

General information – OEM Circulators

Circulator designation

Wilo designation

General information – OEM Circulators

Circulator connection

Circulating circulator threaded connection

	WILO circulator's section designation	12	15	20	25	30
Designation	SALMSON circulator's section designation	12	15	20	25	32
A	Circulator's thread diameter (inch) – G	3/4"	1"	1¼"	1½"	2"
	Circulator's thread diameter (mm)	26,44	33,25	41,91	47,8	59,61
Ŧ	Pipe's diameter (inch) – Rp		1/2"	3/4"	3/4" or 1"	1¼"
I	Pipe's designation (mm)		15/21	20/27	20/27 or 26/34	33/42

Recommendations for hydraulic connections (cast iron or bronze or composite pump housing)

> material for flat gasket type EPDM 70 shores

6

General information – OEM Circulators

Abbreviations and what they stand for

Abbreviation	Meaning
1/min	Revolutions per minute (rpm)
°dH	Degree of German water hardness, unit for assessing water hardness
Δp-c	Control mode for constant differential pressure
Δp-v	Control mode for variable differential pressure
External controlled pump	Pump regulated by external system
Н	Delivery head in m (1 m = 0.098 bar)
HVAC	Heating, Ventilation and Air Conditioning
PN	Nominal pressure. The pump has been validated at the defined pressure with security coefficient
Q	Volume flow in m ³ /h
Remote control	The speed selection of the pump can be defined by an external system
Stand alone or self controlled pump	Pump with integrated regulation (generally Δp - c and Δp - v)
TF	Normative water temperature classification
VDI 2035	VDI guideline for the prevention of damage in hot water heating installations

7

Specific functions

Self regulating pumps provide specific features:

In Δp -c control mode, the electronic module keeps the differential pressure generated by the pump constant at the differential pressure set point HS over the permissible volume flow range.

In Δp -v control mode, the electronic module changes the differential pressure set point to be maintained by the pump in linear fashion between Hs and 1/2Hs. The differential pressure set point value varies with the volume flow Q.

The choice of the control mode must be made by gualified personnel during installation according to pipe losses characteristics.

Air venting routine

An air venting routine is implemented to help the installer to drain air out of the heating installation. This routine can easily be selected turning the red button to the middle position. It runs 10 minutes by alternating low and high speeds of the pump. At the end of the process, the pump automatically switches to a preset speed. The installer can then select the requested setting with the red button.

PWM regulation

Interface specification Signal polarity : both PWM frequency range: 150 Hz to 4 kHZ

PWM voltage range :

	Min	Max
UH	5V	15V
UL	0V	0,5V

Required control current : 4 mA @ 5V

7.5mA @ 15V

Description: the PWM module receives the signal from the boiler controller and switches the circulator into one of the power stage or rotation speed. There is no possibility to read out any information from the module (unidirectional interface).

Signal logic	$0\% PWM \Rightarrow Maximum stage or speed$
heating	100% PWM \Rightarrow circulator off (stand-by)
Signal logic solar	100% PWM \Rightarrow Maximum stage or speed 0% PWM \Rightarrow circulator off (stand-by)

See transfer curves in the electronic and high efficiency circulators pages.

General information – OEM circulators

Operating modes for PWM

- > Power-On:
 - The circulator starts with the maximum stage
 - After stable running, the circulator switches into the stage selected by PWM signal
- > PWM changing :
 - The circulator switches directly to the selected stage

Type PWM-X

For the model PWM–X, the electronics switches between 24 predefined stages according to the following transfer curve

For the model PWM–C, the electronic control provides one of the 3 hydraulic curves of the standard circulator

Description :

The PWM–C module receives the signal from the boiler controller and switches the circulator into one of the 3 power stage of the standard circulator.

The switching points are fixed.

The variant C/A has been created especially for the boiler controller type Honeywell MCBA14xxD-HR7A

73 40.7

Type PWM-X

0,5

1

Head (m) 4 3 -2 · 1 0

RS../6 PWM-X

RSL 15/6 Ku PWM-X

1,5

Water flow (m³/h)

2

2,5

3

RS 25/7 PWM-X

	n 1/min		P1	I
			W	A
RS/6 PWM–X	max	2200	92	0.40
RSL 15/6 Ku PWM-X	min	400	31	0.22
	max	2750	124	0.54
RS/7 PWM-X	min	450	40	0.29

Subject to cl

		n	P1	l I
		1/min	W	А
RS/6 PWM-X	max	2200	92	0.40
RSL 15/6 Ku PWM-X	min	400	31	0.22
	max	2750	124	0.54
RS/7 PWIM-A	min	450	40	0.29
RS/7 PWM-X	max min	2750 450	<u>124</u> 40	0.54 0.29

77 +2

73 *1

З

56 ±I

Asynchronous circulators for sanitary application

Type : Z20

Z20/5

Water flow (m³/h)

Z20/6

Water flow (m³/h)

	n I/m	I	P1 W	I A	Capacitor μf/VDB
	max	2150	89	0,39	
Z20/5		1600	66	0,29	2,6/400
	min	1050	45	0,20	
	max	2200	99	0,41	
Z20/6		1900	74	0,32	2,6/400
	min	1200	50	0,22	

	Thread	Dimensions					
	G	10	13	11	а	b2	b4
Z20/5	- "	140	70	06.6	22.2	03.5	76
Z20/6	Π.	140	70	96,6	32,2	92,5	/6

Subject to change 09/2010 WILO INTEC