eignal low-frequency models of
any dc-to-dc switching converter (even those

yet to be invented). Whereas, for path b, one
has to be prekented with the particular circuit
in order to proceed with modelling, for path a
the final state-space averaged equations (block
4a) give the complete model description through
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general matrices Ay, A, and vectors bys by,

c T, and czT of the two starting switched models
(%lock la). This is also why aleng path b in
the Flowchart a particular example of a boost
power stage with parasitic effects was chosen,
while along path a general equations have been
retained. Specifically, for the boost power
stage b, = by = b. This example will be later
pursued in detail along both paths.

In addition the state-space averaging
approach offers a clear insight into the
quantitative nature of the basic averaging
approximation, which becomes better the further
the effective low-pass filter corner frequency
f is below the switching frequency fs' that is,
£S/f << 1. This is, however, shown to be
eﬁuiealent to the requirement for small output
voltage ripple, and hence does not pose any
serious restriction or limitation on modelling
of prac:ical dc-to-dc converters.

Finally, the state-space averaging approach
perves as a basis for derivation of a useful
general circuit model that describes the input-

output and control properties of any de-to-dc
converter.



1.3 New Canonical Circuit Model

The culmination of any of these deriva-
tions along either path a or path b in the
Flowchart of Fig. 1 is an equivalent circuit
(block 3), valid for small-signal low-frequency
variations superimposed upon a dc operating
point, that represents the two transfer functions
of interest for a switching converter. These
are the line voltage to output and duty ratio
to output transfer functions.

The equivalent circuit is a canonical model
that contains the essential properties of any
de-to-dc switching converter, regardless of the
detailed configuration. As seen in block 5 for
the general case, the model includes an ideal
transformer that describes the basic dc-to-dc
transformation ratio from line to output; a
low-pass filter whose element values depend upon
the dc duty ratio; and a voltage and a current
generator proportional to the duty ratio modula-
tion input.

The canonical model in block 5 of the Flow-
chart can be obtained following either path a or
path b, namely from block 4a or 4b, as will be
shown later. However, following the general
description of the final averaged model in block
4a, certain generalizations about the canonical
model are made possible, which are otherwise not
achievable. Namely, even though for all currently
known switching dc-to-dc converters (such as the
buck, boost, buck-boost, Venable [3], Weinberg [4]
and a number of others) the frequency dependence
appears only in the duty-ratio dependent voltage
generator but not in the current generator, and then
anlv.2s.a,firstoerder (single-zero) polynomial in
poles of the effective filter network which
essentially constitute the line voltage to output
transfer function. Moreover, in general, both
duty-ratio dependent generators, voltage and cur-
rent, are frequency dependent (additional zeros
and poles). That in the particular cases of the
boost or buck-boost converters this dependence
reduces to a first order polynomial results from
the fact that the order of the system which is
involved in the switching action is only two.
Hence from the general result, the order of the
polynomial is at most one, though it could reduce
to a pure constant, as in the buck or the Venable
converter [3].

The significance of the new circuit model is
that any switching de-to-dc converter can be
reduced to this canonical fixed topology form,
at least as far as its input—output and control
duRy°cyeie B lan"general, the ertbctivetyikis for
elements depend on duty ratio D), and the confi-

guration chosen which optimizes the size and
welght. Also, comparison of the frequency depen-
dence of the two duty-ratio dependent genmerators
provides insight into the question of stability
once a regulator feedback loop 1s closed.

1.4 Extension to Complete Regulator Treatment

Finally, all the results obtained in modelling
the converter or, more accurately, the network
which effectively takes part in switching action,
can easlily be incorporated into more complicated
systems containing dc-to-dc converters. For
example, by modelling the modulator stage along the
same lines, one can obtain a linear circuit model
of a closed-loop switching regulator. Standard
linear feedback theory can then be used for both
analysis and synthesis, stability considerations,
and proper design of feedback compensating net-
works for multiple loop as well as single-loop
regulator configurations.

2. STATE-SPACE AVERAGING

In this section the state-space averaging
method is developed first in general for any dc-
to-dc switching converter, and then demonstrated
in detail for the particular case of the boost
power stage In which parasitic effects (esr of
the capacitor and series resistance of the in-
ductor) are included. General equations for
both steady-state (dc) and dynamic performance
(ac) are obtained, from which important transfer
functions are derived and also applied to the
special case of the boost power stage.
switching between two linear networks consisting
of ideally lossless storage elements, inductances
and capacitances. In practice, this function may
be obtained by use of transistors and diodes
which operate as synchronous switches. On the
assumption that the circuit operates in the so-
called "continuous conduction" mode in which the
instantaneous inductor current does not fall to
zero at any point in the cycle, there are only
two different "states" of the circuit. Each state,
however, can be represented by a linear circuit
model (as shown in block 1b of Fig. 1) or by a
corresponding set of state-space equations (block
la). Even though any set of linearly independent
variables can be chosen as the state variables,
it is customary and convenient in electrical
networks to adopt the inductor currents and capa-
citor voltages. The total number of storage
elements thus determines the order of the system.
Let us denote such a choice of a vector of state-
L1On Mude Cdlli UE UcCoLliiucu ) wie oeoce G-
equations for the two switched models:




(i) dinterval Td: (1i) interval Td':

X = Alx + blva X = Azx + bzvg
T T
¥ "ty * ¥y = €y X

(1)

where Td denotes the interval when the switch is
in the on state and T(1-d) = Td' is the interval
for which it is in the off state, as shown in
Fig. 2. The static equations y; = clTx and

¥ csz are necessary in order to account for
tﬁe case when the output quantity does not

switch drive

[ ] T

on off =T

Td Td'

| time

Fig. 2. Definition of the two switched intervals
Td and Td'.

coincide with any of the state wvariables, but
is rather a certain linear combination of the
state variables.

