

INTEL
i8051AH-BASIC

microcontroller with MCS BASIC-52 interpreter

User’s Manual

© INTEL CORPORATION 1986

MCS BASIC-52 Users Manual

 2

MCS BASIC-52 Users Manual

 3

Table of Contents
CHAPTER 1: Introduction .. 6

1.1 Introduction to MCS BASIC-52.. 6
1.2 Getting Started ... 6
1.3 What Happens After Reset? ... 7
1.4 Definitions Of Terms... 8
1.5 What’s the Difference Between V1.0 AND V1.1.. 11

CHAPTER 2: Description of Commands .. 14
2.1 RUN... 14
2.2 CONT .. 14
2.3 LlST.. 15
2.4 LlST#... 15
2.5 LlST@ (Version 1.1 only) .. 15
2.6 NEW .. 16
2.7 NULL... 16

CHAPTER 3: Description of EPROM File Commands.. 17
3.1 RAM and ROM .. 17
3.2 XFER .. 18
3.3 PROG... 18
3.4 PROG1 and PROG2... 18
3.5 FPROG, FPROG1, AND FPROG2 ... 19
3.6 PROG3. PROG4, FPROG3, FPROG4 (Version 1.1 only) .. 19
3.7 PROG5, PROG6, FPROG5, FPROG6 (Version 1.1 only) .. 19

CHAPTER 4: Description of Statements ... 21
4.1 BAUD... 21
4.2 CALL.. 21
4.3 CLEAR... 22
4.4 CLEARI, CLEARS... 22
4.5 CLOCK1 and CLOCK0 ... 22
4.6 DATA—READ—RESTORE .. 23
4.7 DIM.. 24
4.8 DO—UNTIL ... 24
4.9 DO—WHILE .. 25
4.10 END ... 25
4.11 FOR—TO—{STEP}—NEXT .. 26
4.12 GOSUB—RETURN.. 27
4.13 GOTO.. 28
4.14 ON GOTO, ON GOSUB... 28
4.15 IF—THEN—ELSE.. 29
4.16 INPUT.. 30
4.17 LET... 31
4.18 ONERR.. 32
4.19 ONEX1 .. 32
4.20 ONTIME.. 33
4.21 PRINT or P. (? Version 1.1 only) .. 34
4.22 PRINT# or P.# (?# Version 1.1 only) ... 36
4.23 PH0., PH1., PH0.#, PH1.# ... 36

MCS BASIC-52 Users Manual

 4

4.24 PRINT@, PH0.@, PH1.@ (Version 1.1 only) ... 37
4.25 PUSH ... 37
4.26 POP.. 38
4.27 PWM.. 38
4.28 REM ... 39
4.29 RETI ... 39
4.30 STOP.. 39
4.31 STRING ... 40
4.32 UI1 and UI0 (USER INPUT) ... 41
4.33 UO1 and UO0 (USER OUTPUT) ... 41
4.34 IDLE (Version 1.1 only)... 42
4.35 RROM (Version 1.1 only).. 42
4.36 LD@ and ST@ (Version 1.1 only) ... 43
4.37 PGM... 43

CHAPTER 5: Description of Arithmetic/Logic Operators and Expressions..................................... 46
5.1 Dual Operand Operators.. 46
5.2.1 Unary Operators—General Purpose.. 47
5.2.2 Unary Operators—Log Functions.. 48
5.2.3 Unary Operators—Trig Functions.. 48
5.3 Understanding Precedence Of Operators.. 49
5.4 How Relational Expressions Work.. 50

CHAPTER 6: Description of String Operators ... 51
6.1 What Are Strings? .. 51
6.2 The ASC Operator ... 51
6.3 The CHR Operator .. 53

CHAPTER 7: Special Operators ... 54
7.1 Special Function Operators .. 54
7.2 Examples Of Manipulating Special Function Values.. 58
7.3 System Control Values .. 58

CHAPTER 8: Error Messages, Bells, Whistles, and Anomalies .. 60
8.1 Error Messages ... 60
8.2 Disabling control-C.. 62
8.3 Implementing "Fake DMA" .. 62
8.4 RUN TRAP Option (Version 1.1 Only) ... 63
8.5 Anomalies ... 63

CHAPTER 9: Assembly Language Linkage.. 65
9.1 Overview .. 65
9.2 General Purpose Routines .. 66
9.3 Unary Operators .. 70
9.4 Special Operators... 71
9.5 Dual Operand Operators.. 73
9.6 Added Link Routines to Version 1.1 ... 75
9.7 Interrupts .. 79
9.8 Resource Allocation ... 80

CHAPTER 10: System Configuration .. 81
10.1 Memory/Hardware Configuration .. 81
10.2 EPROM Programming Configuration/Timing .. 83

MCS BASIC-52 Users Manual

 5

10.3 Serial Port Implementation... 87
CHAPTER 11: Reset Options (Version 1.1 Only)... 88
CHAPTER 12: Command/Statement Extensions (Version 1.1 Only).. 93
CHAPTER 13: Mapping User Code Memory... 96
APPENDIX A .. 98

A.1 Memory Usage (Version 1.0) ... 98
A.2 Memory Usage (Version 1.1) ... 100
A.3 Using the PWM Statement .. 101
A.4 Baud Rates and Crystals... 103
A.5 Quick Reference.. 104
A.7 Floating Point Format... 107
A.8 Storage Allocation ... 107
A.9 Format Of an MCS BASIC-52 Program.. 108
A.10 Answers to a Few Questions ... 110
A11 Pin-Out List... 111
A.12 References .. 112

MCS BASIC-52 Users Manual

 6

CHAPTER 1: Introduction

1.1 Introduction to MCS BASIC-52

Welcome to MCS BASIC-52. This program functions as a BASIC interpreter occupying 8K of
ROM in INTEL's 8052AH microcontroller. MCS BASIC-52 provides most of the features of "stan-
dard" BASICS, plus many additional features that apply to control environments and to the archi-
tecture of the 8052AH.

The design goal of MCS BASIC-52 was to develop a software program that would make it easy
for a hardware/software designer to interact with the 8052 device; but, at the same time not limit
the designer to the slow and sometimes awkward constructs of BASIC. This program is not a "toy"
like many of the so called “tiny BASICs”. It is a powerful software tool that can significantly reduce
the design time of many projects. MCS BASIC-52 is ideal for so called imbedded systems, where
terminals are not attached to system, but the system controls and manipulates equipment and
data.

MCS BASIC-52 offers many unique hardware and software features, including the ability to
store and execute the user program out of an EPROM, the ability to process interrupts within the
constructs of a BASIC program, plus an accurate real time clock. In addition, the arithmetic rou-
tines and l/O routines contained in MCS BASIC-52 can be accessed with assembly language CALL
routines. This feature can be used to eliminate the need for the user to write these sometimes diffi-
cult and tedious programs.

All of the above are covered in this document. This is NOT a "How to Write Basic Programs"
manual. Many excellent texts on this subject have been produced. Your local computer store can
recommend many such texts.

The descriptions of many of the statements in this manual involve rather detailed discussions
that relate to interfacing MCS BASIC-52 to assembly language programs. If the user is not inter-
ested in using assembly language with MCS BASIC-52 these discussions may be ignored. If you are
only interested in programming the MCS BASIC-52 device in BASIC, you can treat all statements
the same way they would be in any standard BASIC interpreter.

In reading this manual, you will find that some information may he repeated two or three
times. This is not an accident. Years of experience have proven that one of the most frustrating
experiences one encounters with manuals is trying to find a particular piece of information that the
reader knows is in the manual, but can't remember where.

1.2 Getting Started

If you are like most engineers, technicians, hobbyists and humans, and don't like to read manu-
als, this section is for you. The purpose of this section is to get you off on the right foot. If you are
in the High Anxiety Mode and just want to see if the darn chip works, wire the device in the
minimum hardware configuration as suggested in the Hardware Configuration chapter of this
manual, apply power, and watch what happens. NOTHING! That's because after power is applied
to the MCS BASIC-52 device, the program initializes the 8052AH hardware and goes into an
AUTO-BAUD search routine. You must touch the space bar on the serial input device in order to
get MCS BASIC-52 to sign on. The message that will appear is *MCS-51 BASIC Vx.x*. If a space

MCS BASIC-52 Users Manual

 7

character is not the first character sent to the MCS BASIC-51 device after reset, you can spend a lot
of time trying to figure out what went wrong. So do yourself a favor, read this section and touch
the space bar before you call your local Intel Field Applications Engineer. We received a number of
questions asking how the AUTO-BAUD search routine worked. As a result this routine is listed in
Chapter 11 of this manual.

1.3 What Happens After Reset?

After Reset, MCS BASIC-52:

1) Clears the internal 8052AH memory

2) Initializes the internal registers and pointers

3) Tests, clears, and sizes the external memory

BASIC then assigns the top of external random access memory to the system control value
MTOP and uses this number as the random number seed. BASIC assigns the default crystal value,
11.0592 Mhz, to the system control value-XTAL and uses this default value to calculate all time
dependent functions, such as the EPROM programming timer and the interrupt driven real time
clock. Finally. BASIC checks external memory location 8000H to see if the baud rate information is
stored. If the baud rate is stored, MCS BASIC-52 initializes the baud rate generator (the 8052AH's
special function register—T2CON) with this information and signs on. If it isn't stored, BASIC
interrogates the serial port input and waits for a space character to be typed. This sounds like a lot,
but on the 8052AH, it doesn't take much time.

MCS BASIC-52 initializes the 8052AH's special function registers, TMOD, TCON, and T2CON
with the following values:

• TCON - 244 (0F4H)
• TMOD - 16 (10H)
• T2CON - 52 (34H)
After Reset the console device should display the following:

MCS-51(tm) BASIC Vx.x
READY

To see if everything is OK after Reset, type the following:

>PRINT XTAL, TMOD, TCON, T2CON

(BASIC should respond)

11059200 16 244 52

If it does, everything is working properly. If it does not make sure that the external memory, the
serial port, and the oscillator are connected and working. Hardware debug begins here.

In the Appendix of this manual is a Quick Reference Guide. It provides a short description of all
of the commands and statements implemented in MCS BASIC-52 You might want to use this sec-
tion to gain a quick understanding, of the MCS BASIC-52 software package. Those of you who are
familiar with the BASIC language will notice that most of the statements and commands used in
MCS BASIC-52 are "standard," so getting started should not be a problem.

MCS BASIC-52 Users Manual

 8

1.4 Definitions Of Terms

Commands: MCS BASIC-52 operates in two modes, the command or direct mode and the inter-
preter or RUN mode. MCS BASIC-52 commands can only be entered when the processor is in the
command or direct mode. MCS BASIC-52 takes immediate action after a command has been
entered. This document will use the terms run mode and command mode to refer to the two dif-
ferent modes of operation.

Statements: A BASIC program is comprised of statements. Every statement begins with a line
number, followed by the statement body, and terminated with a Carriage Return (cr), or a colon (:)
in the case of multiple statements per line. Some statements can be executed in the command
mode, others cannot. The Description Of Statements section of this manual describes whether a
statement can be executed in the command mode or only in the run mode.

There are three general types of statements in MCS BASIC-52: assignments, input/output, and
control. The Description Of Statements section of this manual explains what type is associated with
each statement.

• Every line in a program must have a statement line number ranging between 0 and 65535
inclusive.

• Statement numbers are used by BASIC to order the program statements sequentially.
• In any program, a statement number can be used only once.
• Statements need not be entered in numerical order, because BASIC will automatically order

them in ascending order.
• A statement may contain no more than 72 characters in Version 1.0 and no more than 79 in

Version 1.1.
• Blanks (spaces) are ignored by BASIC and BASIC automatically inserts blanks during LIST.
• More than one statement can be put on a line, if separated by a colon (:), but only one state-

ment number is allowed per line.
Format statements: Format Statements may only be used within the PRINT statement. The for-

mat statements include TAB([expr]), SPC([expr]), USlNG(special symbols), and CR (carriage return
with no line feed). Details of the format statements are provided in the description of the PRINT
statement section of this manual.

Data format: The range of numbers that can be represented in MCS BASIC-52 is +/- 1E-127 to
+/-.99999999E+127. There are eight digits of significance in MCS BASIC-52. Numbers are internally
rounded to fit this precision. Numbers may be entered and displayed in four formats: integer,
decimal, hexadecimal, and exponential.

EXAMPLE: 129, 34.98, 0A6EH, 1.23456E + 3

Integers: In MCS BASIC-52, integers are numbers that ranges from 0 to 65535 or 0FFFFH. All
integers can be entered in either decimal or hexadecimal format and all hexadecimal numbers
must begin with a valid digit (e.g. the number A000H must be entered 0A000H). When an operator,
such as .AND. requires an integer, MCS BASIC-52 will truncate the fraction portion of number so it
will fit the integer format. All line numbers used by MCS BASIC-52 are integers. This document
will refer to integers and line numbers, respectively in the following manner: [integer]—[In num]

Note: Throughout this document the brackets [] are used only to indicate an integer, constant,
etc. They are NOT entered when typing the actual number or variable.

MCS BASIC-52 Users Manual

 9

Constants: A constant is a real number that ranges from +-1E-127 to + .99999999E+127. A con-
stant, of course, can be an integer. This document will refer to constants in the following manner:
[const]

Operators: An operator performs a pre-defined operation on variables and/or constants.
Operators require either one or two operands. Typical two operand or dyadic operators include
ADD (+), SUBTRACT (-), MULTIPLY (*), and DIVIDE (/). Operators that require only one operand
are often referred to as unary operators. Some typical unary operators are SIN, COS, and ABS.

Variables: In Version 1.0 of MCS BASIC-52 a variable could be defined as either a letter, (i.e. A,
X, I), a letter followed by a number, (i.e. Q1, T7, L3), a letter followed by a one dimensioned expres-
sion, (i.e. J(4), G(A+6), I(10*SIN(X))), or a letter followed by a number followed by a one dimen-
sioned expression (i.e. A1(8), P7(DBY(9)), W8(A+B). In Version 1.1 variables can be defined in the
same manner as in Version 1.0, however variables may also contain up to 8 letters or numbers
including the underline character. This permits the user to use a more descriptive name for a given
variable. Examples of valid variables in Version 1.1 of MCS BASIC-52 are as follows:

FRED VOLTAGE1 I_11 ARRAY(ELE_1)

When using the expanded variable names available in Version 1.1 of MCS BASIC-52 it is
important to note that 1) It takes longer for MCS BASIC-52 to process these expanded variable
names and 2) The user may not use any keyword as part of a variable name (i.e. the variables
TABLE and DIET could not be used because TAB and IE are reserved words). BAD SYNTAX errors
will be generated if the user attempts to define a variable that contains a reserved word.

Variables that include a one dimensioned expression [expr] are often referred to as dimensioned
or arrayed variables. Variables that only involve a letter or a letter and a number are called scalar
variables. The details concerning dimensioned variables are covered in the description of the
statement routine DIM. This document will refer to variables as: [var].

MCS BASIC-5 allocates variables in a "static" manner. That means each time a variable is used,
BASIC allocates a portion of memory (8 bytes) specifically for that variable. This memory cannot be
de-allocated on a variable by variable basis. That means if you execute a statement like Q = 3, later
on you cannot tell BASIC that the variable Q no longer exists so, please "free up" the 8 bytes of
memory that belong to Q.

Sorry, it doesn't work this way. The only way the user can clear the memory that is allocated to
variables is to execute a CLEAR statement. This Statement "frees" all memory allocated to variables.

Important note: Relative to a dimensioned variable, it takes MCS BASIC-52 a lot less time to find
a scalar variable. That's because there is no expression to evaluate in a scalar variable. So, if you
want to make a program run as fast as possible, use dimensioned variables only when you have to.
Use scalars for intermediate variables, then assign the final result to a dimensioned variable.

Expressions: An expression is a logical mathematical formula that involves operators (both
unary and dyadic), constants, and variables. Expressions can be simple or quite complex, i.e.
12*EXP(A)/100, H(I)+55, or (SIN(A)*SIN(A)+COS(A)*COS(A))/2. A "stand alone" variable [var] or
constant [const] is also considered an expression. This document will refer to expressions as: [expr].

Relational expressions: Relational expressions involve the operators EQUAL (=), NOT EQUAL
(<>), GREATER THAN (>), LESS THAN (<), GREATER THAN OR EQUAL TO (>=) and LESS
THAN OR EQUAL TO (<=). They are used in control statements to "test" a condition (i.e. IF A <
100 THEN . . .). Relational expressions ALWAYS REQUIRE TWO OPERANDS. This document will
refer to relational expressions as: [rel expr].

MCS BASIC-52 Users Manual

 10

Special function operators: Virtually all of the special function registers on the 8052AH can be
accessed by using the special function operators. The exceptions are PORTS 0, 2 and 3 and non-I/O
associated registers such as ACC, B, and PSW. Other special function operators are XTAL and
TIME. Details of the special function operators are covered in the section special function opera-
tors.

System control values: The system control values include the following: LEN (which returns
the length of the program), FREE (which designates how many bytes of RAM are not used that are
allocated to BASIC), and MTOP (which is the last memory location that is assigned to BASIC).
Details of the system control values are covered in the section system control values.

Stack structure: MCS BASIC-52 reserves the first 512 bytes of external data memory to imple-
ment two "software" stacks. These are the control stack and the arithmetic stack or argument stack.
Understanding how the stacks work in MCS BASIC-52 is not necessary if the user wishes only to
program in BASIC. However, understanding the stack structure is necessary if the user wishes to
link MCS BASIC-52 to assembly language routines. The details of how to link to assembly language
are covered in the Assembly Language Linkage section of this manual.

Control stack—The control stack occupies locations 96 (60H) through 254 (0FEH) in external
ram memory. This memory is used to store all information associated with loop control (i.e. DO-
WHILE, DO-UNTIL, and FOR-NEXT) and basic subroutines (GOSUB). The stack is initialized to
254 (0FEH) and "grows down."

Argument stack—The argument stack occupies locations 301 (12DH) through 510 (1FEH) in
external ram memory. This stack stores all constants that MCS BASIC-52 is currently using. Opera-
tions such as ADD, SUBTRACT, MULTIPLY, and DIVIDE always operate on the first two numbers
on the argument stack and return the result to the argument stack. The argument stack is initial-
ized to 510 (1FEH) and "grows down" as more values are placed on the argument stack. Each
floating point number placed on the argument stack requires 6 bytes of storage.

Internal stack—The stack pointer on the 8052AH (special function register, SP) is initialized to 77
(4DH). The 8052AH's stack pointer "grows up" as values are placed on the stack. In MCS BASIC-52
the user has the option of placing the 8052AH's stack pointer anywhere (above location 77) in
internal memory. The details of how to do this are covered in the Assembly Language Linkage
section of this manual.

Line editor: MCS BASIC-52 contains a minimum level line editor. Once a line is entered the user
may not change the line without re-typing the line. However, it is possible to delete characters
while a line is in the process of being entered. This is done by entering a RUBOUT or DELETE
character (7FH). The RUBOUT character will cause the last character entered to be erased from the
text input buffer. Additionally, a control-D will cause the entire line to be erased. In Version 1.1 of
MCS BASIC-52, Control-Q (X-ON) and Control S (X-OFF) recognition have been added to the
serial port. The user is cautioned not to accidentally type a Control-S when entering information
because the MCS BASIC-52 will no longer respond to the console device. Control-Q is used to
bring the console device back to life after Control-S is typed.

Note: In this document a carriage return is indicated by the symbol (cr). The carriage return is
the RETURN key on most keyboards.

MCS BASIC-52 Users Manual

 11

1.5 What’s the Difference Between V1.0 AND V1.1

Thanks to feedback from many of the users of MCS BASIC-52, a number of changes and addi-
tions have been made to Version 1.1. All of these changes and additions were made to enhance the
usefulness of the product and yet retain 100% compatibility, well almost 100% compatibility with
the original version. To make things simple, all of the changes will be mentioned here and a refer-
ence will be provided as to where the reader of this manual may obtain more information about
the change or addition.