Our objective now is to replace the state-
space description of the two linear circuits
emanating from the two successive phases of the
switching cycle T by a single state-space des-
cription which represents approximately the beha-
viour of the circuit across the whole period T.
We therefore propose the following simple avera-
ging step: take the average of both dynamic and
static equations for the two switched intervals
(1), by summing the equations for interval Td
multiplied by d and the equations for interval
Td' multiplied by d'. The following linear
continuous system results:

.. ¥
x d(A1x+b1vg) + 4 (A2x+b2vg)
(2)
I W
y = dy, + d'y2 (dcl +d'e, Ix

After rearranging (2) into the standard
linear continuous system state-space description,
we obtain the basic averaged state-space descrip-
tion (over a single period T):

o i t '

x (dA1+d Az)x +(db1+d bz)vg
(3)
y = (dc1T+d'c2T)x

This model is the basic averaged model which
is the starting model for all other derivations
(both state-space and circuit oriented).

Note that in the above equations the duty
ratio d is considered constant; it is not a time
dependent variable (yet), and particularly not a
switched discontinuous variable which changes
between 0 and 1 as in [1] and [2], but is merely
a fixed number for each cycle. This is evident
from the model derivation in Appendix A. 1In
particular, when d = 1 (switch constantly on)
the averaged model (3) reduces to switched
model (11), and when d = 0 (switch off) it
reduces to switched model (111),

In essence, comparison between (3) and (1)
shows that the system matrix of the averaged
model is obtained by taking the average of two
switched model matrices A, and A,, its control is
the average of two control vectors b, and b,, and
its output is the average of two outputs Yy and
y, over a period T.

The justification and the nature of the
approximation in substitution for the two switched
models of (1) by averaged model (3) is indicated
in Appendix A and given in more detail in [6].
The basic approximation made, however, is that
of approximation of the fundamental matrix
eAt = I + At + *** by its first-order linear
term. This is, in turn,shown in Appendix B to
be the same approximation necessary to obtain the
de condition independent of the storage element
values (L,C) and dependent on the de duty ratio
only. It also coincides with the requirement for
low output voltage ripple, which is shown in
Appendix C to be equivalent to fcff <z 15
namely the effective filter cormer grequency
much lower than the switching frequency.

The model represented by (3) is an averaged
model over a single period T. If we now assume
that the duty ratio d is constant from cycle to
cycle, namely, d = D (steady state dc duty ratio),
we get:

x = Ax + bv
g

5 (4)
y = cx
where
- L
A DAl + D Az
o '
; Db, + D'b, (5)

- T Vo T
e Dcl + D c2

Since (4) is 2 linear system, superposition
holds and it can be perturbed by 1ntrodu%tion of
line voltage variations v_as v_=V_+ v , where
V_ is the dc line input vgltage§ cauéing g
cgrresponding perturbation in the state vector
x = X + x, where again X is the dc value of the
state vector and X the superimposed ac pertur-
bation. Similarly, y =Y + y, and

:'E-AX+bV8+A§+ng
» T T (6)
Y+ y=cX+cx
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Separation of the steady-state (dc) part
from the dynamic (ac) part then results in the
ateady state (dc) model

AX + bvg =0; ¥ = CTX-é-Y = —cTA'lbvg (7)
and the dynamic (ac) model

X = Ax + bv

o m  T (8)

y =cx

It is interesting to note that in (7) the
steady state (dc) vector X will in general only
depend on the dc duty ratio D and resistances
in the original model, but not on the storage
element values (L's and C's). This is so
because X is the solution of the linear system
of equations

AX + bvg =0 (9)

in which L's and C's are proportionality con-
stants. This is in complete agreement with the
first-order approximation of the exact dc
conditions shown in Appendix B, which coincides
with expression (7).

From the dynamic (ac) model, the line
voltage to state-vector transfer functions can
be easlly derived as:

_x.(_gl. = (SI—A‘\) lb
v (5)
(10)

_{l&l_ = cT(s1-8) b
v (s)
g

Hence at this stage both steady-state
(de) and line transfer functions are available,
as shown by block 6a in the Flowchart of Fig. 1.
We now undertake to include the duty ratio
modulation effect into the basic averaged
model (3).

2.2 Perturbation

Suppose now that the duty ratio changes from
cycle to cycle, that is, d(t) = D + d where D
is the steady-state (dc) duty ratio as before and
d is a superimposed (ac) variation. With the

corresponding perturbation definition x = X + Q,
dc term line duty ratio variation

variation
2)x + (bl-bz)vg]d

+ [ (Al-A (11)

nonlinear second-order term

2 T T2 T s T T
Y+y=cX+cx+ (c1 -cy )Xd + (c1 <, )xd

de ac ac term nonlinear term

term term
The perturbed state-space description is

nonlinear owing to the presence of the product
of the two time dependent quantities x and d.

2.3 Linearization and Final State-Space Averaged
Model

Let us now make the small-signal approxima-
tion, namely that departures from the steady state
values are negligible compared to the steady state
values themselves:

(12)

<| <>
2 he
A
A
s

[=1]-%
A
A
1

R
A
A
|

Then, using approximations (12) we neglect all
nonlinear terms such as the second-order terms in
(11) and obtain once again a linear system, but
including duty-ratio modulation d. After sepa-
rating steady-state (dc) and dynamic (ac) parts

of this linearized system we arrive at the follow-
ing results for the final state-space averaged
model.

Steady-state (dc) model:

X o -Alpy i Y= elx = —cTANbY (13)
g B
Dynamic (ac small-signal) model:
X = Ax + bvg + [(Al-Az}X + (bl_b2>vg]d
(14)

~ -

T 4 a2
- + =
y e % (cl <, )Xd

In these results, A, b and cT are given as before

by (5).

Equations (13) and (14) represent the small-
signal low-frequency model of any two-state
switching dec-co-de converter working in the con-
tinuous conduction mode.

It is important to note that by neglect of
the nonlinear term in (11l) the source of harmonics
is effectively removed. Therefore, the linear
description (14) is actually a linearized
describing function result that is the limit of
the describing function as the amplitude of the
input signals v, and/or d becomes vanishingly
explained in [1], [2], or [8) in which small-
signal assumption (12) is preserved. Very good
agreement up to close to half the switching
frequency has been demopstrated repeatedly

(111, 21, 131, [I7D.
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2.4 Example: Boosi Power Stage with Parasitics

We now illustrate the method for the boost
power stage shown in Fig. 3.

R L

— VW

Re

.
A h g

w(®) FFf
o

dl d'T

Fig. 3. Example for the state —space averaged
modelling: boost power stage with para-
sitics included.

(a) (b

Ry L Y L
|
Vg R
Fig. 4. Two switched circuit models of the

circuit in Fig. 3 with assumption of ideal
switches. All elements in the final state-
space averaged mode] (13) and (14) are
obtained: A,,b,,c from a) for interval
Td, and Az,hz,céf }rom b) for interval Td'.

With assumption of ideal switches, the two
switched models are as shown in Fig. 4. For choice
of state-space vector x! = (i v), the state space
equations become:

o

T T
Y, = ¢, x Yo ™= €%
where 1 2 2
- E& 0 N R£+Rc”R . -
A = L 1. L L(RHR )
By ik R 1
(R+R )C (R+R )C (R+R )C
T = __R_ T- R’
o [0 RFR ] 2 [R” R TR ]
c [+
(16)

Note that (15) is the special case of (1) in
vhich b, = b, = b = [1/L 0)T,

Using (16) and (5) in the general result
(13) and (14), we obtain the following final
state-space averaged model.
Steedy-state (dc) model:

I v 1 ~
x=| |- & s pakaatt,
v R! (1-D)R |’ R

/8

in which I is the dc inductor current, V is

the dc capacitor voltage, and Y is the dc output
voltage.

Dynamic (ac small signal) model:

,\ R +(1-D) (R _||R) (1-D)R "
i e SR L B
e L L(R+R)
de| o (1-D)R 1 -
(R*+R ) C (R+R )C
c c
1 R (D'R+R ) ~
= s — £ v
g 5 L R+Rc g‘
8 R
__R
0 (R+R_)C (18)
R B 1 R IR
y = (l—D)(Rc"R) R & = ¥ e
[ v g

in which R’ 2 (1-D)?R + R, + D(1-D) ® [

L

We now look more closely
transformation ratio in (17):

at the dc voltage

AR SO (I'D)ZR (19)
v v 1-D (1—D)2R + R, + D(1-D) (R IR)
3 T £ c gy
— Y
ideal correction factor
dc gain

This shows that the ideal dc voltage gain is 1/D'
when all parasitics are zero (R, = 0, Rc = 0) and
that in their presence it is sl%ghtly réduced by

a correction factor less than 1. Also we observe
PR E IR o S PN SRRy I+, ety dbanmnn D oL N fovd #h
discontinuity of output voltage was not TnCluded
in [2], but was correctly accounted for in [1].

From the dynamic model (18) one can find the
duty ratio to output and line voltage to output
transfer functions, which agree exactly with those
obtained in [1] by following a different method of
averaged model derivation based on the equivalence
of circuit topologies of two switched networks.

The fundamental result of this section is the
development of the general state-space averaged
model represented by (13) and (14), which can be
easily used to find the small-signal low-frequency
model of any switching dc-to-dc converter. This
was demonstrated for a boost power stage with
parasitics resulting in the averaged model (17)
and (18). It is important to emphasize that,
unlike the transfer function description, the
state-space description (13) end (l4) gives the
complete system behaviour. This is very useful
in implementing two-loop and multi-loop feedback
when two or more states sre used in & feedback
path to modulate the duty ratio d. For example,
both output voltage and inductor current may
be returned in & feedback loop.



3. HYBRID MODELLING

In this section it will be shown that for any

specific converter a useful circuit realization
of the basic averaged model given by (3) ecan
always be found. Then, in the following section,
the perturbation and linearization steps will be
carried out on the circuit model finally to

arrive at the circuit model equivalent of (13) and
(14) .

The circuit realization will be demonstrated
for the same boost power stage example, for which
the basic state-space averaged model (3) becomes:

di R, +d'(RcHR) d'R 1
ac | |7 L " L(RHR) LIE
= v
E
dv d'R . 1 5 0
dt (R+RC)C (R+RC)C
(20)
i
R
= ' ———
¥ [:d ® I ®) R+R
c v
In order to "connect" the circuit, we
express the capacitor voltage v in terms of the
desired output quantity y as:
R+Rc
v = _R_ y - (l—d)Rci
or, in matrix form
i 1 0 i
- (21)
R+Rc
-dt ——
v d'R R ¥y
Substitution of (21) into (20) gives
ey gl o N ey
L 37| | ~(Ry+dd' R _|IR) -4' i 1
g
additionalyj ideal
resistance transformer]
- b v
*////// g
dv 1
c 4 -z ‘J Lo
e dt—d e R L“y—‘ —j
(22)

From (22) one can easily reconstruct the circuit
representation shown in Fig. 5.