The only change that has been made to V1.1 that is not compatible with V1.0 is with the
IF_THEN_ELSE statement when used with multiple statements per line. In V1.0, the following two
examples would function in the same manner.

EXAMPLE 1:

10 IF A=B THEN C=A : A=A/2 : GOTO 100
20 PRINT A

EXAMPLE 2:

10 IF A=B THEN C=A
12 A=A/2
14 GOTO 100
20 PRINT A

They function in the same manner because V1.0 treats the delimiter (:) exactly the same as a car-
riage return (cr) in every case. However, V1.1 executes the remainder of the line if and only if the
test A = B proves to be true. This means in EXAMPLE 1 IF A did equal B, V1.1 would then set
C=A, then set A = A/2, then execute line 100. IF A did not equal B, V1.1 would then PRINT A and
ignore the statements C=A: A=A/2: GOTO 100. V1.1 will execute EXAMPLE 2 exactly the same
way as V1.0. This same logical interpretation holds true for the ELSE statement as well. This exam-
ple dictates a simple rule for maintaining IF_THEN_ELSE compatibility between the two versions.
IF THE DELIMITER (:) IS NOT USED IN AN IF_THEN_ELSE STATEMENT, V1.0 AND V1.1 WILL
TREAT THE STATEMENT S IN THE SAME MANNER!!

This change was made because most users of MCS BASIC-52 felt that the V1.1 interpretation of
this statement was more useful because fewer GOTO statements need be employed in a typical
program.

Additionally, V1.1 accepts inputs in either lower or upper case, whereas V1.0 converted lower
case to upper case. V1.1 will however, convert keywords from lower case to upper case during the
LlSTing of a program. Finally, MCS BASIC-52 V1.1 runs between 2% and 10% faster than V1.0.
Typically, this should not cause any problems.

As far as the user is concerned, these are the only changes that may affect the operation of a
typical program. Now, on to the additions.

ADDITIONS TO MCS BASIC-52 V1.1:

• X-ON (control Q) and X-OFF (control S) have been added. These permit the user to "stop"
(control S) and start (control Q) the display of characters during a LIST or PRINT. This fea-
ture also permits synchronization with external l/O (input/output) devices. The X-OFF
(control S) functions on a line by line basis, not on a character by character basis.

• Five new statements have been added. These include IDLE, LD@, ST@, PGM, and RROM.
Details of these statements are listed under the Description Of Statements section of this
manual.

MCS BASIC-52 Users Manual

 12

• Six new Reset options have been provided. They permit the user to assign the top of mem-
ory (MTOP) during reset, and allow the user to write specific Reset programs in assembly
language. Additionally, they provide an option where the memory WILL NOT be cleared
during Reset. More information on the specific Reset options is detailed in the Descriptions
Of EPROM File Commands under PROGI, PROG2, PROG3, PROG4, PROG5, and PROG6
commands and in Chapter 11 of this manual.

• The timing of the EPROM programming algorithm has been significantly relaxed between
the various strobes required for the EPROM programming function. This relaxed timing
permits the user to program devices such as the 8751H and the 8748/9 using the EPROM
programming capabilities of the MCS BASIC-52 device. Details of the timing changes are in
Chapter 10 of this manual.

• During EPROM programming, the INT0/DMA REQUEST pin of the MCS BASIC-52 device
is treated as a ready input pin. This allows for a simple direct connection to EEPROM
devices such as the 2817A. For normal EPROM programming, INT0 must be kept high or
the programming hangs up. Details concerning the use of EEPROMs with the MCS BASIC-
52 device are provided in Chapter 10 of this manual.

• A RUN TRAP option has been provided. This option traps the MCS BASIC-52 interpreter in
the program RUN mode and will not permit the user to exit this mode. Details of this option
are covered in Chapter 8.4 of this manual.

• A user statement/command expansion option has been provided. This permits the user to
easily add new or custom statements and commands to MCS BASIC-52. Details of this
option are covered in Chapter 12 of this manual.

• A number of new assembly language user OP bytes have been added. These permit the user
to make better use of the statement/command expansion option previously described.
Details of these new OP bytes are presented in Chapter 9.6 of this manual.

• The length of the input buffer has been increased from 72 characters to 79 characters and the
ERROR: LINE TOO LONG has been eliminated. Instead, when the cursor reaches the 79th
position a bell character will be echoed every time the user attempts to enter another char-
acter.

• A new variation on the PRINT (including PH0. and PH1.) and LIST statements have been
added. This new option is evoked with an @ character (EXAMPLE: PRINT@ or LIST@) and
permits the user to write specific output drivers for these statements and commands. When
the @ PRINT or LIST is evoked, MCS BASIC-52 calls external code memory location 403CH.
The user must put the specific output driver in this location. More details of this option is in
Description of Statements section of this manual.

• The control stack has been made more "forgiving." This means that the user can execute a
GOSUB to a subroutine that contains a FOR-NEXT loop and return from the subroutine
without completing the FOR-NEXT loop. Version 1.0 would yield a C-STACK error under
these circumstances, V 1.1 yields no error.

• The question mark character ? is interpreted as a PRINT statement (EXAMPLE: (PRINT
10+20 is the same as ? 10+20). The symbols P. remains a shorthand notation for PRINT just
as in V1.0.

• The FOR-NEXT statement can be executed in the direct mode. This lets the user write short
routines in the direct mode to, for example, display a region of memory (EXAMPLE: FOR I
= 200H to 210H: PH0. XBY(I): NEXT I)

MCS BASIC-52 Users Manual

 13

• Variables can be up to 8 characters in length, however, only the first character, the last
character, and the total number of characters are of significance. This lets the user better
describe variables that are used in a program. Chapter 1.4 details the limitations on the
expanded variables in Version 1.1 .

• The CALL statement vectors to locations 4100H through 41FFH if the CALL integer is
between 0 and 7FH inclusive. This means that CALL 0 will vector to location 4100H, CALL 1
to location 4102H, CALL 2 to location 4104H, etc. This permits the user to easily generate
assembly language CALL tables by using simple integers with the CALL statement.
Anyway, CALL 0 through CALL 1FFFH was not too useful because these numbers vectored
into the MCS BASIC-52 ROM.

• The error message anomaly for an invalid line number on a GOTO or GOSUB statement has
been eliminated on V1.1 of MCS BASIC-52. The correct line number is now processed and
displayed by the error processor.

• The FOR-TO-{STEP}-NEXT statement can be executed in the command mode in version 1.1
of MCS BASIC-52. Additionally, the NEXT statement does not require a variable in version
1.1. Details of these features are covered in the Description of Statements section of this
manual.

• The REM statement can be executed in the command mode. If the user is employing some
type of upload/download routine with a computer, this lets the user insert REM statements,
without line numbers in the text and not download them to the MCS BASIC-52 device. This
helps to conserve memory.

• Version 1.1 is also a little less "crashable" than version 1.0. This is due to a more extensive
"type checking" on control transfer routines (i.e. GOTO, GOSUB).

MCS BASIC-52 Users Manual

 14

CHAPTER 2: Description of Commands

2.1 RUN

After RUN(cr) is typed all variables are set equal to zero, all BASIC evoked interrupts are cleared
and program execution begins with the first line number of the selected program. The RUN com-
mand and the GOTO statement are the only way the user can place the MCS BASIC-52 interpreter
into the RUN mode from the command mode. Program execution may be terminated at any time
by typing a control-C on the console device.

Variations: Unlike some Basic interpreters that allow a line number to follow the RUN com-
mand (i.e., RUN 100), MCS BASIC-52 does not permit such a variation on the RUN command. Exe-
cution always begins with the first line number. To obtain the same functionality as the RUN[ln
num] command, use the GOTO[ln num] statement in the direct mode. See statement GOTO.

EXAMPLE:

>10 FOR I=1 TO 3
>20 PRINT
>30 NEXT
>RUN

1
2
3

READY
>

2.2 CONT

If a program is stopped by typing a control-C on the console device or by execution of a STOP
statement, you can resume execution of the program by typing CONT(cr). Between the stopping
and the re-starting of the program you may display the values of variables or change the values of
variables. However, you may NOT CONTinue if the program is modified during the STOP or after
an error.

EXAMPLE:

>10 FOR I=1 TO 10000
>2O PRINT I
>30 NEXT I
>RUN

1
2
3
4
5 - (TYPE CONTROL-C ON CONSOLE)

STOP - IN LINE 20

READY
>PRINT I
6

I=10

>CONT

MCS BASIC-52 Users Manual

 15

10
11
12

2.3 LlST

The LlST(cr) command prints the program to the console device. Note that the list command
"formats" the program in an easy to read manner. Spaces are inserted after the line number and
before and after statements. This feature is designed to aid in the debugging of MCS BASIC-52
programs. The "listing" of a program may be terminated at anytime by typing a control-C on the
console device.

Variations: Two variations of the LIST command are possible with MCS BASIC-52. They are:

LIST [ln num] (cr)
LIST [ln num]—[ln num] (cr)

The first variation causes the program to be printed from the designated line number (integer)
to the end of the program. The second variation causes the program to be printed from the first
line number (integer) to the second line number (integer).

Note: the two line numbers must be separated by a dash “-“.

EXAMPLE:

READY
>LIST
10 PRINT "LOOP PROGRAM"
20 FOR I=1 TO 3
30 PRINT I
40 NEXT I
50 END

READY
>LIST 30
30 PRINT I
40 NEXT I
50 END

READY
>LIST 20-40
20 FOR I=1 TO 3
30 PRINT I
40 NEXT I

2.4 LlST#

The LlST#(cr) command prints the program to the LIST device. The BAUD rate to this device
must be initialized by the statement—BAUD[expr]. All comments that apply to the LIST command
apply to the LIST# command. The LlST#(cr) command is included to permit the user to make
"hard copies" of a program. The output to the list device is on P1.7 of the MCS BASIC-52 device.

2.5 LlST@ (Version 1.1 only)

The LIST@ command does the same thing as the LIST command except that the output is
directed to a user defined output driver. This command assumes that the user has placed an
assembly language output routine in external code memory location 403CH. To enable the @
driver routine the user must set bit 27H (39D) in the internal memory of the MCS BASIC-52 device.
bit 27H (39D) is bit 7 of internal memory location 24H (36D). This bit can be set by the BASIC

MCS BASIC-52 Users Manual

 16

statement DBY(24H)=DBY(24H). OR.80H or by a user supplied assembly language routine. If the
user evokes the @ driver routine and this bit is not set, the output will be directed to the console
driver. The only reason this bit must be set to enable the @ driver is that it adds a certain degree of
protection from accidentally typing LIST@ when no assembly language routine exist. The philoso-
phy here is that if the user sets the bit, the user provides the driver or else!!!

When MCS BASIC-52 calls the user output driver routine at location 403CH, the byte to output
is in the accumulator and R5 of register bank 0 (RB0). The user may modify the accumulator (A)
and the data pointer (DPTR) in the assembly language output routine, but cannot modify any of
the registers in RB0. This is intended to make it real easy for the user to implement a parallel or
serial output driver without having to do a PUSH or a POP.

2.6 NEW

When NEW(cr) is entered, MCS BASIC-52 deletes the program that is currently stored in RAM
memory. In addition, all variables are set equal to zero, all strings and all BASIC evoked interrupts
are cleared. The real time clock, string allocation, and the internal stack pointer value (location
3EH) are NOT effected. In general, NEW (cr) is used simply to erase a program and all variables.

2.7 NULL

The NULL[integer] (cr) command determines how many NULL characters (00H) MCS BASIC-
52 will output after a carriage return. After initialization NULL = 0. The NULL command was
more important back in the days when a "pure" mechanical printer was the most common I/0
device. Most modern printers contain some kind of RAM buffer that virtually eliminates the need
to output NULL characters after a carriage return.

Note: the NULL count used by MCS BASIC-52 is stored in internal RAM location 21 (15H). The
NULL value can be changed dynamically in a program by using a DBY(21) = [expr] statement. The
[expr] can be any value between 0 and 255 (0FFH) inclusive.

MCS BASIC-52 Users Manual

 17

CHAPTER 3: Description of EPROM File Commands

One of the unique and powerful features of MCS BASIC-52 is that it has the ability to execute
and save programs in an EPROM. MCS BASIC-52 actually generates all of the timing signals
needed to program most EPROM devices. Saving programs in EPROMs is a much more attractive
and reliable alternative relative to cassette tape, especially in control and/or noisy environments.

The hardware needed to permit MCS BASIC-52 to program an EPROM device is minimal, typi-
cally only one NAND gate, three or four transistors, and a few resistors are all that is required.
Details of the hardware requirements are in the EPROM Programming section of this manual.

MCS BASIC-52 can save more than one program in an EPROM. In fact, it can save as many pro-
grams as the size of the EPROM memory permits. The programs are stored sequentially in the
EPROM and any program can be retrieved and executed. This sequential storing of programs is
referred to as the EPROM File. The following commands permit the user to generate and manipu-
late the EPROM File.

3.1 RAM and ROM

These two commands tell the MCS BASIC-52 interpreter whether to select the current program
(the current program is the one that will be displayed during a LIST command and executed when
RUN is typed) out of RAM or EPROM. The RAM address is assumed to be 512 (200H) and the
EPROM address begins at 32784 (8010H).

RAM: When RAM(cr) is entered MCS BASIC-52 selects the current program from RAM memory.
This is usually considered the "normal" mode of operation and is the mode that most users interact
with the command interpreter.

ROM: When ROM [integer] (cr) is entered MCS BASIC-52 selects the current program out of
EPROM memory. If no integer is typed after the ROM command (i.e. ROM (cr)) MCS BASIC-52
defaults to ROM 1. Since the programs are stored sequentially in EPROM the integer following the
ROM command selects which program the user wants to run or list. If you attempt to select a pro-
gram that does not exist (i.e. you type in ROM 8 and only 6 programs are stored in the EPROM)
the message ERROR: PROM MODE will be displayed.

MCS BASIC-52 does not transfer the program from EPROM to RAM when the ROM mode is
selected. So, you cannot edit a program in the ROM mode. If you attempt to edit a program in the
ROM mode, by typing in a line number, the message ERROR: PROM MODE will be displayed.
The following command to be described, XFER, permits one to transfer a program from EPROM to
RAM for editing purposes.

Since the ROM command does NOT transfer a program to RAM, it is possible to have different
programs in ROM and RAM simultaneously. The user can "flip" back and forth between the two
modes at any time. Another added benefit of NOT transferring a program to RAM is that all of the
RAM memory can be used for variable storage if the program is stored in EPROM. The system
control values —MTOP and FREE always refer to RAM not EPROM.

MCS BASIC-52 Users Manual

 18

3.2 XFER

The XFER (transfer) command transfers the current selected program in EPROM to RAM and
then selects the RAM mode. If XFER is typed while MCS BASIC-52 is in the RAM mode, the pro-
gram stored in RAM is transferred back into RAM and the RAM mode is selected. The net result is
that nothing happens except that a few milli-seconds of CPU time is used to do a wasted move.
After the XFER command is executed, the user may edit the program in the same manner any
RAM program may be edited.

3.3 PROG

The PROG command programs the resident EPROM with the current selected program. The
current selected program may reside in either RAM or EPROM. This command assumes that the
hardware is configured in the manner described in the EPROM Programming section of this man-
ual.

After PROG (cr) is typed, MCS BASIC-52 displays the number in the EPROM File the program
will occupy.

EXAMPLE:

>LIST
 10 FOR I=1 TO 10
 20 PRINT I
 30 NEXT I

READY
>PROG
 12

READY
>ROM 12

READY
>LIST
 10 FOR I=1 TO 10
 2O PRINT I
 30 NEXT I

READY
>

In this example, the program just placed in the EPROM is the 12th program stored.

3.4 PROG1 and PROG2

PROG1: Normally, after power is applied to the MCS BASIC-52 device, the user MUST type a
"space" character to initialize the 8052AH's serial port. As a convenience, MCS BASIC-52 contains a
PROG1 command. What this command does is program the resident EPROM with the baud rate
information. So, the next time the MCS BASIC-52 device is "powered up," i.e. Reset, the chip will
read this information and initialize the serial port with the stored baud rate. The "sign-on" message
will be sent to the console immediately after the MCS BASIC-52 device completes its reset
sequence. The "space" character no longer needs to be typed. Of course, if the BAUD rate on the
console device is changed a new EPROM must be programmed to make MCS BASIC-52 compati-
ble with the new console.

MCS BASIC-52 Users Manual

 19

PROG2: The PROG2 command does everything the PROG1 command does, but instead of
"signing-on" and entering the command mode, the MCS BASIC-52 device immediately begins exe-
cuting the first program stored in the resident EPROM.

THIS IS AN IMPORTANT FEATURE!!

By using the PROG2 command it is possible to RUN a program from a Reset condition and
NEVER connect the MCS BASIC-52 chip to a console. In essence, saving PROG2 information is
equivalent to typing a ROM 1, RUN command sequence. This is ideal for control applications,
where it is not always possible to have a terminal present. In addition. this feature permits the user
to write a special initialization sequence in BASIC or assembly language and generate a custom
"sign-on" message for specific applications.

3.5 FPROG, FPROG1, AND FPROG2

FPROG(cr), FPROG1(cr), and FPROG2(cr) do exactly the same thing as PROG(cr), PROG1(cr),
and PROG2(cr) respectively, except that the algorithm used to perform the programming function
is the INTEL "INTELligent" fast programming algorithm. The user must provide a way to increase
Vcc to the EPROM to 6 volts.

3.6 PROG3. PROG4, FPROG3, FPROG4 (Version 1.1 only)

PROG3: The PROG3 command functions the same way as the PROG1 command previously
described, except that PROG3 also saves the system control value, MTOP, when it is evoked. Dur-
ing a Reset or power-up sequence MCS BASIC-52 will only clear the external data memory up to
the MTOP value that was saved when the PROG3 command was evoked. This permits the user to
"protect" regions of memory from being cleared during a Reset or power-up condition. In typical
use, the PROG3 command assumes that the user is saving some critical information in some type
of battery-backed-up or non-volatile memory and does not want this information to be destroyed
during a Reset or power-up sequence.

PROG4: The PROG4 command is a combination of the PROG2 and PROG3 command. PROG4
saves the same information as PROG3, but also executes the first program stored in the EPROM
after a Reset or power-up condition.

FPROG3 and FPROG4: The FPROG3 and FPROG4 commands save the same information as the
PROG3 and PROG4 commands respectively, except that the INTELIigent(tm) algorithm is used to
program the EPROM.

3.7 PROG5, PROG6, FPROG5, FPROG6 (Version 1.1 only)

PROG5 & FPROG5: The PROG5 command saves both the baud rate information and the MTOP
information, just like the PROG3 command previously described. However, during a Reset or
power-up condition the MCS BASIC-52 device examines external data memory location 5FH (95
decimal). If the user has placed the value 0A5H (165 decimal) in this location, the MCS BASIC-52
device will not clear the external memory during a Reset or power-up condition. This permits the
user to "save" programs in external memory, providing some type of battery back-up scheme has
been employed.

Normally, when using the PROG5 command to establish the Reset or power-up condition, the
MCS BASIC-52 device will enter the command mode after Reset or power-up. However, if the user
wishes to execute the program stored in external memory, the character 34H (52 decimal) needs to

MCS BASIC-52 Users Manual

 20

be placed in external memory location 5EH (94 decimal). Placing a 34H in location 5EH causes MCS
BASIC-52 to enter the "RUN TRAP mode." Details of this mode are presented in chapter 8 of this
manual.

PROG6 & FPROG6: Does the same thing as PROG5, but CALLs external program memory
location 4039H during a Reset or power-up sequence. This option also requires the user to put the
character 0A5H in external memory location 5FH to insure that external RAM will not be cleared
during Reset or power-up. The user must put an assembly language initialization routine in exter-
nal code memory location 4039H or else this Reset mode will crash. When the user returns from
the customized assembly language Reset routine, three options exist:

OPTION 1 FOR PROG6: If the carry bit is cleared (carry = 0) upon return from the user Reset
routine MCS BASIC-52 will enter the auto-baud rate determining routine. The user must then type
a space character (20H) on the terminal to complete the Reset routine and produce a Reset message
on the terminal.