The basic model (22) is valid for the dec
regime, and the two dependent generators can be
modeled as an ideal d':1 transformer whose range
extends down to dc, as shown in Fig. 6.
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Fig. 5, Circuit realization of the basic state-
space averaged model (20) through hybrid
modelling.

Re L ddiRclIr) y
T
L] L] Rc L
vg + ;R
v _rc
d:i
Fig. 6. Basic circult averaged model for the

boost circuit example in Fig. 3. Both dec-
to-dc conversion and line variation are
modelled when d(t)=D.

As before, we find that the circuit model in
Fig. 6 reduces for d = 1 to switched model in Fig.
4a, and for d = 0 to switched model in Fig. 4b.
In both cases the additional resistance Rl -
dd'(R || R) disappears, as it should.

If the duty ratio is constant so d = D, the
dc regime can be found easily by considering
inductance L to be short and capacitance C to be
open for dc, and the transformer to have a D':1
ratio. Hence the dc voltage gain (19) can be
directly seen from Fig. 6. Similarly, all line
transfer functions corresponding to (10) can be
easily found from Fig. 6.

It 1s interesting now to compare this ideal
d':1 transformer with the usual ac transformer.
While in the latter the turns ratio is fixed, the
one employed in our model has a dynamic turns ratio
d':1 which changes when the duty ratio is a func-
tion of time, d(t). It is through this ideal
transformer that the actual controlling function is
achieved when the feedback loop is closed. 1In
addition the ideal transformer has a dc trans-
formation ratio d':1, while a real transformer
works for ac signals only, Nevertheless, the
concept of the ideal transformer in Fig. 6 with
such properties is a very useful one, since after
all the switching converter has the overall
property of a de-to-dc transformer whose turns
ratio can be dynamically adjusted by duty ratio
modulation to achieve the controlling function.
We will, however, see in the next section how
this can be more explicitly modelled in terms of
duty-ratio dependent generators only.

Following the procedure outlined in this
section one can easily obtain the basic averaged
circuit models of three common converter power
stages, as shown in the summary of Fig. 7.



(a) buck power Stage:

Ry

Vg

(b) boost

Rt

power

stage :

boost
(c) buck boost ower Stage:
4 1:d Ry L Rid:l
1
~J
Vg Rt 3R 1\ |
R R?R
L ]—C
Ri=dd(R|R] buck boost
Fig. 7. Summary of basic circuit averaged models

for three common power stages:
boost, and buck-boost.

buck,

The two switched circuit state-space models
for the power stages in Fig. 7 are such that the
general equations (1) reduce to the special cases
Ay = Az =4, b ¢ by =0 (zero vector) for the
buck power stage, and A ¥ Ay, by = b, = b for the
boost power stage, whereas for the buck-boost
power stage A, ¢ A2 and b; ¥ by, = 0 so that the
general case I8 retained.

4, CIRCUIT AVERAGING

As indicated in the Introduction,in this
gsection the alternative path b in the Flowchart
of Fig. 1 will be followed, and equivalence
with the previously developed path a firmly
established. The final eircuit averaged model
for the same example of the boost power stage
will be arrived at, which is equivalent to its
corresponding state-space description given by
(17) and (18).

The averaged circuit models shown in Fig.
7 could have been obtained as in [2] by directly
averaging the corresponding components of the two
switched models. However, even for some simple
cases such as the buck-boost or tapped inductor
boost [1] this presents some difficulty owing to
the requirement of having two switched circuit
models topologically equivalent, while there is
no such requirement in the outlined procedure.

In this section we proceed with the perturba-
tion and linearization steps applied to the cir-
cuit model, conf€inuing with the boost power stage
28 an example in order to include explicitly the
duty ratio modulation effect.
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4.1 Perturbation

If the averaged model in Fig. 7b is perturbed
according to v, = Vg+5 s 1= +1, d = D+a,
d' = D'-d, v = V+U, £ Y+y the nonlinear model

in Fig. 8 results.

er(D+dl[D-AKR RN +1)

Y#H

(D-4)(1+7] SR
[EJ + §R
Vel
-1_T°

Perturbation of the basic averaged circuit
model in Fig. 6 includes the duty ratio
modulation effect 3. but results in this
nonlinear circuit model.

Fig. 8.

4.2 Linearization

Under the small-signal approximation (12),
the following linear approximations are obtained:

e,% DD' (R || R) (I+1) + é(n'—n)(ncila)[
(D'-d) (¥+y) & D' (Y+y) - dY
(@'-d) (1+1) p D' (14) - a1

and the final averaged circuit model of Fig. 9
results. In this circuit model we have finally
obtained the controlling function separated in
terms of duty ratio d dependent generators e,

and 3, , while the transformer turns ratio is
dependent on the dc duty ratio D only. The
circuit model obtained in Fig. 9 is equivalent to
the state-space description given by (17) and (18).

Fig. 9.

Under small-signal assumption (12), the
model in Fig. 8 1s linearized and this
final averaged circuit model of the boost
stage in Fig. 3 is obtained.

5. THE CANONICAL CIRCUIT MODEL

Even though the general final state-space
everaged model in (13) and (14) gives the complete
description of the system behaviour, one might still
wish to derive a circuit model describing its

input-output and control properties as illustrated
in Pig. 10.



(a) (b)
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e input cutput
input [ A, A, b, bec)cieulput  input joec)e output
G D+d G D+d
control control
Fig. 10. Definition of the modelling objective:

circuit averaged model describing input-
output and control properties.

In going from the model of Fig. 10a to that of
Fig. 10b some information about the internal
behaviour of some of the states will certainly be
lost but, on the other hand, important advantages
will be gained as were briefly outlined in the
Introduction, and as this section will illustrate.

We propose the following fixed topology
circuit model, shown in Fig. 11, as a realization

control function basic dc-to-dc effective low-pass

via d transformation filter network
‘Elg' D): | Re Le  |ved
N

Ef(s)d 5

el
e jisla. o 4 R
V‘;’“@C‘) Jfﬂs}a E> ¢ 3
“Hels)

Fig. 11. Canonical circuit model realization of the
"black box" in Fig. 10b, modelling the
three essential functions of any de-to-de
converter: control, basic dc conversion,

and low-pass flltering.

of the "black box" in Fig. 10b. We call this model
the canonical circuit model, because any switching
converter input-output model, regardless of its
detailed configuration, could be represented in
this form. Different converters are represented
simply by an appropriate set of formulas for the
four elements e(s), j(s), u, Hg(s) in the general
equivalent circuit. The polarity of the ideal

p:1l transformer is determined by whether or not
the power stage is polarity inverting. Its turns
ratio y is dependent on the dc duty ratio D, and
since for modelling purposes the transformer is
assumed to operate down to dc, it provides the
basic dc-to-dc level conversion. The single-sec-
tion low-pass L C filter is shown in Fig. 11

only for illustration purposes, because the actual
number and configuration of the L's and C's in the
effective filter transfer function realization
depends on the number of storage elements in the
original converter.

The resistance R 1is included in the model
of Fig. 11 to represent the damping properties
of the effective low-pass filter. It is an

"effective'" resistance that accounts for various
series ohmic resistances in the actual circuit
(such as Ry in the boost circuit example), the
additional "switching'" resistances due to dis-
continuity of the output voltage (such as

Ry = DD'{RC||R) in the boost circuit example),

and also a "modulation" resistance that arises
from a modulation of the switching transistor
storage time [1].

5.1 Derivation of the Canonical Model through
State-Space

From the general state-space averaged model (13)
and (14), we obtain directly using the Laplace
transform:

;(5)7(SI-A)-leg(s)+(sI—A)_1[}Al-AZ)X+(bl—b2)Vg]§(s)

d . . (23)
y(s)-ch(s)-i-(clT-czT)Xd(s)

Now, from the complete set of transfer functions
we single out those which describe the converter
input-output properties, namely

$lo) = 6. v-(o) * G 8(8)
. vE Ag vd K (24)
i(s) = Gig vg(s) -+ Gid d(s)

in which the G's are known explicitly in terms of
the matrix and vector elements in (23).

Equations (24) are analogous to the two-port
network representation of the terminal properties
of the network (output voltage y(s) and input
current 1(s)). The subscripts designate the
corresponding transfer functions. For example _
G,, 1s the source voltage v_ to output voltage y
tfgnsfer function, Gy4 1is the duty ratio d to
input current i(s) transfer function, and so on.

For the proposed canonical circuit model in
Fig. 11, we directly get:
= ~ 3t 1
y(s) = (S ted) 3 H (s)
(25)
1

2

i(s) = i d+ (ea+; )

ei(s)

or, after rearrangement into the form of (24):

~ 1 ~ 1 &
y(s) = 7 H_(s) vg(s) el H_ (s)d(s)
(2¢)
1

S S +[_1 % ‘E—Jécs)
Wz (s) B w'z_, (s

i(s) =

Direct comparison of (24) and (36) provides the
solutions for H,{s), e(s), and j(s) in terms of

the known transfer functions G_ , G ., G, and
c = vg' vd ig
as:
id
v ®) ()6, (s)
e(s) = j(s) = Gid(S) = &l8)G i (n

G (s) ?
b (27)

HB(S) - qug(s)




Note that in (27) the parameter 1/p represents
the ideal dc voltage gain whem all the parasitics
are zero. For the previous boost power stage
example, from (19) we get U = 1-D and the correc-
tion factor in (19) is then associated with the
effective filter network H (8). However, u

could be found from

%—-- —cTA_lh = é—X(correction factor) (28)

by setting all parasitics to zero and reducing
the correction factor to 1.

The physical significance of the ideal dc
gain y is that it arises as a consequence of the
switching action, so it cannot be associated with
the effective filter network which at dc has a
gain (actually attenuation) equal to the cor-
rection factor.

The procedure for finding the four elements
in the canonical model of Fig. 11 is now briefly
reviewed, First, from (28) the basic de-to-dc
conversion factor y is found as a function of dc
duty ratio D. Next, from the set of all transfer
functions (23) only those defined by (24) are
actually calculated. Then, by use of these
four transfer functions G4
(27) the frequency dapendent geﬁeraéors eEs)
and j(s) as well s the low-pass filter transfer
function He(s) are obtained.

The two generators could be further put
into the form

e(g) = Efl(a)
j(s) = sz(s)

where f.(0) = £,(0) = 1, such that the parameters
E and J could be identified as dc gains of the
frequency dependent functions e(s) and j(s).