OPTION 2 FOR PROG6: If the carry bit is set (carry = 1) and bit 0 of the accumulator is cleared
(ACC. 0 = 0) MCS BASIC-52 will produce the standard sign-on message upon return from the user
supplied Reset routine. The baud rate will be the one that was saved when the PROG6 option was
used.

OPTION 3 FOR PROG6: If the carry bit is set (carry = 1) and bit 0 of the accumulator is set
(ACC. 0 = 1), MCS BASIC-52 will execute the first program stored by the user in EPROM (starting
address of the program is 8010H) upon return from the user supplied Reset routine.

MCS BASIC-52 Users Manual

 21

CHAPTER 4: Description of Statements

4.1 BAUD

MODE: command and/or run

TYPE: control

The BAUD [expr] statement is used to set the baud rate for the software line printer port resi-
dent on the MCS BASIC-52 device. In order for this statement to properly calculate the baud rate,
the crystal (special function operator—XTAL) must be correctly assigned (e.g. XTAL = 9000000).
MCS BASIC-52 assumes a crystal value of 11.0592 MHz if no XTAL value is assigned. The software
line printer port is P1.7 on the 8052AH device. The main purpose of the software line printer port is
to let the user make a "hard copy" of program listings and/or data. The command LIST# and the
statement PRINT# direct outputs to the software line printer port. If the BAUD [expr] statement is
not executed before a LIST# or PRINT# command/statement is entered, the output to the software
line printer port will be at about 1 baud and it will take A LONG TIME to output something. You
may even think that BASIC has crashed, but it hasn't. It's just outputting at a VERY SLOW rate. So
be sure to assign a baud rate to the software printer port BEFORE using LIST# or PRINT#. The
maximum baud rate that can be assigned by the BAUD statement depends on the crystal. In gen-
eral, 4800 is a reasonable maximum baud rate. however the user may want to experiment with
different rates. The software serial transmits 8 data bits, 1 start bit, and two stop bits. No parity is
transmitted.

EXAMPLE:

BAUD 1200

Will cause the line printer port to output data at 1200 baud.

4.2 CALL

MODE: command and/or run

TYPE: control

The CALL [integer] statement is used to call an assembly language program. The integer fol-
lowing CALL is the address where the user must provide the assembly language routine. To return
to BASIC the user must execute an assembly language RET instruction. Examples of how to use the
CALL [integer] instruction are given in the Assembly Language Linkage section of this manual.

EXAMPLE:

CALL 9000H

Will cause the 8052AH to execute the assembly language program beginning at location 9000H
(i.e. the program counter will be loaded with 9000H).

Variations: (Version 1.1 only) If the integer following the CALL statement is between 0 and 127
(7FH), Version 1.1 of MCS BASIC-52 will multiply the user integer by two, then add 4100H and
vector to that location. This means that CALL 0 will call location 4100H, CALL 1 will call 4102H,
CALL 2—4104H and so on. This permits the user to generate a simple table of assembly language
routines without having to enter 4 digit hex integers after the CALL statement from the user sup-
plied Reset routine.

MCS BASIC-52 Users Manual

 22

4.3 CLEAR

MODE: command and/or run

TYPE: control

The CLEAR statement sets all variables equal to 0 and resets all BASIC evoked interrupts and
stacks. This means that after the CLEAR statement is executed an ONEX1 or ONTIME statement
must be executed before MCS BASIC-52 will acknowledge interrupts. error trapping via the
ONERR statement will also not occur until an ONERR[integer] statement is executed. The CLEAR
statement does not affect the real time clock that is enabled by the CLOCK1 statement. CLEAR also
does not reset the memory that has been allocated for strings, so it is NOT necessary to enter the
STRING [expr], [expr] statement to re-allocate memory for strings after the CLEAR statement is
executed. In general, CLEAR is simply used to "erase" all variables.

4.4 CLEARI, CLEARS

MODE: command and/or run

TYPE: control

CLEARI: The CLEARI statement clears all of the BASIC evoked interrupts. Specifically, the
ONTIME and ONEX1 interrupts are disabled after the CLEARI statement is executed. This is
accomplished by clearing bits 2 and 3 of the 8052AH's special function register, IE and by clearing
the status bits that determine whether MCS BASIC-52 or the user is controlling these interrupts.
The real time clock which is enabled by the CLOCK1 statement is not affected by CLEARI. This
statement can be used to selectively disable interrupts during specific sections of the users BASIC
program. The ONTIME and/or ONEX1 statements MUST BE EXECUTED AGAIN before the spe-
cific interrupts will be enabled.

CLEARS: The CLEARS statement resets all of MCS BASlC-52's stacks. The control and argument
stacks are reset to their initialization value, 254 (0FEH) and 510 (1FEH) respectively. The internal
stack (the 8052AH's stack pointer, special function register-SP) is loaded with the value that is in
internal RAM location 62 (3EH). This statement can be used to "purge" the stack should an error
occur in a subroutine. In addition, this statement can be used to provide a "special" exit from a
FOR-NEXT, DO-WHILE, or DO-UNTIL loop.

EXAMPLE OF CLEARS:

>10 PRINT "MULTIPLICATION TEST. YOU HAVE 5 SECONDS"
>20 FOR I = 2 TO 9
>30 N = INT(RND*10) : A - N*I
>40 PRINT "WHAT IS ",N,"*",I,"?": CLOCK1
>50 TIME = O : ONTIME 5,200 : INPUT R : IF R <> A THEN 100
>60 PRINT "THAT'S RIGHT" TIME=0 : NEXT I
>70 PRINT "YOU DID IT. GOOD JOB" : END
>100 PRINT "WRONG - TRY AGAIN" : GOTO 50
>200 REM WASTE CONTROL STACK, TOO MUCH TIME
>210 CLEARS : PRINT "YOU TOOK TOO LONG" : GOTO 10

Note: When the CLEARS and CLEARI statements are LISTed they will appear as CLEAR S and
CLEAR I respectively. Don't be alarmed, that is the way it's supposed to work.

4.5 CLOCK1 and CLOCK0

MODE: command and/or run

MCS BASIC-52 Users Manual

 23

TYPE: control

CLOCK1: The CLOCK1 statement enables the real time clock feature resident on the MCS
BASIC-52 device. The special function operator TIME is incremented once every 5 milliseconds
after the CLOCK1 statement has been executed. The CLOCK1 statement uses TIMER/COUNTER 0
in the 13-bit mode to generate an interrupt once every 5 milliseconds. Because of this, the special
function operator TIME has a resolution of 5 milliseconds.

MCS BASIC-52 automatically calculates the proper reload value for TIMER/COUNTER 0 after
the crystal value has been assigned (i.e. XTAL=value). If no crystal value is assigned, MCS BASIC-
52 assumes a value of 11.0592 MHz. The special function operator TIME counts from 0 to 65535.995
seconds. After reaching a count of 65535.995 seconds TIME overflows back to a count of zero.
Because the CLOCK1 statement uses the interrupts associated with TIMER/COUNTER 0 (the
CLOCK1 statement sets bits 7 and 2 in the 8052AH's special function register, IE) the user may not
use this interrupt in an assembly language routine if the CLOCK1 statement is executed in BASIC.
The interrupts associated with the CLOCK1 statement cause MCS BASIC-52 programs to run at
about 99.6% of normal speed. That means that the interrupt handling for the real time clock
feature only consumes about .4% of the total CPU time. This very small interrupt overhead is
attributed to the very fast and effective interrupt handling of the 8052AH device.

CLOCK0: The CLOCK0 (zero) statement disables or "turns off" the real time clock feature. This
statement clears bit 2 in the 8052AH's special function register, IE. After CLOCK0 is executed, the
special function operator TIME will no longer increment. The CLOCK0 statement also returns
control of the interrupts associated with TIMER COUNTER 0 back to the user, so this interrupt
may be handled at the assembly language level. CLOCK0 is the only MCS BASIC-52 statement that
can disable the real time clock. CLEAR and CLEARI will NOT disable the real time clock.

4.6 DATA—READ—RESTORE

MODE: run

TYPE: assignment

DATA: DATA specifies expressions that may be retrieved by a READ statement. If multiple
expressions per line are used, they MUST be separated by a comma.

READ: READ retrieves the expressions that are specified in the DATA statement and assigns the
value of the expression to the variable in the READ statement. The READ statement MUST
ALWAYS be followed by one or more variables. If more than one variable follows a READ state-
ment, they MUST be separated by a comma.

RESTORE: RESTORE "resets" the internal read pointer back to the beginning of the data so that
it may be read again.

EXAMPLE:

>10 FOR I=1 TO 3
>20 READ A,B
>30 RRINT A,B
>40 NEXT I
>50 RESTORE
>60 READ A,B
>770 PRINT A,B
>80 DATA 10,20,10/2,20/2,SIN(PI),COS(PI)
>RUN

10 2O

MCS BASIC-52 Users Manual

 24

5 10
0 -1
10 20

Explanation of previous example: Every time a READ statement is encountered the next con-
secutive expression in the DATA statement is evaluated and assigned to the variable in the READ
statement. DATA statements may be placed anywhere within a program, they will NOT be exe-
cuted nor will they cause an error. DATA statements are considered to be chained together and
appear to be one BIG DATA statement. If at anytime all the DATA has been read and another
READ statement is executed then the program is terminated and the message ERROR: NO DATA
IN LINE XX is printed to the console device.

4.7 DIM

MODE: command and/or run

TYPE: assignment

DIM reserves storage for matrices. The storage area is first assumed to be zero. Matrices in MCS
BASIC-52 may have only ONE DIMENSION and the size of the dimensioned array MAY NOT
exceed 254 elements. Once a variable is dimensioned in a program it may not be re-dimensioned.
An attempt to redimension an array will cause an ARRAY SIZE ERROR. If an arrayed variable is
used that has NOT been dimensioned by the DIM statement, BASIC will assign a default value of
10 to the array size. All arrays are set equal to zero when the RUN command, NEW command, or
the CLEAR statement is executed. The number of bytes allocated for an array is 6 times the (array
size plus 1). So, the array A(100) would require 606 bytes of storage. Memory size usually limits the
size of a dimensioned array.

Variations: More than one variable can be dimensioned by a single DIM statement, i.e., DIM
A(10), B(15), A1(20).

EXAMPLE: default error on attempt to re-dimension array

>10 A(5)=10 - BASIC ASSIGNS DEFAULT OF 10 TO ARRAY SIZE HERE
>20 DIM A(5) - ARRAY CANNOT BE RE-DIMENSIONED
>RUN

ERROR ARRAY SIZE - IN LINE 20

20 DIM A(5)

4.8 DO—UNTIL

MODE: run

TYPE: control

The DO—UNTIL [rel expr] instruction provides a means of "loop control" within an MCS
BASIC-52 program. All statements between the DO and the UNTIL [rel expr] will be executed until
the relational expression following the UNTIL statement is TRUE. DO—UNTIL loops may be
nested.

EXAMPLES:

simple DO – UNTIL nested DO - UNTIL

>10 A=0 >10 DO : A=A+1 : DO : B=B+1
>20 DO >20 PRINT A,B,A*B
>30 A=A+I >30 UNTIL B=3

MCS BASIC-52 Users Manual

 25

>40 PRINT A >40 B=0
>50 UNTIL A=4 >50 UNTIL A=3
>60 PRINT "DONE" >RUN
>RUN

 1 1 1 1
 2 1 2 2
 3 1 3 3
 4 2 1 2
DONE 2 2 4
 2 3 6
READY 3 1 3
> 3 2 6
 3 3 9

 READY
 >

4.9 DO—WHILE

MODE: run

TYPE: control

The DO—WHILE [rel expr] instruction provides a means of "loop control" within an MCS
BASIC-52 program. This operation of this statement is similar to the DO—UNTIL [rel expr] except
that all statements between the DO and the WHILE [rel expr] will be executed as long as the rela-
tional expression following the WHILE statement is true. DO—WHILE and DO—UNTIL state-
ments can be nested.

EXAMPLES:

simple DO – WHILE nested DO - WHILE – DO - UNTIL

>10 DO >10 DO : A=A+1 : B=B+1
>20 A=A+1 >20 PRINT A,B,A*B
>30 PRINT A >30 WHILE B<>3
>40 WHILE A<4 >40 B=0
>50 PRINT "DONE" >50 UNTIL A=3
>RUN >RUN

 1 1 1 1
 2 1 2 2
 3 1 3 3
 4 2 1 2
DONE 2 2 4
> 2 3 6
 3 1 3
 3 2 6
 3 3 9

 READY
 >

4.10 END

MODE: run

TYPE: control

The END statement terminates program execution. The continue command, CONT will not
operate it the END statement is used to terminate execution (i.e., a CAN'T CONTINUE ERROR will

MCS BASIC-52 Users Manual

 26

be printed to the console). The last statement in an MCS BASIC-52 program will automatically ter-
minate program execution if no END statement is used.

EXAMPLES:

last statement termination end statement termination

>1O FOR I=1 TO 4 >1O FOR I=1 TO 4
>20 PRINT I >20 GOSUB 100
>30 NEXT I >30 NEXT I
>RUN >40 END
 >100 PRINT I
 1 >110 RETURN
 2 >RUN
 3
 4 1
 2
READY 3
> 4

 READY
 >

4.11 FOR—TO—{STEP}—NEXT

MODE: run VERSION 1.0 (command and/or run in Version 1.1)

TYPE: control

The FOR—TO—{STEP}—NEXT statements are used to set up and control loops.

EXAMPLE:

10 FOR A=3 TO C STEP D
20 PRINT A
30 NEXT A

If B = 0, C = 10, and D = 2, the PRINT statement at line 20 will be executed 6 times. The values
of "A" that will be printed are 0, 2, 4, 6, 8, 10. "A" represents the name of the index or loop counter.
The value of "B" is the starting value of the index, the value of "C" is the limit value of the index,
and the value of "D" is the increment to the index. If the STEP statement and the value "D" are
omitted, the increment value defaults to 1, therefore, STEP is an optional statement. The NEXT
statement causes the value of "D" to be added to the index. The index is then compared to the
value of "C," the limit. If the index is less than or equal to the limit, control will be transferred back
to the statement after the FOR statement. Stepping "backwards" (i.e. FOR I = 100 TO 1 STEP-1) is
permitted in MCS BASIC-52. Unlike some BASICS, the index MAY NOT be omitted from the NEXT
statement in MCS BASIC-52 (i.e. the NEXT statement MUST always be followed by the appropriate
variable).

EXAMPLES:

>10 FOR I=1 TO 4 >10 FOR I=0 TO 8 STEP 2
>20 PRINT I >20 PRINT I
>30 NEXT I >30 NEXT I
>RUN >RUN

 1 0
 2 2
 3 4
 4 6
 8
READY
> READY
 >

MCS BASIC-52 Users Manual

 27

In Version 1.1 of MCS BASIC-52 it is possible execute the FOR-TO-{STEP}-NEXT statement in
the Command Mode. This makes it possible for the user to do things like display regions of mem-
ory by writing a short program like FOR I=512 TO 560: PH0. XBY(I),: NEXT I. It may also have
other uses, but they haven't been thought of.

Also Version 1.1 allows the NEXT statement to be used without a variable following the state-
ment. This means that programs like:

EXAMPLE:

10 FOP I = 1 TO 100
20 PRINT I
30 NEXT

Are permitted in Version 1.1 of MCS BASIC-52. The variable associated with the NEXT is always
assumed to be the variable used in the last FOR statement.

4.12 GOSUB—RETURN

MODE: run

TYPE: control

GOSUB: The GOSUB [In num] statement will cause MCS BASIC-52 to transfer control of the
program directly to the line number ([ln num]) following the GOSUB statement. In addition, the
GOSUB statement saves the location of the statement following GOSUB on the control stack so
that a RETURN statement can be performed to return control.

RETURN: This statement is used to "return" control back to the statement following the most
recently executed GOSUB statement. The GOSUB-RETURN sequence can be "nested" meaning
that a subroutine called by the GOSUB statement can call another subroutine with another GOSUB
statement.

EXAMPLES:

simple subroutine nested subroutine

>10 FOR I = 1 TO 5 >10 FOR I = 1 TO 3
>20 GOSUB 100 >20 GOSUB 100
>30 NEXT I >30 NEXT I
>100 PRINT I >40 END
>110 RETURN >100 PRINT I,
>RUN >110 GOSUB 200
 >120 RETURN
 1 >200 PRINT I*I
 2 >210 RETURN
 3 >RUN
 4
 5 1 1
 2 4
READY 3 9
>
 READY
 >

Note: The Control Stack on Version 1.1 permits a graceful exit from uncompleted control loops,
given the following example:

EXAMPLE:

 .
 .
50 GOSUB 1000

MCS BASIC-52 Users Manual

 28

 .
 .
1000 FOR I = 1 TO 10
1010 IF X = I THEN 1040
1020 PRINT I*X
1030 NEXT I
1040 RETURN

Version 1.1 would permit the programmer to exit the subroutine even though the FOR-NEXT
loop might not be allowed to complete if X did equal 1. Version 1.0 of MCS BASIC-52 would yield a
C-STACK error if the FOR-NEXT loop was not allowed to complete before the RETURN statement
was executed.

4.13 GOTO

MODE: command and/or run

TYPE: control

The GOTO [ln num] statement will cause BASIC to transfer control directly to the line number
([ln num]) following the GOTO statement.

EXAMPLE:

50 GOTO 100

Will, if line 100 exists, cause execution of the program to resume at line 100. If line number 100
does not exist the message ERROR: INVALID LINE NUMBER will be printed to the console
device.

Unlike the RUN command the GOTO statement, if executed in the command mode, does not
CLEAR the variable storage space or interrupts. However, if the GOTO statement is executed in
the command mode after a line has been edited, MCS BASIC-52 will CLEAR the variable storage
space and all BASIC evoked interrupts. This is a necessity because the variable storage and the
BASIC program reside in the same RAM memory. So editing a program can destroy variables.

Note: (Version 1.0 only): Because of the way MCS BASlC-52's text interpreter processes a line,
when an INVALID LINE NUMBER ERROR occurs on the GOTO, GOSUB, ON GOTO, and ON
GOSUB statements the line AFTER the GOTO or GOSUB statement will be printed out in the error
message. This may be confusing, but it was a trade-off between execution speed, code size, and
error handling.

EXAMPLE:

>10 GOTO l00
>20 PRINT X
>RUN

ERROR INVALID LINE NUMER - IN LINE 20

20 PRINT X
—————- X

Version 1.1 does not exhibit this particular anomaly.

4.14 ON GOTO, ON GOSUB

MODE: run

TYPE: control

MCS BASIC-52 Users Manual

 29

The value of the expression following the ON statement is the number in the line list that
control will be transferred to.

EXAMPLE:

10 ON Q GOTO 100,200,300

If Q was equal to 0, control would be transferred to line number 100. If Q was equal to 1, control
would be transferred to line number 200. If Q was equal to 2, GOTO line 300, etc. All comments
that apply to GOTO and GOSUB apply to the ON statement. If Q is less than zero a BAD ARGU-
MENT ERROR will be generated. If Q is greater than the line number list following the GOTO or
GOSUB statement, a BAD SYNTAX ERROR will be generated. The ON statement provides "condi-
tional branching" options within the constructs of an MCS BASIC-52 program.

4.15 IF—THEN—ELSE

MODE: run

TYPE: control

The IF statement sets up a conditional test. The generalized form of the IF—THEN—ELSE
statement is as follows:

 [ln num] IF [rel expr] THEN valid STATEMENT ELSE valid STATEMENT

A specific example is as follows:

>10 IF A=100 THEN A=0 ELSE A=A+1

Upon execution of line 10 IF A is equal to 100, THEN A would be assigned a value of 0. IF A
does not equal 100, A would be assigned a value of A + 1 . If it is desired to transfer control to dif-
ferent line numbers using the IF statement, the GOTO statement may be omitted. The following
examples would yield the same results:

>20 IF INT(A)< 10 THEN GOTO 100 ELSE GOTO 200
>20 IF INT(A)< 10 THEN 100 ELSE 200

Additionally, the THEN statement can be replaced by any valid MCS BASIC-52 statement, as
shown below:

>30 IF A <> 10 THEN PRINT A ELSE 10
>30 IF A <> 10 PRINT A ELSE 10

The ELSE statement may be omitted. If it is, control will pass to the next statement.

EXAMPLE:

>20 IF A=10 THEN 40
>30 PRINT A

In this example. IF A equals 10 then control would be passed to line number 40. If A does not
equal 10 line number 30 would be executed.

Comments on IF—THEN—ELSE: Version 1.1 is not compatible with V1.0 when the IF _ THEN _
ELSE statement is used with multiple statements per line. In V1.0, the following two examples
would function in the same manner.

EXAMPLE 1:

10 IF A=B THEN C=A : A=A/2 : GOTO 100
20 PRINT

EXAMPLE 2:

MCS BASIC-52 Users Manual

 30

10 IF A=B THEN C=A
12 A=A/2
14 GOTO 100
20 PRINT

They function in the same manner because V1.0 treats the delimiter (:) exactly the same as a car-
riage return (cr) in every case. However, V1.1 executes the remainder of the line if and only if the
test A = B proves to be true. This means in EXAMPLE 1 IF A did equal B, V1.1 would then set
C=A, then set A = A/2, then execute line 100. IF A did not equal B, V1.1 would then PRINT A and
ignore the statements C=A: A=A/2: GOTO 100. V1.1 will execute EXAMPLE 2 exactly the same
way as V1.0. This same logical interpretation holds true for the ELSE statement as well. This exam-
ple dictates a simple rule for maintaining IF _ THEN FLSE compatibility between the two versions.
IF THE DELIMITER (:) IS NOT USED IN AN IF_THEN ELSE STATEMENT, V1.0 AND V1.1 WILL
TREAT THE STATEMENTS IN THE SAME MANNER!!

This change was made because most users of MCS BASIC-52 felt that the V1.1 interpretation of
this statement was more useful because fewer GOTO statements need be employed in a typical
program.

4.16 INPUT

MODE: run

TYPE: input/output

The INPUT statement allows users to enter data from the console during program execution.
One or more variables may be assigned data with a single input statement. The variables must be
separated by a comma.

EXAMPLE:

INPUT A,B

Would cause the printing of a question mark (?) on the console device as a prompt to the
operator to input two numbers separated by a comma. If the operator does not enter enough data,
then MCS BASIC-52 responds by outputting the message TRY AGAIN to the console device.

EXAMPLE:

>10 INPUT A,B
>20 PRINT A,B
>RUN

?1

TRY AGAIN

?1,2
 1 2

READY

The INPUT statement may be written so that a descriptive prompt is printed to tell the user
what to type. The message to be printed is placed in quotes after the INPUT statement. If a comma
appears before the first variable on the input list, the question mark prompt character will not be
displayed.

EXAMPLES:

>10 INPUT"ENTER A NUMBER,"A >10 INPUT"ENTER A NUMBER",A
>20 PRINT SQR(A) >20 PRINT SQR(A)

MCS BASIC-52 Users Manual

 31

>RUN >RUN

ENTER A NUMBER ENTER A NUMBER-100
?100 10
10

Strings can also be assigned with an INPUT statement. Strings are always terminated with a car-
riage return (cr). So, if more than one string input is requested with a single INPUT statement,
MCS BASIC-52 will prompt the user with a question mark.

EXAMPLES:

>10 STRING 110,10 >10 STRING 110,10
>20 INPUT "NAME: "$(1) >20 INPUT "NAMES: ",$(1),$(2)
>30 PRINT "HI ",$(1) >30 PRINT "HI ",$(1)," AND ",$(2)
>RUN >RUN

NAME; SUSAN NAMES BILL
HI SUSAN ?ANN
 HI BILL AND ANN
READY
 READY

Additionally, strings and variables can be assigned with a single INPUT statement.

EXAMPLE:

>10 STRING 100,10
>20 INPUT"NAME(CR), AGE - ",$(1),A
>30 PRINT "HELLO ",$(1),", YOU ARE " ,A, "YEARS OLD"
>RUN

NAME(CR), AGE – FRED
?15
HELLO FRED. YOU ARE 15 YEARS OLD

READY
>

4.17 LET

MODE: command and/or run

TYPE: assignment

The LET statement is used to assign a variable to the value of an expression. The generalized
form of LET is:

LET [var] = [expr]

EXAMPLES:

LET A = 10*SIN(B)/100 or
LET A = A + 1

Note that the = sign used in the LET statement is not equality operator, but rather a "replace-
ment" operator and that the statement should be read A is replaced by A plus one. THE WORD
LET IS ALWAYS OPTIONAL, i.e.

LET A = 2 is the same as A = 2

When LET is omitted the LET statement is called an IMPLIED LET. This document will use the
word LET to refer to both the LET statement and the IMPLIED LET statement.

The LET statement is also used to assign the string variables, i.e.:

LET $(1)="THIS IS A STRING" or LET $(2)=$(1)

MCS BASIC-52 Users Manual

 32

Before Strings can be assigned the STRING [expr], [expr] statement MUST be executed, or else a
MEMORY ALLOCATION ERROR will occur.

Special function values can also be assigned by the LET statement. i.e.:

LET IE = 82H or
LET XBYTE(2000H)=5AH or
LET DBYTE(25)=XBYTE(1000)

4.18 ONERR

MODE: run

TYPE: control

The ONERR[ln num] statement lets the programmer handle arithmetic errors, should they
occur, during program execution. Only ARITH. OVERFLOW, ARITH. UNDERFLOW, DIVIDE BY
ZERO, and BAD ARGUMENT errors can be "trapped" by the ONERR statement, all other errors
are not. If an arithmetic error occurs after the ONERR statement is executed, the MCS BASIC-52
interpreter will pass control to the line number following the ONERR[ln num] statement. The pro-
grammer can handle the error condition in any manner suitable to the particular application. Typi-
cally, the ONERR[ln num] statement should be viewed as an easy way to handle errors that occur
when the user provides inappropriate data to an INPUT statement.

With the ONERR[ln num] statement, the programmer has the option of determining what type
of error occurred. This is done by examining external memory location 257 (101H) after the error
condition is trapped. The error codes are as follows:

ERROR CODE = 10 - DIVIDE BY ZERO
ERROR CODE = 20 - ARITH. OVERFLOW
ERROR CODE = 30 - ARITH. UNDERFLOW
ERROR CODE = 40 - BAD ARGUMENT

This location may be examined by using an XBY(257) statement.

4.19 ONEX1

MODE: run

TYPE: control

The ONEX1 [ln num] statement lets the user handle interrupts on the 8052AH's INT1 pin with a
BASIC program. The line number following the ONEX1 statement tells the MCS BASIC-52 inter-
preter which line to pass control to when an interrupt occurs. In essence, the ONEX1 statement
"forces" a GOSUB to the line number following the ONEX1 statement when the INT1 pin on the
8052AH is pulled low. The programmer must execute a RETI statement to exit from the ONEX1
interrupt routine. If this is not done all future interrupts on the INT1 pin will be "locked out" and
ignored until a RETI is executed.

The ONEX1 statement sets bits 7 and 2 of the 8052AH's interrupt enable register IE. Before an
interrupt can be processed, the MCS BASIC-52 interpreter must complete execution of the state-
ment it is currently processing. Because of this, interrupt latency can vary from microseconds to
tens of milliseconds. The ONTIME [expr], [ln num] interrupt has priority over the ONEX1 inter-
rupt. So, the ONTIME interrupt can interrupt the ONEX1 interrupt routine.

MCS BASIC-52 Users Manual

 33

4.20 ONTIME

MODE: run

TYPE: control

Since MCS BASIC-52 processes a line in the millisecond time frame and the timer/counters on
the 8052AH operate in the micro-second time frame, there is an inherent incompatibility between
the timer/counters on the 8052AH and MCS BASIC-52. To help solve this situation the ONTIME
[expr], [ln num] statement was devised. What ONTIME does is generate an interrupt every time
the special function operator, TIME, is equal to or greater than the expression following the
ONTIME statement. Actually, only the integer portion of TIME is compared to the integer portion
of the expression. The interrupt forces a GOSUB to the line number ([ln num]) following the
expression ([expr]) in the ONTIME statement.

Since the ONTIME statement uses the special function operator, TIME, the CLOCK1 statement
must be executed in order for ONTIME to operate. If CLOCK1 is not executed the special function
operator, TIME, will never increment and not much will happen.

Since the ONTIME statement generates an interrupt when TIME is greater than or equal to the
expression following the ONTIME statement, how can periodic interrupts be generated? That's
easy, the ONTIME statement must be executed again in the interrupt routine:

EXAMPLE:

>10 TIME=0 : CLOCK1 : ONTIME 2,100 : DO
>20 WHILE TIME<10 : END
>100 PRINT "TIMER INTERRUPT AT -",TIME,"SECONDS"
>110 ONTIME TIME+2,100 : RETI
>RUN

TIMER INTERRUPT AT - 2.045 SECONDS
TIMER INTERRUPT AT - 4.045 SECONDS
TIMER INTERRUPT AT - 6.045 SECONDS
TIMER INTERRUPT AT - 8.045 SECONDS
TIMER INTERRUPT AT - 10.045 SECONDS

READY

You may wonder why the TIME that was printed out was 45 milliseconds greater than the time
that the interrupt was supposed to be generated. That's because the terminal used in this example
was running at 4800 BAUD and it takes about 45 milliseconds to print the message TIMER INTER-
RUPT AT -" ".

If the programmer does not want this delay, a variable should be assigned to the special func-
tion operator, TIME, at the beginning of the interrupt routine.

EXAMPLE:

>10 TIME=0 : CLOCK1 : ONTIME 2,100 DO
>20 WHILE TIME<10 : END
>100 A=TIME
>110 PRINT "TIMER INTERRUPT AT -",A,"SECONDS"
>120 ONTIME A+2,100 : RETI
>RUN

TIMER INTERRUPT AT - 2 SECONDS
TIMER INTERRUPT AT - 4 SECONDS
TIMER INTERRUPT AT - 6 SECONDS
TIMER INTERRUPT AT - 8 SECONDS
TIMER INTERRUPT AT - 10 SECONDS

MCS BASIC-52 Users Manual

 34

READY

Like the ONEX1 statement, the ONTIME interrupt routine must be exited with a RETI state-
ment. Failure to do this will "lock-out" all future interrupts.

The ONTIME interrupt has priority over the ONEX1 interrupt. This means that the ONTIME
interrupt can interrupt the ONEX1 interrupt routine. This priority was established because time
related functions in control applications were viewed as critical routines. If the user does not want
the ONEX1 routine to be interrupted by the ONTIME interrupt, a CLOCK0 or a CLEARI statement
should be executed at the beginning of the ONEX1 routine. The interrupts would have to be re-
enabled before the end of the ONEX1 routine. The ONEX1 interrupt cannot interrupt an ONTIME
routine.

The ONTIME statement in MCS BASIC-52 is unique, relative to most BASICS. This powerful
statement eliminates the need for the user to "test" the value of the TIME operator periodically
throughout the BASIC program.

4.21 PRINT or P. (? Version 1.1 only)

MODE: command and/or run

TYPE: input/output

The PRINT statement directs MCS BASIC-52 to output to the console device. The value of
expressions, strings, literal values, variables or test strings may be printed out. The various forms
may be combined in the print list by separating them with commas. If the list is terminated with- a
comma, the carriage return/line feed will be suppressed. P. is a "shorthand" notation for PRINT. In
Version 1.1 ? is also "shorthand" notation for PRINT.

EXAMPLES:

>PRINT 10*10,3*3 >PRINT "MCS-51" >PRINT 5,1E3
 100 9 MCS-51 5 1000

Values are printed next to one another with two intervening blanks. A PRINT statement with
no arguments causes a carriage return/line feed sequence to be sent to the console device.

Special PRINT formatting statements:

TAB([expr]): The TAB([expr]) function is used in the PRINT statement to cause data to be
printed out in exact locations on the output device. TAB([expr]) tells MCS BASIC-52 which position
to begin printing the next value in the print list. If the print head or cursor is on or beyond the
specified TAB position, MCS BASIC-52 will ignore the TAB function.

EXAMPLE:

>PRINT TAB(5),"X",TAB(10),"Y"
 X Y

SPC([expr]): The SPC([expr]) function is used in the PRINT statement to cause MCS BASIC-52 to
output the number of spaces in the SPC argument.

EXAMPLE:

>PRINT A,SPC(5),B

may be used to place an additional 5 spaces between the A and B over and above the two that
would normally be printed.

MCS BASIC-52 Users Manual

 35

CR: The CR function is interesting and unique to MCS BASIC-52. When CR is used in a PRINT
statement it will force a carriage return, but no line feed. This can be used to create one line on a
CRT device that is repeatedly updated.

EXAMPLE:

>10 FOR I=1 TO 1000
>20 PRINT I,CR,
>30 NEXT I

will cause the output to remain only on one line. No line feed will ever be sent to the console
device.

USlNG(special characters): The USING function is used to tell MCS BASIC-52 what format to
display the values that are printed. MCS BASIC-52 "stores" the desired format after the USING
statement is executed. So, all outputs following a USING statement will be in the format evoked by
the last USING statement executed. The USING statement need not be executed within every
PRINT statement unless the programmer wants to change the format. U. is a "shorthand" notation
for USING. The options for USING are as follows:

USING(Fx)—This will force MCS BASIC-52 to output all numbers using the floating point
format. The value of x determines how many significant digits will be printed. If x equals 0. MCS
BASIC-52 will not output any trailing zeros, so the number of digits will vary depending upon the
number. MCS BASIC-52 will always output at least 3 significant digits even if x is 1 or 2. The maxi-
mum value for x is 8.

EXAMPLE:

>10 PRINT USING(F3),1,2,3
>20 PRINT USING(F4),1.2,3
>30 PRINT USING(F5),1,2,3
>40 FOR I=10 TO 40 STEP 10
>50 PRINT I
>60 NEXT I
>RUN

1.00 E 0 2.00 E 0 3.00 E 0
1.000 E 0 2.000 E 0 3.000 E 0
1.0000 E 0 2.0000 E 0 3.0000 E 0
1.0000 E+1
2.0000 E+1
3.0000 E+1
4.0000 E+1

READY

USING(#.#)—This will force MCS BASIC-52 to output all numbers using an integer and/or
fraction format. The number of "#" 's before the decimal point represents the number of significant
integer digits that will be printed in the fraction. The decimal point may be omitted, in which case
only integers will be printed. USING may be abbreviated U. USING (###.###),
USING(######) and USING(######.##) are all valid in MCS BASIC-52. The maximum
number of "#" characters is 8. If MCS BASIC-52 cannot output the value in the desired format
(usually because the value is too large) a question mark (?) will be printed to console device, then
BASIC will output the number in the free format described below.

EXAMPLE:

>10 PRINT USING(##.##),1,2,3
>20 FOR I=1 TO 120 STEP 20
>30 PRINT I
>40 NEXT I

MCS BASIC-52 Users Manual

 36

>RUN

 1.00 2.00 3.00
 1.00
 21.00
 41.00
 61.00
 81.00
 ? 101

 READY

Note: The USlNG(Fx) and the USING(#.#) formats will always "align" the decimal points when
printing a number. This feature makes displayed columns of numbers easy to read.

USING(0)—This argument lets MCS BASIC-52 determine what format to use. The rules are
simple, if the number is between +- 99999999 and +- .1, BASIC will display integers and fractions.
If it is out of this range, BASIC will use the USING(F0) format. Leading and trailing zeros will
always be suppressed. After reset, MCS BASIC-52 is placed in the USING(0) format.

4.22 PRINT# or P.# (?# Version 1.1 only)

MODE: command and/or run

TYPE: input/output

The PRINT#, P.#, and ?# (in Version 1.1 only) statement does the same thing as the PRINT, P.
and ? (in Version 1.1 only) statement except that the output is directed to the list device instead of
the console device. The baud rate to the list device must be initialized by the statement—
BAUD[expr] before the PRINT#, P.#, or, ?# statement is used. All comments that apply to the
PRINT, P. or, ? statement apply to the PRINT#, P.#, or ? statement. P.# and ?# (in Version 1.1
only) are "shorthand" notations for PRINT#.

4.23 PH0., PH1., PH0.#, PH1.#

MODE: command and/or run

TYPE: input/output

The PH0. and PH 1. statements do the same thing as the PRINT statement except that the
values are printed out in a hexadecimal format. The PH0. statement suppresses two leading zeros
if the number to be printed is less than 255 (0FFH). The PH1. statement always prints out four
hexadecimal digits. The character "H" is always printed after the number when PH0. or PH1. is
used to direct an output. The values printed are always truncated integers. If the number to be
printed is not within the range of valid integer (i.e. between 0 and 65535 (0FFFFH) inclusive), MCS
BASIC-52 will default to the normal mode of print. If this happens no "H" will be printed out after
the value. Since integers can be entered in either decimal or hexadecimal form the statements
PRINT, PH0., and PH1. can be used to perform decimal to hexadecimal and hexadecimal to deci-
mal conversion. All comments that apply to the PRINT statement apply to the PH0. and PH1.
statements. PH0.# and PH1.# do the same thing as PH0. and PH1. respectively, except that the
output is directed to the list device instead of the console device.

EXAMPLES:

>PH0. 2*2 >PH1. 2*2 >PRINT 99H >PH0. 100
 04H 0004H 153 64H

MCS BASIC-52 Users Manual

 37

>PH0. 1000 >PH1. 1000 >P. 3E8H >PH0. PI
 3E8H 03E8H 1000 03H

4.24 PRINT@, PH0.@, PH1.@ (Version 1.1 only)

MODE: command and/or run

TYPE: input/output

The PRINT@ (P.@ OR ?@), PH0.@, and PH1.@ statements do the same thing as the PRINT
(P.@ or ?@), PH0., and PH1. statements respectively except that the output is directed to a user
defined output driver. These statements assume that the user has placed an assembly language
output routine in external code memory location 403CH. To enable the @ driver routine the user
must set bit 27H (39D) in the internal memory of the MCS BASIC-52 device. Bit 27H (39D) is bit 7 of
internal memory location 24H (36D). This bit can be set by the BASIC statement DBY(24H) =
DBY(24H).OR.80H or by a user supplied assembly language routine. If the user evokes the @
driver routine and this bit is not set, the output will be directed to the console driver. The only rea-
son this bit must be set to enable the @ driver is that it adds a certain degree of protection from
accidentally typing LIST@ when no assembly language routine exist. The philosophy here is that if
the user sets the bit, the user provides the driver or else!!!

When MCS BASIC-52 calls the user output driver routine at location 403CH, the byte to output
is in the accumulator and R5 of register bank 0 (RB0). The user may modify the accumulator (A)
and the data pointer (DPTR) in the assembly language output routine, but cannot modify any of
the registers in RB0. This is intended to make it real easy for the user to implement a parallel or
serial output driver without having to do a PUSH or a POP.

4.25 PUSH

MODE: command and/or run

TYPE: assignment

The arithmetic expression, or expressions following the PUSH statement are evaluated and then
sequentially placed on MCS BASIC-52's argument stack. This statement, in conjunction with the
POP statement provide a simple means of passing parameters to assembly language routines. In
addition, the PUSH and POP statements can be used to pass parameters to BASIC subroutines and
to "SWAP" variables. The last value PUSHed onto the argument stack will be the first value
POPped off the argument stack.

Variations: More than one expression can be pushed onto the argument stack with a single
PUSH statement. The expressions are simply followed by a comma: PUSH [expr],[expr],..[expr].
The last value PUSHed onto the argument stack will be the last expression [expr] encountered in
the PUSH statement.