Finally, a general synthesis procedure [10]
for realization of L,C transfer functions
terminated in a single load R could be used to
obtain a low-pass ladder-network circuit
realization of the effective low-pass network
He(s). Though for the second-order example of
Ho(s) this step is trivial and could be done by
inspection, for higher-order transfer functions
the orderly procedure of the synthesis [10] is
almost mandatory.

5.2 Example: Ideel Buck-boost Power Stage

For the buck-boost circuit shown in Fig. 7c

= & - a
Ve d (29)

>

acl e “wel{ v D'RC

in which the output voltage ; coincides with the
state-variable capacitance voltage v.

From (28) and (29) one obtains uy =D'/D,
With use of (29) to derive transfer functions, and
upon substitution into (27), there results

e(s) = ¥ (1 = g =2k ), Sy e

2
D p'2R (1-D) %R

(30)

He(g) - 1 3 s U™ l’:l?_
1+ s/RC + s LeC

in which V 1s the dc output voltage.

The effective filter transfer function is
easily seen as a low-pass LC filter with L =
L/D'? and with load R. The two generatorsein the
canonical model of Fig. 11 are identified by

E=0, £()z1-s2L
D 1 p' %R
(31)
J'j'*-z—, fz(B)El
(1-D)°R

We now derive the same model but this time
using the equivalent circuit transformations and
path b in the Flowchart of Fig. 1.

After perturbation and linearization of the
circuit averaged model in Fig. 7¢ (with '

R.=0) the series of equivalent circuits of Fig. 12
is obtained.

(a)

(b) Vel
Vgi\-i; =0 § R
(c)

= I*s—r d .2
B DR p LD vap
— T ———

Fig. 12. Equivalent circuit transformations of the
final circuit averaged model (a), leading
to its canonical circuit realization (c)
demonetrated on the buck-boost example of
Fig. 7c (with Bg=0 , RC-O Ya
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The objective of the transformations is to
reduce the original four duty-ratic dependent gen-
erators in Fig. 12a to just two generators (volt-
age and current) in Fig. 12c which are at the in-
put port of the model. As these circuit trans-
formations unfold, one sees 'how the frequency de-
pendence in the generators arises naturally, as
in Fig. 12b. Also, by transfer of the two gen-
erators in Fig. 12b from the secondary to the
primary of the 1:D transformer, and the inductance
1 to the secondary of the D':1 transformer, the
cascade of two ideal transformera is reduced to
the single transformer with equivalent turns
ratio D':D. At the same time the effective filter
network Le, C, R is generated.

Expressions for the elements in the canonical
equivalent circuit can be found in a similar way
for any converter configuration. Results for the
three familiar converters, the buck, boost, and
buck-boost power stages are summarized in Table I,

(D) £ Afa) 2 Ala) Le
buck E'r- .;_‘ / % F L
-0 S ¥
doos! v / A-x} -0 ! I”-E’
buek- 4~ - = v g
st | | T | R am| -0
Table 1 Definition of the elements in the

canonlcal eircuit model of Fig. 11
for the three common power stages
of Fig. 7.

1t may be noted in Table I that, for the buck-
boost power stage, parameters E and J have negative
signs, namely E = -V/DZ2 and J = ~-V/(D'2R).
However, as seen from the polarity of the ideal
D':D transformer in Fig. 12c this stage is an
inverting one. Hence, for positive input dc
voltage V,, the output dc voltage V is negative
(Vv < 0) sgnce Vst = -D/D'. Therefore E > 0,
J > 0 and consequently the polarity of the voltage
and current duty-ratio dependent generators is
not changed but is as shown in Fig. 12c. More~
over, this is true in general: regardless of
any inversion property of the power stage, the
polarity of two generators stays the same as
in Fig. 11.

5.3 Significance of the Canonical Circuit Model
and Related Generalizations

pass filtering (represented by the effective low-
pass filter network H (s)). Note also that the
current generator j(s) 4 in the canonical circuit
model, even though superfluous when the source
voltage v _(s) is ideal, is neceasary to reflect
the influence of amonideal source generator (with
some internal impedance) or of an input filter [7]

upon the behaviour of the converter, Its presence
enables one easily to include the linearized cir-
cuit model of a switching converter power stage in
other linear circuits, as the next section will
illustrate.

Another significant feature of the canon-
ical circuit model is that any ewitching dc-to-de
converter can be reduced by use of (23), (24),
(27) and (28) to this fixed topology form, at
least as far as ita input-output and control prop-
erties are concerned. Hence the posaibility
arises for use of this model to compare in an easy
and unique way various performance characteristics
of different converters. Some examples of such
comparisons are given below.

1. The filter networks can be compared with
respect to their effectiveness throughout the
dynamic duty cycle D range, because in general
the effective filter elements depend on the
steady state duty ratio D. Thus, one has the
opportunity to choose the configuration and to
optimize the size and weight.

2. Basic dc-to-dc conversion factors uy(D) and
H2(D) can be compared as to their effective
range. For some converters, traversal of the
range of duty ratio D from 0 to 1 generates

any conversion ratio (as in the ideal buck-
booat converter), while in others the conver-
sion ratio might be restricted (as in the
Weinberg converter [4], for which %<u<l].

3. 1In the control section of the canonical
model one can compare the frequency dependences
of the generators e(s) and j(s) for different
converters and select the configuration that
best facilitates stabilization of a feedback
regulator. For example, in the buck-boost con-
verter e(s) is a polynomial, containing
actually a real zero in the right half-plane,
which undoubtedly causes some stability
problems and need for proper compensation.