EXAMPLES:

swapping subroutine
 variables passing
>10 A=10 >10 PUSH 1,3,2
>20 B=20 >20 GOSUB 100
>30 PRINT A.C >3O POP R1,R2
>40 PUSH A,C >40 PRINT R1,R2
>5O POP A,B >5O END
>60 PRINT A,B >100 REM QUADRATIC A=2,B=3,C=1 IN EXAMPLE

MCS BASIC-52 Users Manual

 38

>RUN >110 POP A,B,C
 >120 PUSH (-B+SQR(B*B-4*A*C))/(2*A)
10 20 >130 PUSH (-B-SOR(B*B-4*A*C))/(2*A)
20 10 >140 RETURN
 >RUN
READY
> -1 -.5

 READY
 >

4.26 POP

MODE: command and/or run

TYPE: assignment

The top of the argument stack is assigned to the variable following the POP statement and the
argument stack is "-POPped" (i.e. incremented by 6). Values can be placed on the stack by either
the PUSH statement or by assembly language CALLs.

Note: If a POP statement is executed and no number is on the argument stack, an A-STACK
ERROR will occur.

Variations: More than one variable can be popped off the argument stack with a single POP
statement. The variables are simply followed by a comma (i.e. POP [var],[var], ..[var]).

EXAMPLES: See PUSH statement.

COMMENT: The PUSH and POP statements are unique to MCS BASIC-52. These powerful
statements can be used to "get around" the global variable problems so often encountered in BASIC
programs. This problem arises because in BASIC the "main" program and all subroutines used by
the main program are required to use the same variable names (i.e. global variables). It is not
always convenient to use the same variables in a subroutine as in the main program and you often
see programs re-assign a number of variables (i.e. A=Q) before a GOSUB statement is executed. If
the user reserves some variable names JUST for subroutines (i.e. S1, S2) and passes variables on the
stack as shown in the previous example, you will avoid any global variable problems in MCS
BASIC-52.

4.27 PWM

MODE: command and/or run

TYPE: input/output

PWM stands for PULSE WIDTH MODULATION. What it does is generate a user defined pulse
sequence on P1.2 (bit 2 of I/O PORT 1) of the MCS BASIC-52 device. The first expression following
the PWM statement is the number of clock cycles the pulse will remain high. A clock cycle is equal
to 12/XTAL, which is 1.085 microseconds at 11.0592 MHz. The second expression is the number of
clock cycles the pulse will remain low and the third expression is the total number of cycles the
user wishes to output. All expressions in the PWM statement must be valid integers (i.e. between 0
and 65535 (0FFFFH) inclusive). Additionally, the minimum value for the first two expressions in
the PWM statement is 25.

The PWM statement can be used to create "audible" feedback in a system. In addition, just for
fun, the programmer can play music using the PWM statement. More details about using the PWM
statement are in the appendix.

MCS BASIC-52 Users Manual

 39

EXAMPLE:

>PWM 100,100,1000

At 11.0592 MHz would generate 1000 cycles of a square wave that has a period of 217 microsec-
onds (4608 Hz) on P1.2.

4.28 REM

MODE: run (Version 1.0) command and/or run (Version 1.1)

TYPE: control—PERFORMS NO OPERATION

REM is short for REMark. It does nothing, but allows the user to add comments to a program.
Comments are usually needed to make a program a little easier to understand. Once a REM state-
ment appears on a line the entire line is assumed to be a remark, so a REM statement may not be
terminated by a colon (:) however, it may be placed after a colon. This can be used to allow the
programmer to place a comment on each line.

EXAMPLES:

>10 REM INPUT ONE VARIABLE
>20 INPUT A
>30 REM INPUT ANOTHER VARIABLE
>40 INPUT B
>50 REM MULTIPLY THE TWO
>60 Z=A*B
>70 REM PRINT THE ANSWER
>80 PRINT Z

>10 INPUT A : REM INPUT ONE VARIABLE
>20 INPUT B : REM INPUT ANOTHER VARIABLE
>30 Z=A*B : REM MULTIPLY THE TWO
>40 PRINT Z : REM PRINT THE ANSWER

The following will NOT work because the entire line would be interpreted as a REMark, so the
PRINT statement would not be executed:

>10 REM PRINT THE NUMBER : PRINT A

Note: The reason the REM statement was made executable in the command mode in Version
1.1 of MCS BASIC-52 is that if the user is employing some type of upload/download routine with a
computer, this lets the user insert REM statements, without line numbers in the text and not
download them to the MCS BASIC-52 device. This helps to conserve memory.

4.29 RETI

MODE: run

TYPE: control

The RETI statement is used to exit from interrupts that are handled by an MCS BASIC-52 pro-
gram. Specifically, the ONTIME and the ONEX1 interrupts. The RETI statement does the same
thing as the RETURN statement except that it also clears a software interrupt flags so interrupts
can again be acknowledged. If the user fails to execute the RETI statement in the interrupt proce-
dure, all future interrupts will be ignored.

4.30 STOP

MODE: run

MCS BASIC-52 Users Manual

 40

TYPE: control

The STOP statement allows the programmer to break program execution at specific points in a
program. After a program is STOPped variables can be displayed and/or modified. Program exe-
cution may be resumed with a CONTinue command. The purpose of the STOP statement is to
allow for easy program "debugging." More details of the STOP-CONT sequence are covered in the
Description Of Command—CONT section of this manual.

EXAMPLE:

>10 FOR I=1 TO 100
>20 PRINT I
>30 STOP
>40 NEXT I
>RUN

1
STOP - IN LINE 40

READY
>CONT

 2

Note that the line number printed out after the STOP statement is executed is the line number
following the STOP statement, NOT the line number that contains the STOP statement!!!

4.31 STRING

MODE: command and/or run

TYPE: control

The STRING [expr],[expr] statement allocates memory for strings. Initially, no memory is allo-
cated for strings. If the user attempts to define a string with a statement such as LET
$(1)="HELLO" before memory has been allocated for strings, a MEMORY ALLOCATION ERROR
will be generated. The first expression in the STRING [expr],[expr] statement is the total number of
bytes the user wishes to allocate for string storage. The second expression denotes the maximum
number of bytes that are in each string. These two numbers determine the total number of defined
string variables.

You might think that the total number of defined strings would be equal to the first expression
in the STRING [expr],[expr] statement divided by the second expression. Ha,ha, do not be so pre-
sumptuous. MCS BASIC-52 requires one additional byte for each string, plus one additional byte
overall. This means that the statement STRING 100,10 would allocate enough memory for 9 string
variables, ranging from $(0) to $(8) and all of the 100 allocated bytes would be used. Note that $(0)
is a valid string in MCS BASIC-52.

After memory is allocated for string storage, neither commands, such as NEW nor statements,
such as CLEAR, will "de-allocate" this memory. The only way memory can be de-allocated is to
execute a STRING 0,0 statement. STRING 0,0 will allocate no memory to string variables.

Important note: Every time the STRING [expr],[expr] statement is executed, MCS BASIC-52
executes the equivalent of a CLEAR statement. This is a necessity because string variables and
numeric variables occupy the same external memory space. So, after the STRING statement is exe-
cuted, all variables are "wiped-out." Because of this, string memory allocation should be performed

MCS BASIC-52 Users Manual

 41

early in a program (like the first statement or so) and string memory should never be "re-allocated"
unless the programmer is willing to destroy all defined variables.

4.32 UI1 and UI0 (USER INPUT)

MODE: command and/or run

TYPE: control

UI1: The UI1 statement permits the user to write specific console input drivers for MCS BASIC-
52. After UI1 is executed BASIC will call external program memory location 4033H when a console
input is requested. The user must provide a JUMP instruction to an assembly language input rou-
tine at this location. The appropriate ASCII input from this routine is placed in the 8052AH's accu-
mulator and the user input routine returns back to BASIC by executing an assembly language RET
instruction. The user must NOT modify any of the 8052AH's registers in the assembly language
program with the exception of the memory and register bank allocated to the user. The Assembly
Language Linkage section of this manual explains what memory MCS BASIC-52 allocates to the
user and how the user may allocate additional memory if needed.

In addition to providing the INPUT driver routine for the UI1 statement, the user must also
provide a console status check routine. This routine checks to see if the console device has a char-
acter ready for MCS BASIC-52 to read. BASIC CALLs external memory location 4036H to check the
console status. The console status routine sets the carry bit to 1 (C = 1) if a character is ready for
BASIC to read and clears the carry bit (C = 0) if no character is ready. Again, the contents of the
registers must not be changed. MCS BASIC-52 uses the console status check routine to examine the
keyboard for a control-C character during program execution and during a program LISTing. This
routine is also used to perform the GET operation.

UI0: The UI0 statement assigns the console input console routine back to the software drivers
resident on the MCS BASIC-52 device. UI0 and UI1 may be placed anywhere within a program.
This allows the BASIC program to accept inputs from different devices at different times.

Note: The UI0 and UI1 function is controlled by bit 30 (IEH) in the 8052AH's internal memory.
bit 30 is in internal memory location 35.6 (23.6H) i.e. the sixth bit in internal memory location 35
(23H). When bit 30 is set (bit 30 = 1), the user routine will be called. When bit 30 is cleared (bit 30 =
0), the MCS BASIC-52 input driver routine will be used. The assembly language programmer can
use this information to change the input device selection in assembly language.

4.33 UO1 and UO0 (USER OUTPUT)

MODE: command and/or run

TYPE: control

UO1: The UO1 statement permits the user to write specific console output drivers for MCS
BASIC-52. After UO1 is executed BASIC will call external program memory location 4030H when a
console output is requested. The user must provide a JUMP instruction to an assembly language
OUTPUT ROUTINE at this location. MCS BASIC-52 places the output character in REGISTER 5
(R5) of register bank 0 (RB0). The user returns back to BASIC executing an assembly language RET
instruction. The user must NOT modify any of the 8052AH's registers, including the accumulator
during the user output procedure with the exception of the memory and register bank allocated to
the user. UO1 gives the user the freedom to write custom output routines for MCS BASIC-52.

MCS BASIC-52 Users Manual

 42

UO0: UO0 statement assigns the console output routine back to the software drivers resident on
the MCS BASIC-52 device. UO0 and UO1 may be placed anywhere within a program. This allows
the BASIC program to output characters to different devices at different times.

Note: The UO0 and UO1 function is controlled by bit 28 (1CH) in the 8052AH's internal mem-
ory. bit 28 is in the internal memory location 35.4 (23.4H), i.e. the fourth bit in the internal memory
location 35 (28H). When bit 28 is set (bit 28 = 1), the user routines will be called. When bit 28 is
cleared, (bit 28 = 0), the MCS BASIC-52 output drivers will be used. The assembly language pro-
grammer can use this information to change the output device selection in assembly language.

4.34 IDLE (Version 1.1 only)

MODE: run

TYPE: control

The IDLE statement forces the MCS BASIC-52 device into a "wait until interrupt mode." Execu-
tion of statements is halted until either an ONTIME [expr], [ln num] or an ONEX1 [ln num] inter-
rupt is received. The user must make sure that one or both of these interrupts have been enabled
before executing the IDLE instruction or else the MCS BASIC-52 device will enter a "wait forever
mode" and for all practical purposes the system will have crashed.

When an ONTIME [expr], [ln num] or an ONEX1 [ln num] is received while in the IDLE mode,
the MCS BASIC-52 device will execute the interrupt routine, then execute the statement following
the IDLE instruction. Hence, the execution of the IDLE instruction is terminated when an interrupt
is received.

While in the IDLE mode, the MCS BASIC-52 device asserts the /DMA ACKNOWLEDGE pin
(PORT 1, bit 6 = 0) to indicate that the IDLE instruction is active and that no external bus activity
will occur. This pin is physically pin 7 on the MCS BASIC-52 device. When the MCS BASIC-52
device exits from the IDLE mode, this pin is placed back into the logically 1 (non-active) state.

The user may also exit from the IDLE mode with an assembly language interrupt routine. This
is accomplished by setting bit 33 (21H) (which is in Bit addressable RAM location 36.1) when
returning from the assembly language interrupt routine. If this bit is not set by the user, the MCS
BASIC-52 device will remain in the IDLE mode when the user assembly language routine returns
to BASIC.

An attempt to execute the IDLE statement in the direct mode will yield a BAD SYNTAX error.

4.35 RROM (Version 1.1 only)

MODE: command and/or run

TYPE: control

RROM stands for RUN ROM. What it does is select a program in the EPROM file, then execute
the program. The integer after the RROM statement selects what program in the EPROM file is to
be executed. In the command mode RROM 2 would be equivalent to typing ROM 2, then RUN.
But, notice that RROM [integer] is a statement. This means that a program that is already executing
can actually force the execution of a completely different program that is in the EPROM file. This
gives the user the ability to "change programs" on the fly.

MCS BASIC-52 Users Manual

 43

If the user executes a RROM [integer] statement and an invalid integer is entered (say 6 pro-
grams are contained in the EPROM file and the user enters RROM 8, or no EPROM is in the sys-
tem), no error will be generated and MCS BASIC-52 will execute the statement following the
RROM [integer] statement.

Note: Every time the RROM [integer] statement is executed, all variables and strings are set
equal to zero, so variables and strings CANNOT be passed from one program to another by using
the RROM [integer] statement. Additionally, all MCS BASIC-52 evoked interrupts are cleared.

4.36 LD@ and ST@ (Version 1.1 only)

MODE: command and/or run

TYPE: input/output

ST@: The ST@ [expr] statement lets the user specify where MCS BASIC-52 floating point num-
bers are to be stored. The expression [expr] following the ST@ statement specifies the address of
where the number is to be stored and the number is assumed to be on the argument stack. The
ST@ [expr] statement is designed to be used in conjunction with the LD@ [expr] statement. The
purpose of these two statements is to allow the user to save floating point numbers anywhere in
memory with the assumption that the user will employ some type of battery back-up or non-vola-
tile scheme with this memory.

LD@: The LD@ [expr] statement lets the user retrieve floating point numbers that were saved
with the ST@ [expr] statement. The expression [expr] following the LD@ statement specifies
where the number is stored and after executing the LD@ [expr] statement, the number is placed
on the argument stack.

EXAMPLE: Saving and retrieving a ten element array at location array at location 0F000H

10 REM *** ARRAY SAVE ***
20 FOR I = 0 TO 9
30 PUSH A(I) : REM PUT ARRAY VALUE ON STACK
40 ST@ 0F005H+6*I : REM STORE IT, SIX BYTES PER NUMBER
5O NEXT I
60 REM *** GET ARRAY ***
70 FOR I = 0 TO 9
8O LD@ 0F005H+6*I
90 POP B(I)
100 NEXT I

Remember that each floating point number requires 6 bytes of storage. Also note that expression
in the ST@ [expr] and LD@ [expr] statements point to the most significant byte of the stored num-
ber. Hence, ST@ (0F005H) would save the number in locations 0F005H, 0F004H, 0F003H, 0F002H,
0F01H, and 0F000H.

4.37 PGM

MODE: command and/or run

TYPE: input/output

The PGM statement gives the user the ability to program an EPROM or EEPROM while exe-
cuting a BASIC program. The PGM statement requires that the user set up internal memory loca-
tions 18H (24D), 19H (25D), 1AH (26D), 1BH (27D), 1EH (30D) and 1FH (31D). Note that these
internal memory locations are normally reserved for the user!!

MCS BASIC-52 Users Manual

 44

The User must initialize these internal memory locations with the following:

 LOCATION CONTENTS

 1BH:19H THE ADDRESS OF THE SOURCE INFORMATION THAT IS TO BE
 (27D:25D) PROGRAMMED INTO THE EPROM AT LOCATION 19H IS THE LOW
 BYTE AND LOCATION 1BH IS THE HIGH BYTE

 1AH:18H THE ADDRESS - 1 OF THE EPROM LOCATION(S) THAT ARE TO
 (26D:24D) BE PROGRAMMED, LOCATION 18H IS TH LOW BYTE AND
 LOCATION 1AH IS THE HICH BYTE

 1FH:1EH THE NUMBER OF BYTES THAT THE USER WANTS TO PROGRAM
 (31D:30D) LOCATION 1EH IS THE LOW BYTE AND LOCATION 1FH IS
 THE HIGH BYTE

The user must also initialize the width of the desired EPROM programming pulse and store the
value in internal memory locations 40H (64D) (high byte) and 41H (65D) (low byte). The reload for
a 50 millisecond EPROM programming pulse is calculated as follows:

10 REM R = RELOAD VALUE. W = WIDTH IN SECONDS (50 MILLISECONDS)
20 W = .05
30 R = 65536 - W * XTAL/12
40 DBY(40H) = R/256
50 DBY(41H) = R .AND. 0FFH

In addition, the user must also set or CLEAR bit 38.3 (26.3H) to select the INTELligent EPROM
programming algorithm. The bit is set to select INTELligent programming and cleared to select the
normal 50 millisecond algorithm. To set the bit, execute a DBY(38) = DBY(38) .OR. 8H Statement,
to CLEAR the bit, execute a DBY(38) = DBY(38) .AND. 0F7H instruction.

Important note: When executed in the RUN mode, The PGM statement will not generate an
error if the EPROM fails to program properly. Instead, the control of the program will be passed
back to the user just as if the EPROM programmed properly. The user must then examine loca-
tions 1EH and 1FH. If the contents of locations 1EH and 1FH both equal zero, then the EPROM
programmed properly. If they do not, then an error occurred during the programming process.
The user can then examine locations 1AH:18H to determine what location in the EPROM failed to
program.

Well, this sounds like a lot to do just to program an EPROM, but it's not so bad. The following
program is an example of a universal EPROM/EEPROM programmer built around MCS BASIC-52.
This program can program a block of RAM into an EPROM or EEPROM that is addressed at 8000H
or above.

EXAMPLE:

1 XTAL=12000000
10 PRINT "UNIVERSAL PROM PROGRAMMER" : PRINT "WHAT TYPE OF DEVICE ?"
20 PRINT : PRINT "1 = EEPROM" : PRINT "2 = INTELLIGENT EPROM"
30 PRINT "3 = NORMAL (50 MS) EPROM" : PRINT : INPUT "TYPE (1,2,3) - ",T
40 ON (T-1) GOSUB 340,350,360
50 REM this sets up intelligent programming if needed
60 IF W=.001 THEN DBY(26)=DBY(26).OR.8 ELSE DBY(26)=DBY(26).AND.0F7H
70 REM calculate pulse width and save it
80 PUSH (65536-(W*XTAL/12)) : GOSUB 380
90 POP G1 : DBY(40H)=G1 : POP G1 : DBY(41H)=G1 : PRINT
100 INPUT " STARTING DATA ADDRESS - ",S : IF S<512.OR.S>0FFFFH THEN 100
110 PRINT : INPUT " ENDING DATA ADDRESS - ",E
120 IF E<S.OR.E>0FFFFH THEN 110
130 PRINT : INPUT " PROM ADDRESS - ",P : IF P<8000H.OR.P>0FFFFH THEN 130
140 REM calculate the number of bytes to program
150 PUSH (E-S)+1 : GOSUB 380 : POP G1 : DBY(31)=G1 : POP G1 : DBY(30)=G1
160 REM set up the eprom address

MCS BASIC-52 Users Manual

 45

170 PUSH (P-1) : GOSUB 380 : POP G1 : DBY(26)=G1 : POP G1 : DBY(24)=G1
180 REM set up the source address
190 PUSH S : GOSUB 380 : POP G1 : DBY(27)=G1 : POP G1 : DBY(25)=G1
200 PRINT : PRINT "TYPE A 'CR' ON THE KEYBOARD WHEN READY TO PROGRAM"
210 REM wait for a 'cr' then program the eprom
220 X=GET : IF X<>0DH THEN 220
230 REM program the eprom
240 PGM
250 REM see if any errors
260 IF (DBY(30).OR.DBY(31))=0 THEN PRINT "PROGRAMMING COMPLETE" : END
270 PRINT : PRINT "***ERROR***ERROR***ERROR***ERROR***" : PRINT
280 REM these routines calculate the address of the source and
290 REM eprom location that failed to program
300 S1=DBY(25)+256*DBY(27) : S1=S1-1 : D1=DBY(24)+256*DBY(26)
310 PH0. "THE VALUE ",XBY(S1), : PH1. " WAS READ AT LOCATION ",S1 : PRINT
320 PH0. "THE EPROM READ ",XBY(D1), : PH1. " AT LOCATION ",D1 : END
330 REM these subroutines set up the pulse width
340 W=.0005 : RETURN
350 W=.001 : RETURN
360 W=.05 : RETURN
370 REM this routine takes the top of stack and returns high, low bytes
380 POP G1 : PUSH (G1.AND.0FFH) : PUSH (INT(G1/256)) : RETURN

MCS BASIC-52 Users Manual

 46

CHAPTER 5: Description of Arithmetic/Logic Operators and
Expressions

5.1 Dual Operand Operators

MCS BASIC-52 contains a complete set of arithmetical and logical operators. Operators are
divided into two groups, dual operand or dyadic operators and single operand or unary operators.
The generalized form of all dual operand instructions is as follows:

[expr] OP [expr]

where OP is one of the following operators:

+ ADDITION OPERATOR

EXAMPLE:

PRINT 3+2
5

/ DIVISION OPERATOR

EXAMPLE:

PRINT 100/5
20

** EXPONENTIATION OPERATOR

Raises the first expression to the power of the second expression. The power any number can be
raised to is limited to 255. The notation ** was chosen instead of the sometimes used ^ symbol
because the "up arrow" symbol appears different on various terminals. To eliminate confusion the
** notation was chosen.

EXAMPLE:

PRINT 2**3
8

* MULTIPLICATION OPERATOR

EXAMPLE:

PRINT 3*3
9

- SUBTRACTION OPERATOR

EXAMPLE:

PPINT 9-6
3

.AND. LOGICAL AND OPERATOR

EXAMPLE:

PRINT 3.AND.2
2

MCS BASIC-52 Users Manual

 47

.OR. LOGICAL OR OPERATOR

EXAMPLE:

PRINT 1.OR.4
5

.XOR. LOGICAL EXCLUSIVE OR OPERATOR

EXAMPLE:

PRINT 7.XOR.6
1

Comments on logical operators .AND., .OR., and .XOR.: These operators perform a bit-wise
logical function on valid integers. That means both arguments for these operators must be between
0 and 65535 (0FFFFH) inclusive. If they are not, MCS BASIC-52 will generate a BAD ARGUMENT
ERROR. All non-integer values are truncated, NOT rounded.

You may wonder why the notation .OP. was chosen for the logical functions. The only reason
for this is that MCS BASIC-52 eliminates ALL spaces when it processes a user line and inserts
spaces before and after statements when it LISTs a user program. MCS BASIC-52 does not insert
spaces before and after operators. So, if the user types in a line such as 10 A = 10 * 10, this line will
be listed as 10 A= 10*10. All spaces entered by the user before and after the operator will be elimi-
nated. The .OP. notation was chosen for the logical operators because a line entered as 10 B = A
AND B would be listed as 10 B = AANDB. This just looked confusing, so the dots were added to
the logical instructions and the previous example would be listed as 10 B=A.AND.B, which is eas-
ier to read.

5.2.1 Unary Operators—General Purpose

ABS([expr]): Returns the absolute value of the expression.

EXAMPLES:

PRINT ABS(5) PRINT ABS(-5)
5 5

NOT([expr]): Returns a 16 bit one's complement of the expression. The expression must be a
valid integer (i.e. between 0 and 65535 (0FFFFH) inclusive). Non-integers will be truncated, not
rounded.

EXAMPLES:

PRINT NOT(65000) PRINT NOT(0)
535 65535

INT([expr]): Returns the integer portion of the expression.

EXAMPLES:

PRINT INT(3.7) PRINT INT(100.876)
3 100

SGN([expr]): Will return a value of + 1 if the argument is greater than zero, zero if the argu-
ment is equal to zero, and - 1 if the argument is less than zero.

EXAMPLES:

PRINT SGN(52) PRINT SGN(0) PRINT SGN(-8)
 1 0 -1

MCS BASIC-52 Users Manual

 48

SQR([expr]): Returns the square root of the argument. The argument may not be less than zero.
The result returned will be accurate to within + / - a value of 5 on the least significant digit.

EXAMPLES:

PRINT SQR(9) PRINT SQR(45) PRINT SQR(100)
3 6.7082035 10

RND: Returns a pseudo-random number in the range between 0 and 1 inclusive. The RND
operator uses a 16-bit binary seed and generates 65536 pseudo-random numbers before repeating
the sequence. The numbers generated are specifically between 0/65535 and 65535/65535 inclusive.
Unlike most BASICS, the RND operator in MCS BASIC-52 does not require an argument or a
dummy argument. In fact, if an argument is placed after the RND operator, a BAD SYNTAX error
will occur.

EXAMPLES:

PRINT RND
.30278477

PI: PI is not really an operator, it is a stored constant. In MCS BASIC-52, PI is stored as
3.1415926. Math experts will notice that PI is actually closer to 3.141592653, so proper rounding for
PI should yield the number 3.1415927. The reason MCS BASIC-52 uses a 6 instead of a 7 for the last
digit is that errors in the SIN, COS and TAN operators were found to be greater when the 7 was
used instead of 6. This is because the number PI/2 is needed for these calculations and it is desir-
able, for the sake of accuracy to have the equation PI/2 + PI/2 = PI hold true. This cannot be done
if the last digit in PI is an odd number, so the last digit of PI was rounded to 6 instead of 7 to make
these calculations more accurate.

5.2.2 Unary Operators—Log Functions

LOG([expr]): Returns the natural logarithm of the argument. The argument must be greater
than 0. This calculation is carried out to 7 significant digits.

EXAMPLES:

PPINT LOG(12) PRINT LOG(EXP(1))
2.484906 1

EXP([expr]): This function raises the number "e" (2.7182818) to the power of the argument.

EXAMPLES:

PRINT EXP(1) PRINT EXP (L0G (2))
2.7182818 2

5.2.3 Unary Operators—Trig Functions

SlN([expr]): Returns the SIN of the argument. The argument is expressed in radians. Calcula-
tions are carried out to 7 significant digits. The argument must be between +- 200000.

EXAMPLES:

PRINT SIN(PI/4) PRINT SIN(0)
.7071067 0

COS([expr]): Returns the COS of the argument. The argument is expressed in radians. Calcula-
tions are carried out to 7 significant digits. The argument must be between +- 200000.

EXAMPLES:

MCS BASIC-52 Users Manual

 49

PRINT COS(PI/4) PRINT(COS(0))
7071067 1

TAN([expr]): Returns the TAN of the argument. The argument is expressed in radians. The
argument must be between +- 200000.

EXAMPLES:

PRINT TAN(PI/4) PRINT TAN(0)
1 0

ATN([expr]): Returns the ARCTANGENT of the argument. The result is in radians. Calculations
are carried out to 7 significant digits. The ATN operator returns a result between -PI/2 (3.1415926/2)
and PI/2.

EXAMPLES:

PRINT ATN(PI) PRINT ATN(1)
1.2626272 .78539804

Comments on trigonometric functions: The SIN, COS, and TAN operators use a Taylor series to
calculate the function. These operators first reduce the argument to a value that is between 0 and
PI/2. This reduction is accomplished by the following equation:

REDUCED ARGUMENT = (user arg/PI - INT(user arg/PI)) * PI

The reduced argument, from the above equation, will be between 0 and PI. The reduced argu-
ment is then tested to see if it is greater than PI/2. If it is, then it is subtracted from PI to yield the
final value. If it isn't, then the reduced argument is the final value.

Although this method of angle reduction provides a simple and economical means of generat-
ing the appropriate arguments for a Taylor series. there is an accuracy problem associated with this
technique. The accuracy problem is noticed when the user argument is large (i.e. greater than
1000). That is because significant digits, in the decimal (fraction) portion of reduced argument are
lost in the (user arg/PI - INT(user arg/PI)) expression. As a general rule, try to keep the arguments
for the trig functions as small as possible!

5.3 Understanding Precedence Of Operators

The hierarchy of mathematics dictates that some operations are carried out before others. If you
understand the hierarchy of mathematics, it is possible to write complex expressions using only a
minimum amount of parentheses. It is easy to illustrate what precedence is all about, examine the
following equation:

4+3*2 = ?

Should you add (4+3) then multiply seven by 2, or should you multiply (3*2) then add 4? Well,
the hierarchy of mathematics says that multiplication has precedence over addition, so you would
multiply (3*2) first then add 4, So,

4+3*2 = 10

The rules for the hierarchy of math are simple. When an expression is scanned from left to right
an operation is not performed until an operator of lower or equal precedence is encountered. In
the example addition could not be performed because multiplication has higher precedence. The
precedence of operators from highest to lowest in MCS BASIC-52 is as follows:

1) OPERATORS THAT USE PARENTHESES ()
2) EXPONENTATION (**)

MCS BASIC-52 Users Manual

 50

3) NEGATION (-)
4) MULTIPLICATION (*) AND DIVISION (/)
5) ADDITION (+) AND SUBTRACTION (-)
6) RELATIONAL EXPRESSIONS (=, <>, >, >=, <, <=)
7) LOGICAL AND (.AND.)
8) LOGICAL OR (.OR.)
9) LOGICAL XOR (.XOR.)

Relative to operator precedence, the rule of thumb should always be, when in doubt, use
parentheses.

5.4 How Relational Expressions Work

Relational expressions involve the operators =, <>, >, >=, <, and < = . These operators are
typically used to "test" a condition. In MCS BASIC-52 relational operators return a result of 65535
(0FFFFH) if the relational expression is true, and a result of 0, if the relation expression is false. But,
where is the result returned? It is returned to the argument stack. Because of this, it's possible to
actually display the result of a relational expression.

EXAMPLES:

PRINT 1=0 PRINT 1>0 PRINT A<>A PRINT A=A
0 65535 0 65535

It may seem strange to have a relational expression actually return a result, but it offers a unique
benefit in that relational expressions can actually be "chained" together using the logical operators
.AND., .OR.. and .XOR.. This makes it possible to test a rather complex condition with ONE state-
ment.

EXAMPLE:

>1O IF A<B AND A<C .OR. A>D THEN.

Additionally, the NOT([expr]) operator can be used.

EXAMPLE:

>10 IF NOT(A>B). AND. A<C THEN.

By "chaining" together relational expressions with logical operators, it is possible to test very
particular conditions with one statement. When using logical operators to link together relational
expressions, it is very important that the programmer pay careful attention to the precedence of
operators. The logical operators were assigned lower precedence, relative to relational expressions,
just to make the linking of relational expressions possible without using parentheses.

MCS BASIC-52 Users Manual

 51

CHAPTER 6: Description of String Operators

6.1 What Are Strings?

A string is a character or a bunch of characters that are stored in memory. Usually, the charac-
ters stored in a string make up a word or a sentence. Strings are handy because they allow the pro-
grammer to deal with words instead of numbers. This is useful because it allows one to write
"friendly" programs, where individuals can be referred to by their names instead of a number.

MCS BASIC-52 contains ONE dimensioned string variable, $([expr]). The dimension of the
string variable (the [expr] value) ranges from 0 to 254. This means that 255 different strings can be
defined and manipulated in MCS BASIC-52. Initially, no memory is allocated for strings. Memory
is allocated by the STRING [expr], [expr] statement. The details of this statement are covered in the
Description Of Statements chapter of this manual.

In MCS BASIC-52, strings can be defined in two ways, with the LET statement and with the
INPUT statement.

EXAMPLE:

>10 STRING 100,20
>20 $(1)="THIS IS A STRING, "
>30 INPUT "WHAT'S YOUR NAME? - ",$(2)
>40 PRINT $(1),$(2)
>RUN

WHAT'S YOUR NAME?. – FRED

THIS IS A STRING, FRED

strings can also be assigned to each other with a LET statement.

EXAMPLE:

$(2)=$(1)

Would assign the STRING value in $(1) to the STRING $(2).

6.2 The ASC Operator

In MCS BASIC-52, two operators manipulate strings. These operators are ASC() and CHR().
Admittedly, the string operators contained in MCS BASIC-52 are not quite as powerful as the string
operators contained in some BASICS. But surprisingly enough, by using the string operators avail-
able in MCS BASIC-52 it is possible to manipulate strings in almost any way imaginable. This in
itself is a commendable feat since MCS BASIC-52 was designed primarily to be a sophisticated
BASIC language oriented controller, not a string manipulator. The string operators available in
MCS BASIC-52 are as follows:

ASC()

The ASC() operator returns the integer value of the ASCII character placed in the parentheses.

EXAMPLE:

>PRINT ASC(A)
65

MCS BASIC-52 Users Manual

 52

65 is the decimal representation for the ASCII character "A." In addition, individual characters in
a predefined ASCII string can be evaluated with the ASC() operator.

EXAMPLE:

>10 $(1)="THIS IS A STRING"
>20 PRINT $(1)
>30 PRINT ASC($(1),1)

THIS IS A STRING

When the ASC() operator is used in the manner shown above, the $([expr]) denotes what string
is being accessed and the expression after the comma "picks out" an individual character in the
string. In the above example, the first character in the string was picked out and 84 is the decimal
representation for the ASCII character " T ."

EXAMPLE:

>10 $(1)="ABCDEFGHIJKL"
>20 FOR X=1 TO 12
>30 PRINT ASC($(1),X),
>40 NEXT X
>RUN

65 66 67 68 69 70 71 72 73 74 75 76

The numbers printed in the previous example are the values that represent the ASCII characters
A,B,C, . . . L.

Additionally, the ASC() operator can be used to change individual characters in a defined
string.

EXAMPLE:

>10 $(1)="AECDEFGHIJKL"
>20 PRINT $(1)
>30 ASC($(1),1)=75
>40 PRINT $(1)
>50 ASC($(1),2)=ASC($(1),3)
>60 PRINT $(1)
>RUN

AECDEFGHIJKL
KBCDEFGHIJKL
KCCDEFGHIJKL

In general, the ASC() operator lets the programmer manipulate individual characters in a
string. A simple program can determine if two strings are identical.

EXAMPLE:

>10 $(1)="SECRET" : REM SECRET IS THE PASSWORD
>20 INPUT "WHAT'S THE PASSWORD - ",$(2)
>30 FOR I=l TO 6
>40 IF ASC($(l),I)=ASC($(2),I) THEN NEXT I ELSE 70
>50 PRINT "YOU GUESSED IT"'
>60 END
>70 PRINT "WRONG. TRY AGAIN" : GOTO 20
>RUN

WHAT'S THE PASSWORD – SECURE
WRONG, TRY AGAIN
WHAT'S THE PASSWORD – SECRET
YOU GUESSED IT

MCS BASIC-52 Users Manual

 53

6.3 The CHR Operator
CHR()

The CHR() operator is the converse of the ASC() operator. It converts a numeric expression to
an ASCII character.

EXAMPLE:

>PRINT CHR(65)
A

Like the ASC() operator, the CHR() operator can also "pick out" individual characters in a
defined ASCII string.

EXAMPLE:

>10 $(1)"MCS BASIC-52"
>20 FOR I=1 TO 12 : PRINT CHR($(1),I), : NEXT I
>30 PRINT : FOR I=12 TO 1 STEP –1
>40 PRINT CHR($(1),I), : NEXT I
>RUN

MCS BASIC-52
25-CISAB SCM

In the above example, the expressions contained within the parentheses, following the CHR
operator have the same meaning as the expressions in the ASC() operator.

Unlike the ASC() operator, the CHR() operator CANNOT be assigned a value. A statement
such as CHR($(1),1) = H, is invalid and will generate a BAD SYNTAX ERROR. Use the ASC()
operator to change a value in a string. The CHR() operator can only be used within a print state-
ment!

MCS BASIC-52 Users Manual

 54

CHAPTER 7: Special Operators

7.1 Special Function Operators

Special function operators are called special function operators because they directly manipu-
late the I/O hardware and the memory addresses on the 8052AH device. All special function
operators, with the exception of CBY([expr]) and GET, can be placed on either side of the replace-
ment operator (=) in a LET statement.

EXAMPLES:

A = DBY(100) and DBY(100) = A+2

Both of the above are valid statements in MCS BASIC-52. The special function operators in MCS
BASIC-52 include the following:

CBY([expr]): The CBY([expr]) operator is used to retrieve data from the program or code mem-
ory address space of the 8052AH. Since code memory cannot be written into on the 8052AH, the
CBY([expr]) operator cannot be assigned a value. It can only be read.

EXAMPLE:

A = CBY(1000)

Causes the value in code memory space 1000 to be assigned to the variable A. The argument for
the CBY([expr]) operator MUST be a valid integer (i.e. between 0 and 65535 (0FFFFH)). If it is not,
a BAD ARGUMENT ERROR will occur.

DBY([expr]): The DBY([expr]) operator is used to retrieve or assign a value to the 8052AH's
internal data memory. Both the value and argument in the DBY operator must be between 0 and
255 inclusive. This is because there are only 256 internal memory locations in the 8052AH and one
byte can only represent a quantity between 0 and 255 inclusive.

EXAMPLES:

A=DBY(B) and DBY(250) = CBY(1000)

The first example would assign variable A the value that is in internal memory location B. B
would have to be between 0 and 255. The second example would load internal memory location
250 with the same value that is in program memory location 1000.

XBY([expr]): The XBY([expr]) operator is used to retrieve or assign a value to the 8052AH's
external data memory. The argument in the XBY([expr]) operator must be a valid integer (i.e.
between 0 and 65535 (0FFFFH)). The value assigned to the XBY([expr]) operator must be between
0 and 255. If it is not a BAD ARGUMENT error will occur.

EXAMPLES:

XBY(4000H)=DBY(100) and A=XBY(0F000H)

The first example would load external memory location 4000H with the same value that was in
internal memory location 100. The second example would make the variable A equal to the value
in external memory location 0F000H.

GET: The GET operator only produces a meaningful result when used in the RUN mode. It will
always return a result of zero in the command mode. What GET does is read the console input
device. Actually, it takes a "snapshot" of the console input device. If a character is available from the

MCS BASIC-52 Users Manual

 55

console device, the value of the character will be assigned to GET. After GET is read in the pro-
gram, GET will be assigned the value of zero until another character is sent from the console
device. The following example will print the decimal representation of any character sent from the
console:

EXAMPLE:

>10 A=GET
>20 IF A<>0 THEN PRINT A
>30 GOTO 10
>RUN

65 (TYPE "A" ON CONSOLE)
49 (TYPE "1" ON CONSOLE)
24 (TYPE "CONTROL-X" ON CONSOLE)
50 (TYPE '2' ON CON8OLE)

The reason the GET operator can be read only once before it is assigned a value of zero is that
this implementation guarantees that the first character entered will always be read, independent of
where the GET operator is placed in the program.

The following operators directly manipulate the 8052AH's special function registers. Specific
details of the operation of these registers is in the MICROCONTROLLER USERS HANDBOOK,
available from INTEL.

IE: The IE operator is used to retrieve or assign a value to the 8052AH's special function register
IE. Since the IE register on the 8052AH is a byte register, the value assigned to IE must be between
0 and 255. The IE register on the 8052AH contains an unused bit, bit IE.6. Since this bit is "unde-
fined," it may be read as a random one or zero, so the user may want to mask this bit when reading
the IE register. This can be done with a statement like A = IE.AND.0BFH. The only statements in
MCS BASIC-52 that write to the IE register are the CLOCK0, CLOCK1, ONEX1, CLEAR, and
CLEARI statements.

EXAMPLES:

IE = 81H and A = IE.AND.0BFH

IP: The IP operator is used to retrieve or assign a value to the 8052AH's special function register
IP. Since the IP register on the 8052AH is a byte register, the value assigned to IP must be between
0 and 255. The IP register on the 8052AH contains two unused bits, bit IP.6 and IP.7. Since these
bits are "undefined," they may be read as a random 1 or 0, so the user may want to mask these bits
when reading the IP register. This can be done with a statement such as B=IP.AND.3FH. MCS
BASIC-52 does not write to the IP register during initialization, so user can establish whatever
interrupt priorities are required in a given application.