4, Finally, the canonical model affords a
very convenient means to store and file infor-
mation on various dc-to-dc converters in a com-
puter memory in a form comparable to Table I,
Then, thanks to the fixed topology of the
canonical circuit model, a single computer pro-
gram can be used to calculate and plot various
quantities as functions of frequency (input and
output impedance, audio susceptibility, duty
ratio to output transfer response, and so on).
Also, various input filters and/or additional
output filter networks can easily be added if
desired.

functions of complex frequency s. Hence, in
general both some new zeros and poles are intro-
duced into the duty ratio to output transfer
function owing to the switching action, in
addition to the poles and zeros of the effective
filver network (or line to output transfer fun-
ction). However, in special cases, as in all
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those shown in Table I, the frequency dependence
might reduce simply to polynomials, and even fur-
ther it might show up only in the voltage
dependent generators (as in the boost, or buck-
boost) and reduce to a constant (f,(s) = 1)

for the current generator. Nevertgeless, this
does not prevent us from modifying any of these
Circuits in a way that would exhibit the general
Tesult == introduction of both additional zeros as
well as poles.

Let us now illustrate this general result on
a simple modification of the familiar boost cir-
cuit, with & resonant Ll,c1 circuit in series with
the input inductance L, as shown in Fig. 13.

L A -
IR L1 D}

T

WORR:

At

Modified boost circuit as an illustration
of general frequency behaviour of the
generators in the canonical circuit model
of Fig. 11.

By introduction of the canonical circuit
model for the boost power stage (for the circuit
to the right of cross section AA') and use of data
from Table I, the equivalent averaged circuit
model of Fig. l4a is obtained. Then, by applica-
tion of the equivalent circuit transformation as
outlined previously, the averaged model in the
canonical circuit form is obtained in Fig. 14b.
As can be seen from Fig. 14b, the voltage
generator has .a double pole at the resonant fre-
quency Wwy= 1/¥LjC; of the parallel L;,C, net-
work. However, the effective filter transfer
function has a double zero (null in magnitude) at
Precisely the same location such that the two

@ 4 V|I|=§,L—}a _ »

I

(b) sL _sL.Jp?
Vi~ o= Troneld e
WopR- Lo ) Lo LID® g6

L 5 = e e

ar

Fig. 14. Equivalent circuit transformation leading
to the canonical circuit model (b) cf the

circuit in Fig, 13.

pairs effectively cancel. Hence, the resonant
null in the magnitude response, while present in
the line voltage to output transfer function, ig
not seen in the duty ratio-to output transfer func-
tion. Therefore, the positive effect of rejection
of certain input frequencies around the resonant
frequency w_ is not accompanied by a detrimental
effect on the loop gain, which will not con-

tain a null in the magnitude response.

This example demonstrates yet another impor-
tant aspect of modelling with use of the averaging
technique. Instead of applying it directly to the
whole circuit in Fig. 13, we have instead imple-
mented it only with respect to the storage element
network which effectively takes part in the switch-
ing action, namely L, C, and R. Upon substitution
of the switched part of the network by the averaged
circuit model, &ll other linear circuits of the
complete model are retained as they appear in the
original circuit (such as L;,C; in Fig. léa).
Again, the current generator in Fig. l4a is the
one which reflects the effect of the input resonant
circuit,

In the next section, the same property is
clearly displayed for a closed-loop regulator-
converter with or without the input filter.

6. SWITCHING MODE REGULATOR MODELLING

This section demonstrates the ease with
which the different converter circuit models
developed in previous sections can be incorporated
into more complicated systems such as a switching-
mode regulator. In addition, a brief discussioen
of modelling of modulator stages in general is
included, and a complete general switching-mode
regulator circuilt model is given.

A general representation of a switching-mode
regulator is shown in Fig. 15. For concreteness,
the switching-mode converter is represented by a
buck-boost power stage, and the input and possible
additional output filter are represented by a

input switching mode output
filter canverter filter

'—[TJT?\J . ) J. h l .:f
nEIERIRL

Irunrvgulah-d input regulated output —

PR > pawer flow
v I T e T T e R e = b
=i | NI weTwoRk I
; 1—<’///]_*f : I
diti S | “ E
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input and output filters. The block dia-
gram is general, and single-section Lc
filters and a buck-boost converter are
shown as typicel realizatioms.



ow-pass LC configuration, but the
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single-2e es to any converter and any
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discussion app
filter configuration.

difficulty in analysing the switch-
modzhﬁegﬁiztor lies .in the modelling of its non-

e art the switching-mode converter. How-
11nearvz ha;e succeeded in previous sectiloms in
g;:;ining the small-signal low-frequency circuit

del of any rwo-state" switching dc-to—dc con-
= operating in the continuous conduction
ve;terin the cancnical circuit form. The output
?ili;r {s shown separately, to emphasize the fact
that in averaged modelling of the switching-mode
converter only the storage elements which are
actually involved in the switching action need
pe taken into account, thus minimizing the effort in

its modelling.

The next step in development of the regula-
tor equivalent circult is to obtain a model for
the modulator. This is easily done by writing an
expression for the essential function of the modu
lator, which is to convert an (analog) control
voltage V. to the switch duty ratio D. This ex-
pression can be written D = V {Vm in which, by
definition, V, 1s the range of control signal
required to sweep the duty ratio over its full
range from O to 1. A small variation v, super-
imposed upon V. therefore produces a correspon-
ding variation @ = ¥./Vy in D, which cen be
generalized to account for a nonuniform frequency
response as

A fm(s) ~
d = = §
Vm c

in which fm(o) = 1. Thus, the control voltage to
duty ratio small-signal transmission character-
istic of the modulator can be represented in gen-
eral by the two parameters V, and fj(s), regard-
less of the detailed mechanism by which the modu-
lation is achieved. Hence, by substitution for
d from (32) the two generators in the canonical
circuit model of the switching converter can be
expressed in terms of the ac control voltage Gb,
and the resulting model is then a linear ac equi-
valent circuit that represents the small-signal
transfer properties of the nonlinear processes
in the modulator and converter.

(32)

It remains simply to add the linear ampli-
fier and the input and output filters to obtain
the ac equivalent circuit of the complete closed-
loop regulator as shown in Fig. 16.

The modulator transfer function has been in-
corporated in the generator designations, and the
generator symbol has been changed from a circle
to a square to emphasize the fact that, in the
closed-loop regulator, the generators nmo longer
are independent but are dependent on another sig-
nal in the same system. The connection from
point Y to the error amplifier, via the reference
voltage summing node, represents the basic vol-
tage feedback necessary to establish the aystem
28 a voltage regulator., The dashed connection
from point z indicates a possible additional
feedback sensing; this second feedback signal may

Vgt oy converter and modulator model N
Y+y
L.s v+
000 - o
Rs Ls
==y C°:: =}
G Z9
£ T Vetd -
e(s)= T f(s)f ()% s metm
m

J
)= S (5)5,

equivalent
circuit for the switching-mode regulator
of Fig. 15.

Fig. 16. General small-signal ac

be derived, for example, from the inductor flux,
inductor current, or capacitor current, as in
various "two-loop" configurations that are in use

[9].

Once again the current generator in Fig. 16
is responsible for the interaction between the
switching-mode regulator-converter and the input
filter, thus causing performance degradation and/
or stability problems when an arbitrary input
filter is added. The problem of how properly to
design the input filter is treated in detail in

[71.

As shown in Fig. 16 we have succeeded in ob-
taining the linear circuit model of the complete
switching mode-regulator. Hence the well-known
body of linear feedback theory can be used for
both analysis and design of this type of regula-
tor.

7. CONCLUSIONS

A general method for modelling power stages
of any switching dc-to-dc converter has been
developed through the astate-space approach. The
fundamental step is in replacement of the state-
space descriptions of the two switched networks
by their average over the single switching period
T, which results in a single continuous state-
space equation description (3) designated the
basic averaged state-apace model. The essential
approximations made are indicated in the Appen-
dices, and are shown to be justified for any
practical dc-to-dc switching converter,

The subsequent perturbation and lineari-
zation step under the small-signal assumption
(12) leads to the final state-space averaged
model given by (13) and (l4). These equations
then serve as the basis for development of the
most important qualitative result of this work,
the canonical circuit model of Fig. 11. Different
converters are represented simply by an appropri-
ate set of formulas ((27) and (28)) for four
elements in this general equivalent circuit, Be-
sides its unified description, of which several
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examples are given in Table 1, one of the advan-
tages of the canonical circuit model is that
various performance characteristics of different
switching converters can be compared in a quick
and easy manner,

Although the state-space modelling approach
has been developed in this paper for two-state
switching converters, the method can be extended
to multiple-state converters. Examples of three-
state converters are the familiar buck, boost,
and buck-boost power stages operated in the dis-
continuous conduction mode, and dc-to-ac switch-
ing inverters in which a specific output wave-
form is "assembled" from discrete segments are
examples of multiple-state converters.

In contrast with the state-gpace modelling
approach, for any particular converter an alter-
native path via hybrid modelling and circuit
transformation could be followed, which also ar-
rives first at the final circuit averaged model
equivalent of (13) and (14) and finally, after
equivalent circuit transformations, again arrives
at the canonical circuit model.

Regardless of the derivation path, the
canconical circuit model can easily be incorpora-
ted into an equivalent circuit model of a com-
plete switching regulator, as illustrated in Fig.
16.

Perhaps the most important consequence of
the canonical circuit model derivation via the
general state-space averaged model (13), (14),
(23) and (24) is its prediction through (27) of
additional zeros as well as poles in the duty
ratio to output transfer function. In addition
frequency dependence is anticipated in the duty
ratio dependent current generator of Fig. 11,
even though for particular converters considered
in Table I, it reduces merely to a constant,
Furthermore for some switching networks which
would effectively involve more than two storage
elements, higher order polynomials should be ex-
pected in fy(s) and/or fz(a) of Fig. 1l.

The insights that have emerged from the
general state-space modelling approach suggest
that there is a whole field of new switching dc-
to-de converter power stages yet to be conceived,
This encourages a renewed search for innovative
circuit designs in a field which is yet young,
and promises to yield a significant number of in-
ventions in the stream of its full development.
This progress will naturally be fully supported
by new technologies coming at an ever increasing
pace. However, even though the efficiency and
performance of currently existing converters will
increase through better, faster transistors, more
ideal capacitors (with lower esr) and so on, it
will be primarily the responsibility of the cir-
cuit degigner and inventor to put these components
to best use in an optimal topology. Search for
new circuit configurations, and how best to use
present and future technologies, will be of prime
importance in achieving the ultimate goal of near-
ideal generel switching dc-to-dec converters,
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