EXAMPLES:

IP = 3 and A = IP.AND.3FH

PORT1: The PORT1 operator is used to retrieve or assign a value to the 8052AH's P1 I/O port.
Since P1 on the 8052AH is a byte wide register, the value assigned to P1 must be between 0 and 255
inclusive. Certain bits on P1 have pre-defined functions. If the user does not implement any of the
hardware associated with these pre-defined functions, The PORT1 instruction can be used in any
manner appropriate in the application.

PCON: The PCON operator is used to retrieve or assign a value to the 8052AH's PCON register.
In the 8052AH, only the most significant bit of the PCON register is used, all other bits are unde-

MCS BASIC-52 Users Manual

 56

fined. Setting this bit will double the baud rate if TIMER/COUNTER1 is used as the baud rate gen-
erator for the serial port. PCON is a byte register.

RCAP2: The RCAP2 operator is used to retrieve and/or assign a value to the 8052AH's special
function registers RCAP2H and RCAP2L. This operator treats RCAP2H and RCAP2L as a 16-bit
register pair. RCAP2H is the high byte and RCAP2L is the low byte. The RCAP2H and RCAP2L
registers are the reload/capture registers for TIMER2. The user must use caution when writing to
RCAP2 register because RCAP2 controls the baud rate of the serial port on the MCS BASIC-52
device. The following can be used to determine what baud rate the MCS BASIC-52 device is oper-
ating at:

BAUD = XTAL/(32*(65536-RCAP2))

T2CON: The T2CON operator is used to retrieve and/or assign a value to the 8052AH's special
function register T2CON. The T2CON is a byte register that controls TIMER2's mode of operation
and determines which timer (TIMER1 or TIMER2) is used as the 8052AH's baud rate generator.
MCS BASIC-52 initializes T2CON with the value 52 (34H) and assumes that its value is never
changed. Randomly changing the value of T2CON, without knowing what you are doing can
"crash" the serial port on the 8052AH. Beware!

TCON: The TCON operator is used to retrieve and/or assign value to the 8052AH's special
function register TCON. TCON is a byte register that is used to enable or disable TIMER0 and
TIMER1, plus the interrupts that are associated with these timers. Additionally, TCON determines
whether the external interrupt pins on the 8052AH are operating in a level sensitive or edge-trig-
gered mode. MCS BASIC-52 initializes TCON with the value 244 (0F4H) and assumes that it is
never changed. The value 244 (0F4H) places both TIMER0 and TIMER1 in the run (enabled) mode.
If the user disables the operation of TIMER0, by clearing bit 4 in the TCON register, the real time
clock will NOT work. If the user disables the operation of TIMER1, by clearing bit 6 in the TCON
register, the EPROM programming routines, the software serial port. and the PWM statement will
NOT work. Use caution when changing TCON!!!

TMOD: The TMOD operator is used to retrieve and/or assign a value to the 8052AH's special
function register TMOD. TMOD is a byte register that controls TIMER0 and TlMER1's mode of
operation. MCS BASIC-52 initializes the TCON register with a value of 16 (10H). The value 16
(10H) places TIMER0 in mode 0, which is a 13-bit counter mode and TIMER1 in mode 1, which is a
16-bit counter mode . MCS BASIC-52 assumes that the modes of these two timer/counters are
never changed. If the user changes the mode of TIMER0, the real time clock will not operate prop-
erly. If the user changes the mode of TIMER1, EPROM programming. the software serial port, and
the PWM statement will not work properly. If the user does not use these features available in
MCS BASIC-52, either timer/counter can be placed in any mode required by the specific applica-
tion.

TIME: The TIME operator is used to retrieve and/or assign a value to the real time clock resi-
dent in MCS BASIC-52. After reset, TIME is equal to 0. The CLOCK1 statement enables the real
time clock. When the real time clock is enabled, the special function operator, TIME will increment
once every 5 milliseconds. The TIME operator uses TIMER0 and the interrupts associated with
TIMER0 on the 8052AH. The unit of TIME is seconds and the appropriate XTAL value must be
assigned to insure that the TIME operator is accurate.

When TIME is assigned a value with a LET statement (i.e. TIME = 100), only the integer portion
of TIME will be changed.

MCS BASIC-52 Users Manual

 57

EXAMPLE:

>CLOCK1 (enable REAL TIME CLOCK)
>CLOCK0 (disable REAL TIME CLOCK)
>PRINT TIME (display TIME)
 3.315
>TIME = 0 (set TIME = 0)

>PRINT TIME (display TIME)
 .315 (only the integer is changed)

The "fraction" portion of TIME can be changed by manipulating the contents of internal mem-
ory location 71 (47H). This is accomplished by a DBY(71) statement. Note that each count in inter-
nal memory location 71 (47H) represents 5 milliseconds of TIME. Continuing with the EXAMPLE:

>DBY(71) = 0 (fraction of TIME = 0)

>PRINT TIME
 0

>DBY(71) = 3 (fraction of TIME = 3, 15 ms)

>PRINT TIME
 1.5 E-2

The reason only the integer portion of TIME is changed when assigned a value is that it allows
the user to generate accurate time intervals. For instance, let's say you want to create an accurate 12
hour clock. There are 43200 seconds in a 12 hour period, so an ONTIME 43200,[ln num] statement
is used. Now, when the TIME interrupt occurs the statement TIME = 0 is executed, but the milli-
second counter is not re-assigned a value so if interrupt latency happens to exceed 5 milliseconds,
the clock will still remain accurate.

TIMER0: The TIMER0 operator is used to retrieve or assign a value to the 8052AH's special
function registers TH0 and TL0. This operator treats the byte registers TH0 and TL0 as a 16-bit reg-
ister pair. TH0 is the high byte and TL0 is the low byte. MCS BASIC-52 uses TH0 and TL0 to
implement the real time clock function. If the user does not implement the real time clock function
(i.e. does not use the statement CLOCK1) in the BASIC program TH0 and TL0 may be used in any
manner suitable to the particular application.

TIMER1: The TIMER1 operator is used to retrieve or assign a value to the 8052AH's special
function registers TH1 and TL1. This operator treats the byte registers TH1 and TL1 as a 16-bit reg-
ister pair TH1 is the high byte and TL1 is the low byte. MCS BASIC-52 uses TH1 and TL1 to
implement the timings for the software serial port, the EPROM programming feature, and the
PWM statement. If the user does not use any of these features TH1 and TL1 may be used in any
manner suitable to the particular application.

TIMER2: The TIMER2 operator is used to retrieve or assign a value to the 8052AH's special
function registers TH2 and TL2. This operator treats the byte registers TH2 and TL2 as a 16-bit reg-
ister pair. TH2 is the high byte and TL2 is the low byte. MCS BASIC-52 uses TH2 and TL2 to gener-
ate the baud rate for the serial port. If the user does not use TIMER2 to clock the serial port, TH2
and TL2 may be used in any manner suitable to the particular application.

XTAL: The XTAL operator tells MCS BASIC-52 what frequency the system is operating at. The
XTAL operator is used by MCS BASIC-52 to calculate the real time clock reload value, the PROM
programming timing, and the software serial port baud rate generation. The XTAL value is
expressed in Hz. So, XTAL = 9000000 would set the XTAL value to 9 MHz.

MCS BASIC-52 Users Manual

 58

7.2 Examples Of Manipulating Special Function Values

Using the logical operators available in MCS BASIC-52. it is possible to write to or read from any
byte of the special function registers that MCS BASIC-52 treats as a register pair:

EXAMPLE: writing to the high byte

>TIMER0 = (TIMER0 .AND. 00FFH)+ INT(256*(USER BYTE))

EXAMPLE: writing to the low byte

>TIMER0 = (TIMER0 .AND. 0FF00H) + (USER BYTE)

EXAMPLE: reading high byte

>PH0. INT(TIMER0/256)

EXAMPLE: reading low byte

>PH0. TIMER0 .AND. 0FFH

TIMER1 can function as the baud rate generator for MCS BASIC-52. To assign TIMER1 as the
baud rate generator, the following instructions must be executed:

>TMOD = 32 - TIMER1 in auto reload mode
>TIMER1 = 256*(256-(65536-RCAP2)/12) - load TIMER1
>T2CON = 0 - use TIMER1 as baud rate gen

This sequence of instructions can be executed in either the direct mode or as part of a program.
When TIMER1 is used as the baud rate generator. TIMER2 can be used in anyway suitable to the
application. The PROG, FPROG, LIST#, PRINT# and PWM commands/statements cannot be used
when TIMER1 functions as the baud rate generator for the MCS BASIC-52 device. Certain crystals
may not be able to use TIMER1 as the baud rate generator, especially at high (above 2400) baud
rates.

7.3 System Control Values

The system control values determine or reveal how memory is allocated by MCS BASIC-52.

MTOP: After reset, MCS BASIC-52 sizes the external memory and assigns the last valid memory
address to the system control value, MTOP. MCS BASIC-52 will not use any external RAM memory
beyond the value assigned to MTOP. If the user wishes to allocate some external memory for an
assembly language routine the LET statement can be used (e.g. MTOP = user address). If the user
assigns a value to MTOP that is greater than the last valid memory address, a MEMORY ALLO-
CATION ERROR will be generated.

EXAMPLES:

>PRINT MTOP
 2047

>MTOP=2000

>PRINT MTOP
 2000

LEN: The system control value, LEN. tells the user how many bytes of memory the current
selected program occupies. Obviously, LEN cannot be assigned a value, it can only be read. A
NULL program (i.e. no program) will return a LEN of 1. The 1 represents the end of program file
character.

MCS BASIC-52 Users Manual

 59

FREE: The system control value, FREE, tells the user how many bytes of RAM memory are
available to the user. When the current selected is in RAM memory, the following relationship will
always hold true.

FREE = MTOP — LEN — 511

Note: Unlike some BASICS, MCS BASIC-52 does not require any "dummy" arguments for the
system control values.

MCS BASIC-52 Users Manual

 60

CHAPTER 8: Error Messages, Bells, Whistles, and Anomalies

8.1 Error Messages

MCS BASIC-52 has a relatively sophisticated error processor. When BASIC is in the RUN mode
the generalized form of the error message is as follows:

ERROR: XXX - IN LINE YYY

YYY BASIC STATEMENT
—————-X

Where XXX is the error TYPE and YYY is the line number of the program in which the error
occurred. A specific example is:

ERROR BAD SYNTAX - IN LINE 10

10 PRINT 34*21*
——————- X

The X signifies approximately where the error occurred in the line number. The specific location
of the X may be off by one or two characters or expressions depending on the type of error and
where the error occurred in the program. If an error occurs in the command mode only the error
type will be printed out NOT the line number. This makes sense, because there are no line num-
bers in the command mode. The error types are as follows:

BAD SYNTAX: A BAD SYNTAX error means that either an invalid MCS BASIC-52 command,
statement, or operator was entered and BASIC cannot process the entry. The user should check
and make sure that everything was typed in correctly. In Version 1.1 of MCS BASIC-52 a BAD
SYNTAX error is also generated if the programmer attempts to use a reserved keyword as part of a
variable.

BAD ARGUMENT: When the argument of an operator is not within the limits of the operator a
BAD ARGUMENT error will be generated. For instance. DBY(257) would generate a BAD ARGU-
MENT error because the argument for the DBY operator is limited to the range 0 to 255. Similarly,
XBY(5000H) = -1 would generate a BAD ARGUMENT error because the value of the XBY operator
is limited to the range 0 to 255.

ARITH. UNDERFLOW: If the result of an arithmetic operation exceeds the lower limit of an
MCS BASIC-52 floating point number, an ARITH. UNDERFLOW error will occur. The smallest
floating point number in MCS BASIC-52 is +- 1E-127. For instance, 1E-80/1E + 80 would cause an
ARITH. UNDERFLOW error.

ARITH. OVERFLOW: If the result of an arithmetic operation exceeds the upper limit of an
MCS BASIC-52 floating point number, an ARITH. OVERFLOW error will occur. The largest float-
ing point number in MCS BASIC-52 is +-.99999999E+127. For instance, 1E+70*1E+70 would cause
an ARITH. OVERFLOW error.

DIVIDE BY ZERO: A division by zero was attempted i.e. 12/0, will cause a DIVIDE BY ZERO
error.

ILLEGAL DIRECT (Version 1.0 only): Some statements, such as IF-THEN and DATA cannot be
executed while the MCS BASIC-52 device is in the command mode. If you attempt to execute one
of these statements the message ERROR: ILLEGAL DIRECT will be printed to the console device.

MCS BASIC-52 Users Manual

 61

The ILLEGAL DIRECT error is not trapped in Version 1.1 of MCS BASIC-52. ILLEGAL DIRECT
errors return a BAD SYNTAX error in Version 1. 1.

LINE TOO LONG (Version 1.0 only): If you type in a line that contains more than 73 characters
the message ERROR: LINE TOO LONG will be printed to the console device. MCS BASlC-52's
input buffer can only handle up to 73 characters.

Note: This error does not exist in Version 1.1. Instead the input buffer has been increased to 79
characters and MCS BASIC-52 will echo a bell character to the user terminal if too many characters
are entered into the input buffer.

NO DATA: If a READ statement is executed and no DATA statement exists or all DATA has
been read and a RESTORE instruction was not executed the message ERROR: NO DATA—IN
LINE XXX will be printed to the console device.

CAN'T CONTINUE: Program execution can be halted by either typing in a control-C to the
console device or by executing a STOP statement. Normally, program execution can be resumed by
typing in the CONT command. However, if the user edits the program after halting execution and
then enters the CONT command, a CAN'T CONTINUE error will be generated. A control-C must
be typed during program execution or a STOP statement must be executed before the CONT
command will work.

PROGRAMMING: If an error occurs while the MCS BASIC-52 device is programming an
EPROM, a PROGRAMMING error will be generated. An error encountered during programming
destroys the EPROM File structure, so the user cannot save any more programs on that particular
EPROM once a PROGRAMMING error occurs.

A-STACK: An A-STACK (argument stack) error occurs when the argument stack pointer is
forced "out of bounds." This can happen if the user overflows the argument stack by PUSHing too
many expressions onto the stack, or by attempting to POP data off the stack when no data is pre-
sent.

C-STACK: A C-STACK (control STACK) error will occur if the control stack pointer is forced
"out of bounds." 158 bytes of external memory are allocated for the control stack, FOR—NEXT
loops require 17 bytes of control stack DO—UNTIL, DO—WHILE, and GOSUB require 3 bytes of
control stack. This means that 9 nested FOR—NEXT loops is the maximum that MCS BASIC-52 can
handle because 9 times 17 equals 153. If the user attempts to use more control stack than is avail-
able in MCS BASIC-52 a C-STACK error will be generated. In addition, C-STACK errors will occur
if a RETURN is executed before a GOSUB a WHILE or UNTIL before a DO, or a NEXT before a
FOR.

I-STACK: An I-STACK (internal stack) error occurs when MCS BASIC-52 does not have enough
stack space to evaluate an expression. Normally, I-STACK errors will not occur unless insufficient
memory has been allocated to the 8052AH's stack pointer. Details of how to allocate memory to the
stack pointer are covered in the Assembly Language Linkage section of this manual.

ARRAY SIZE: If an array is dimensioned by a DIM statement and then you attempt to access a
variable that is outside of the dimensioned bounds, an ARRAY SIZE error will be generated.

EXAMPLE:

>DIM A(10)
>PRINT A(11)

MCS BASIC-52 Users Manual

 62

ERROR: ARRAY SIZE
READY

MEMORY ALLOCATION: MEMORY ALLOCATION errors are generated when user attempts
to access strings that are "outside" the defined string limits. Additionally, if the system control
value, MTOP is assigned a value that does not contain any RAM memory, a MEMORY ALLOCA-
TION error will occur.

8.2 Disabling control-C

In some applications, it may be desirable or even a requirement that program execution not
accidentally be halted. Under "normal" operation the execution of any MCS BASIC-52 program can
be terminated by typing a "control-C" on the console device. However, it is possible to disable the
"control-C" break function in MCS BASIC-52. This is accomplished by setting bit 48 (30H) to a one.
bit 48 is located in internal memory location 38.0 (26.0H). This bit may be set by executing the fol-
lowing statement in an MCS BASIC-52 program:

DBY(38) = DBY(38).OR.01H

Once this bit is set to a one, the control-C break function, for both LIST and RUN operations will
be disabled. The user has the option to create a custom break character or string of characters by
using the GET operator. The following is an example of how to implement a custom break charac-
ter:

EXAMPLE:

>10 STRING 100,10: A=1: REM INITIALIZE STRINGS
>20 $(1) = "BREAK" : REM "BREAK" IS THE PASSWORD
>30 DBY(38) = DBY(38).OR.1 : REM DISABLE CONTROL-C
>40 FOR I=1 T0 1000 : REM DUMMY LOOP
>50 J=SIN(I)
>60 K=GET : IF K<>0 THEN 100 ELSE NEXT I
>70 END
>100 IF K=ASC($(1),A) THEN A=A+1 ELSE A=1
>110 REM TEST FOR MATCH
>120 IF A=1 THEN NEXT I
>130 IF A=6 THEN 200 ELSE NEXT I
>140 END
>200 PRINT "BREAK"
>210 DBY(38)=DBY(38).AND.0FEH : REM ENABLE CONTROL-C

In this example, typing the word BREAK will stop program execution. In other words, BREAK is
a password.

8.3 Implementing "Fake DMA"

The MCS BASIC-52 device does not contain an hardware mechanism that supports Direct
Memory Access (DMA). However, the DMA function is supported in software by MCS BASIC-52.
During DMA operation MCS BASIC-52 guarantees that no external memory access will be per-
formed. To enable the DMA function, the following must be performed:

1) Bit 49, which is located in internal memory location 38.1 (26.1H) must be set to a one. This can
be accomplished in BASIC by using the statement—DBY(38) = DBY(38) .0R. 02H

2) Bit 0 and bit 7 of the special function register, IE (Interrupt enable) must be set to a one. This
can be accomplished in BASIC by using the statement—IE = IE.OR.81H

After the three bits mentioned above are set to a one, external interrupt zero (/INT0) acts as a
DMA input pin. /INT0 is pin 12 on the 8052AH. Whenever /INT0 is pulled low (to a logical zero
state), the MCS BASIC-52 device will enter the DMA mode and no accesses will be made to exter-

MCS BASIC-52 Users Manual

 63

nal memory. To acknowledge that MCS BASIC-52 has entered the DMA mode, MCS BASIC-52
outputs a zero on pin 7 (P1.6). In essence, PORT 1.6 is the /DMA ACK pin of the MCS BASIC-52
device. In most applications, this pin would be used to disable three-state buffers that would be
placed on PORT2, PORT0, and the address latch of the MCS BASIC-52 system. After the user pulls
the /INT0 pin high, MCS BASIC-52 will output a one on P1.6 and normal program execution will
continue. During this "fake DMA" cycle, the MCS BASIC-52 program does nothing except wait for
the /INT0 pin to be pulled high. So, program execution is halted.

It should be noted that although this "fake DMA" operation does provide the same functionality
as a normal DMA hardware mechanism, it also takes substantially longer for the normal DMA
REQUEST—DMA ACKNOWLEDGE cycle to be performed. That is because MCS BASIC-52 uses
interrupts to implement the DMA operation, instead of dedicated hardware. As a general rule,
cycle stealing DMA is not an option with MCS BASlC-52's "fake" DMA. Only "burst mode" DMA
cycles can be implemented without a significant time penalty. When "fake DMA" is implemented,
the user must provide three-state buffers on the PORT2, PORT0, and the address latch of the MCS
BASIC-52 system.

8.4 RUN TRAP Option (Version 1.1 Only)

Version 1.1 of MCS BASIC-52 permits the user to trap the interpreter in the RUN mode. This
option is evoked by putting a 34H (52D) in external data memory location 5EH (94D). After a 34H
(52D) is placed in external data memory location 5EH (94D) the MCS BASIC-52 interpreter will be
trapped in the RUN mode forever or until the contents of external data memory location is
changed to something other than 34H (52D). If no program is present when a 34H (52D) is placed
in location 5EH (94D), MCS BASIC-52 will print the READY message forever and it will be time to
Reset the device. The RUN TRAP option can be employed with the other Reset options to permit
the user to execute a program from RAM on a Reset or power-up condition when some type of
battery back-up memory scheme is employed.

8.5 Anomalies

Most dictionaries define an anomaly as a deviation from the normal or common order or as an
irregularity Anomalies to an extreme become "bugs" or something that is wrong with the program.
Like all programs, MCS BASIC-52 contains some anomalies, hopefully, no bugs. The purpose of
mentioning the known anomalies here is that it may save the programmer some time, should
strange things happen during program execution. The known anomalies deal mainly with the way
MCS BASIC-52 compacts or tokenizes the BASIC program. The known anomalies and cautions are
as follows:

1) When using the variable H after a line number, make sure you put a space between the line
number and the H, or else BASIC will assume that the line number is a hex number.

EXAMPLES:

>20H=10 (WRONG) >20 H=10 (RIGHT)
>LIST >LlST
32 =10 20 H=10

2) When using the variable I before an ELSE statement, make sure you put a space between the
I and the ELSE statement, or else BASIC will assume that the IE portion of IELSE is the special
function operator IE.

EXAMPLES:

MCS BASIC-52 Users Manual

 64

>20 IF I>10 THEN PRINT IELSE 100
>LIST
20 IF I>10 THEN PRINT IELSE 100 (WRONG)

>20 IF I>10 THEN PRINT I ELSE 100
>LIST
20 IF 1>10 THEN PRINT I ELSE 100 (RIGHT)

3) A Space character may not be placed inside the ASC() operator. In other words, a statement
like PRINT ASC() will yield a BAD SYNTAX ERROR. Spaces may be placed in strings however, so
a statement like LET $(1) = "HELLO, HOW ARE YOU" will work properly. The reason ASC()
yields an error is because MCS BASIC-52 eliminates all spaces when a line is processed. so ASC()
will be stored as ASC() and MCS BASIC-52 interprets this as an error.

MCS BASIC-52 Users Manual

 65

CHAPTER 9: Assembly Language Linkage

9.1 Overview

Note: This section assumes that the designer has an understanding of the architecture and
assembly language of the MCS-51 Microcontroller family!!!

MCS BASIC-52 contains a complete library of routines that can easily be accessed with assembly
language CALL instructions. The advantage of using assembly language is that it offers a signifi-
cant improvement in execution speed relative to interpreted BASIC. In order to successfully inter-
face MCS BASIC-52 with an assembly language program, the software designer must be aware of a
few simple facts.

READ THIS CAREFULLY!!!

1. MCS BASIC-52 uses register banks 0, 1, and 2 (RB0, RB1, and RB2). register bank 3 (RB3) is
never used except during a PGM statement. RB3 is designated the user register bank and the users
can do whatever they want to with register bank 3 (RB3) and MCS BASIC-52 will never alter the
contents of this register bank except during the execution of a PGM statement. The contents of
register bank 3 (RB3) can be changed by executing a DBY ([expr]) = [0 to 255] statement. Where the
[expr] evaluates to a number between 24 (18H) and 31 (1FH) inclusive. In addition, internal mem-
ory locations 32 (20H) and 33 (21 H) are also NEVER used by MCS BASIC-52. These two bit and/or
byte addressable locations are specifically reserved for assembly language programs.

2. MCS BASIC-52 uses register bank 0 (RB0) as the working register file. Whenever assembly
language is used to access MCS BASlC-52's routines, the working register file, register bank 0 (RB0)
MUST BE SELECTED!!! This means that the user MUST MAKE SURE THAT REGISTER BANK 0
(RB0) IS SELECTED BEFORE CALLING ANY OF MCS BASlC-52's ROUTINES. This is done simply
by setting bits 3 and 4 in the PSW equal to zero. If this is not done, MCS BASIC-52 will "kick-out"
the user and no operation will be performed. When an assembly language program is accessed by
using the MCS BASlC-52's CALL instruction, register bank 0 (RB0) will always be selected. So
unless the user selects register bank 3 (RB3) in assembly language, it is not necessary to change the
designated register bank.

3. ALWAYS ASSUME THAT MCS BASIC-52 DESTROYS THE CONTENTS OF THE WORKING
REGISTER FILE AND THE DPTR, UNLESS OTHERWISE STATED IN FOLLOWING DOCUMEN-
TATION.

4. Certain routines in MCS BASIC-52 require that registers be initialized BEFORE the user
CALLs that specific routine. These registers are ALWAYS in the working register file, register bank
0 (RB0).

5. Certain routines in MCS BASIC-52 return the result of an operation in a register or registers.
The result registers are ALWAYS in the working register file, register bank 0, (RB0).

6. MCS BASIC-52 loads the internal stack pointer (special function register- SP) with the value
that is in internal memory location 62 (3EH). MCS BASIC-52 initializes internal memory location 62
(3EH) by writing a 77 (4DH) to this location after a hardware Reset. MCS BASIC-52 does not use
any memory beyond 77 (4DH) for anything EXCEPT STACK SPACE. If the user wants to allocate
some additional internal memory for their application, this is done by changing the contents of
internal memory location 62 (3EH) to a value that is greater than 77 (4DH). This will allocate the

MCS BASIC-52 Users Manual

 66

internal memory locations from 77 (4DH) to the value that is placed in internal memory location 62
(3EH) to the user. As a guideline, it is a good idea to allow at least 48 (30H) bytes of stack space for
MCS BASIC-52. The bad news about reducing the stack space is that it will reduce the amount of
nested parentheses that MCS BASIC-52 can evaluate in an expression [expr]. This will either cause
a I-STACK error or will cause a fatal CPU "crash." Use caution and don’t allocate more memory
than you need.

EXAMPLE OF THE EFFECTS OF ALTERING THE STACK ALLOCATION:

 COMMENTS

>PRINT DBY(62) AFTER RESET INTERNAL MEMORY LOCATION 6
 77 CONTAINS A 77

>PRINT (1*(2*(3))) BASIC HAS NO PROBLEM EVALUATING 3 LEVELS
 6 OF NESTED PARENRHESIS

>DBY(62)=230 NOW ALLOCATE 255-230 = 25 BYTES OF STACK
 SPACE TO BASIC, REMEMBER, THE STACK ON
>PRINT (1*(2*(3))) THE 80S2AH GROWS "UP"

ERROR: I-STACK BASIC CANNOT EVALUATE THIS EXPRESSION
READY BECAUSE IT DOES NOT HAVE ENOUGH STACK
>DBY(62)=210 NOW ALLOCATE 255-210 = 45 BYTES OF STACK
 SPACE TO BASIC
>PRINT (1*(2*(3))) THE I-STACK ERROR GOES AWAY
 6

7. Throughout this section a 16-bit register pair is designated-Rx:Ry, where Rx is the most sig-
nificant byte and Ry is the least significant byte.

EXAMPLE:

R3:R1 - R3=MOST SIGNIFICANT BYTE. R1=LEAST SIGNIFICANT BYTE

9.2 General Purpose Routines

Accessing MCS BASIC-52 routines with assembly language is easy. The user just loads the
accumulator with a specific value and CALLs location 48 (30H). The value placed in the accumu-
lator determines what operation will be performed. Unless otherwise stated, the contents of the
DPTR and register bank 0 (RB0) will always be altered when calling these routines. The general-
ized form for accessing MCS BASlC-52's routines is as follows:

ANL PSW,#11100111B ;make sure RB0 is selected
MOV A,#OPBYTE ;load the instruction
CALL 30H ;execute the instruction

The value of OPBYTE determines what operation will be performed. The following operations
can be performed:

OPBYTE = 0 (00H) RETURN TO COMMAND MODE

This instruction causes MCS BASIC-52 to enter the command mode. Control of the CPU is
handed back to the MCS BASIC-52 interpreter and BASIC will respond by outputting a READY
and a prompt character (>).

OPBYTE = 1 (01H) POP ARGUMENT STACK AND PUT VALUE IN R3:R1

This instruction converts the value that is on the argument stack to a 16 bit binary integer and
returns the binary integer in registers R3 (high byte) and R1 (low byte) of register bank 0 (RB0). The

MCS BASIC-52 Users Manual

 67

argument stack gets popped after this instruction is executed. If the value on the argument stack
cannot be represented by a 16-bit binary number (i.e. it is NOT between 0 and 65535 (0FFFFH)
inclusive), BASIC WILL TRAP THE ERROR and print a BAD ARGUMENT error message. The
binary value returned is TRUNCATED, NOT ROUNDED.

EXAMPLE:

BASIC PROGRAM -
10 PUSH 20
20 CALL 5000H

ASSEMBLY LANGUAGE PROGRAM -
ORG 5000H
MOV A.#01H ;load opbyte
CALL 30H ;RB0 still selected
 ;
 ; at this point R3 (of RB0) = 01H
 ; and R1 (of RB0) = 04H
 ; so, R3:R1 = 260, which was the value
 ; that was placed on the ARGUMENT STACK

Comments on the next two instructions: The next two instructions permit the user to transfer
floating point numbers between an assembly language program and MCS BASIC-52. The user pro-
vides the address where a floating point number is stored or will be stored in a 16-bit register pair.
Depending on the operation requested, the floating point numbers are either PUSHed on or
POPped off MCS BASlC-52's argument stack. This instruction permits the user to keep track of
variables in assembly language and bypass the relatively slow procedure BASIC must follow.

As mentioned earlier, when a floating point number is PUSHed onto the argument stack, the
argument stack pointer is decremented by a count of 6. This is because a floating point number
requires 6 bytes of RAM storage. Although it may seem confusing to the novice, the last value
placed on the argument stack is referred to as the value on the TOP of the argument stack, even
though it is on the bottom of the stack relative to the sequential numbering of memory addresses.
No one knows why this is so.

The argument stack resides in external RAM memory locations 301 (12DH) through 510 (1FEH).
The lower byte of the argument stack pointer resides in internal memory location 9 (09H). MCS
BASIC-52 always assumes that the upper byte (higher order address) of the argument stack pointer
is 1 (01H). The software designer can use this information, along with the next two instructions to
perform operations like copying the stack.

OPBYTE = 2 (02H) PUSH THE FLOATING POINT NUMBER ADDRESSED BY REGISTER PAIR
R2:R0 ONTO THE ARGUMENT STACK.

R2 and R0 (in register bank 0, RB0) contain the address (R2 = high byte, R0 = low byte) of the
location where the floating point number is stored. After this instruction is executed the floating
point number that the register pair R2:R0 points to is PUSHed onto the TOP of the argument stack.
The argument stack pointer automatically gets decremented, by a count of 6, when the value is
placed on the stack. A floating point number in MCS BASIC-52 requires 6 bytes of RAM storage.
The register Pair R2:R0 points to the most significant byte of the floating point number and is dec-
remented by 6 after the CALL instruction is executed. So, if R2:R0 = 7F18H before this instruction
was executed, it would equal 7F12H after this instruction was executed.

MCS BASIC-52 Users Manual

 68

OPBYTE = 3 (03H) POP THE ARGUMENT STACK AND SAVE THE FLOATING POINT NUM-
BER IN THE LOCATION ADDRESSED BY R3:R1.

The TOP of the argument stack is moved to the location pointed to by the register pair R3:R1(R3
= high byte, R1 = low byte, in register bank 0, RB0). The argument stack pointer is automatically
incremented BY 6. Just as in the previous PUSH instruction, the register pair R3:R1 points to the
most significant byte of the floating point number and is decremented BY 6 after the CALL
instruction is executed.

EXAMPLE OF USER PUSH AND POP:

BASIC PROGRAM:
>5 REM PUT 100 AND 200 ON THE ARGUMENT STACK
>10 PUSH 100,200
>15 REM CALL THE USER ROUTINE TO SAVE NUMBERS
>20 CALL 5000H
>25 REM CLEAR THE STACK
>30 CLEARS
>35 REM USE ASM TO PUT NUMBERS BACK ON STACK
>40 CALL 5010H
>50 POP A,B
>60 PRINT A,B
>RUN

 100 200

READY

ASM PROGRAM:
ORG 5000H
MOV R3,#HIGH USER_SAVE ; LOAD POINTERS TO WHERE
MOV R1.#LOW USER_SAVE ; NUMBERS WILL BE SAVED.
MOV A,#03H ; LOAD OPBYTE
CALL 30H ; SAVE ONE NUMBER
MOV A,#03H ; LOAD OPBYTE AGAIN
CALL 30H ; SAVE ANOTHER NUMBER
RET ; BACK TO BASIC
 ;
ORG 5010H
MOV R2,#HIGH USER_SAVE ;LOAD ADDRESS WHERE
MOV R0,#LOW USER_SAVE ;NUMBERS ARE STORED
MOV A,#02H ;LOAD OPBYTE
CALL 30H ;PUT ONE NUMBER ON STACK
MOV A,#02H ;LOAD OPBYTE
CALL 30H ;NEXT NUMBER ON STACK
RET ;BACK TO BASIC

OPBYTE = 4 (04H) PROGRAM A PROM USING R3:R1 AS THE SOURCE ADDRESS POINTER,
R2:R0 AS THE DESTINATION (PROM) ADDRESS POINTER, AND R7:R6 AS THE BYTE
COUNTER.

This instruction assumes that the data to be programmed into a PROM is stored in external
memory and that the register pair R3:R1 (in RB0) contains the address of this external memory.
register pair R7:R6 contains the total number of bytes that are to be programmed. The PROM is
programmed sequentially and every time a byte is programmed the register pair R7:R6 is decre-
mented and the register pairs R3:R1 and R2:R0 are incremented. Programming continues until
R7:R6 equals zero. The register pair R2:R0 must be initialized with the desired address of the
EPROM to be programmed MINUS 1. This may sound strange, but that is the way it works. So, if
you wanted to program an EPROM starting at address 9000H, with the data stored in address
0D00H and you wanted to program 500 bytes, then the registers would be set up as follows: R2:R0
= 8FFFH, R3:R1 = 0D00H, and R7:R6 = 01F4H (500 decimal). You would then put a 4 (04H) in the
ACC and CALL location 30H.

MCS BASIC-52 Users Manual

 69

Note: In Version 1.0, if an error occurs during programming, MCS BASIC-52 will trap the error
and enter the command mode. The user cannot handle errors that occur during the EPROM pro-
gramming operation!!!!

In Version 1.1, programming errors will only be trapped if the MCS BASIC-52 device is in the
command mode. If the MCS BASIC-52 device is in the run mode, control will be passed back to the
user. The user must then examine registers R6 and R7. If R6 = R7 = 0, then the programming
operation was successfully completed, if these registers do not equal zero then registers R2:R0
contain the address of the EPROM location that failed to program. This feature in Version 1.1 per-
mits the user to program EPROMS in embedded applications and manage errors, should they
occur in the programming process, without trapping to the command mode.

In addition to setting up the pointers previously described, the user must also initialize the
internal memory locations that control the width of the programming pulse. This gives the user
complete control over this critical prom programming parameter. The internal memory locations
that must be initialized with this information are 64 (40H) and 65 (41H). These locations are treated
as a 16 bit register pair with location 64 (40H) designated as the most significant byte and location
65 (41H) as the least significant byte. Locations 64 (40H) and 65 (41H) are loaded into TH1 (TIMER1
high byte) and TL1 (TIMER1 low byte) respectively. The width of the programming pulse, in
microseconds is determined by the following equation:

WIDTH = (65536-256*DBY(64)+DBY(65))*12/XTAL microseconds

conversely;

DBY(64):DBY(65) = 65536-WIDTH*XTAL/12

The proper values for the "normal" 50 millisecond programming algorithm and the 1 millisec-
ond "INTELligent" algorithm are calculated and stored by MCS BASIC-52 in external memory loca-
tions 296:297 (128H: 129H) and 298:299 (12AH: 12BH) respectively. If the user wants to use the
pre-calculated values the statements DBY(64) = XBY(296) and DBY(65) = XBY(297) may be used to
initialize the prom programming width for the normal algorithm and the statements DBY(64) =
XBY(298) and DBY(65) = XBY(299) can be used to initialize for the INTELligent algorithm.

To select the "INTELligent" EPROM programming algorithm the directly addressable bit 51
(33H) MUST be set to 1 before the EPROM programming routine is called. The "standard" 50 ms
EPROM programming algorithm is selected by clearing bit 51 (33H) (i.e. bit 51 = 0) before calling
the EPROM programming routine. The directly addressable bit 51 is located in internal memory
location 38.3 (26.3H) (bit 3 of byte 38 (26H) in internal memory). This bit can be set or cleared by the
BASIC statements DBY(38) = DBY(38).OR.08H to set and DBY(38)=DBY(38).AND.0F7H to clear.
Of course, the user can set or clear this bit in assembly language with a SETB 51 or CLR 51 instruc-
tion.

The user must also turn on the EPROM programming voltage BEFORE calling the EPROM pro-
gramming routine. This is done by clearing bit P1.5, the fifth bit on PORT 1. This too can be done in
BASIC with a PORT1 = PORT1.AND.0DFH instruction or in assembly language with a CLR P1.5
instruction. The user must also set this bit when the PROM programming procedure is complete.

This instruction assumes that the hardware surrounding the MCS BASIC-52 device is the same
as the suggestions in the EPROM Programming chapter of this manual.

MCS BASIC-52 Users Manual

 70

OPBYTE = 5 (05H) INPUT A STRING OF CHARACTERS AND STORE IN THE BASIC INPUT
BUFFER.

This instruction inputs a line of text from the console device and saves the information in the
MCS BASIC- 52's input buffer. MCS BASlC-52's input buffer begins at external memory location 7
(0007H). All of the line editing features available in MCS BASIC-52 are implemented in this
instruction. If a control-C is typed during the input process, MCS BASIC-52 will trap back into the
command mode. A carriage return (cr) terminates the input procedure.

OPBYTE = 6 (06H) OUTPUT THE STRING OF CHARACTERS POINTED TO BY THE REGIS-
TER PAIR R3:R1 TO THE CONSOLE DEVICE.

This instruction is used to output a string of characters to the console device. R3:R1 contains the
initial address of this string. The string can either be stored in program memory or external data
memory. If bit 52 (34H) (which is bit 4 of internal RAM location 38 (26H)) is set, the output will be
from program memory. If bit 52 is cleared, the output will be from external data memory. The data
stored in memory is sent out to the console device one byte at a time and the memory pointer is
incremented. The output is stopped when a termination character is read. The termination
character for program memory and external data memory are different. The termination character
for external data memory is a (cr) 0DH. The termination character for program memory is a " or
22H.

OPBYTE = 7 (07H) OUTPUT A CARRIAGE RETURN-LINE FEED SEQUENCE TO THE CON-
SOLE DEVICE.

Enough said.

OPBYTE = 128 (80H) OUTPUT THE CHARACTER IN R5 (REGISTER BANK 0) TO THE CON-
SOLE DEVICE.

This routine takes the character that is in R5 (register bank 0) and directs it to the console device.
Any console device may be selected (i.e. U0 or UI or the software serial port).

OPBYTE = 144 (90H) OUTPUT THE NUMBER ON THE TOP OF ARGUMENT STACK TO THE
CONSOLE DEVICE.

The floating point number that is on the top of the argument stack is outputted to the console
device. The format is determined by the USING statement. The argument stack is POPped after
the output operation.

OPBYTE = 154 (9AH) THE 16 BIT NUMBER REPRESENTED BY REGISTER PAIR R2:R0 IS
PUSHED ON THE ARGUMENT STACK.

This instruction converts the 16 bit register pair R2:R0 to a floating point number and pushes
this number onto the argument stack. This instruction is the converse of the OPBYTE = 1 instruc-
tion.

9.3 Unary Operators

The next group of instructions perform an operation on the number that is on the TOP of the
argument stack. If the TOP of the argument stack is represented by the symbol [TOS], then the
following instructions would take the general form:

[TOS] < OP [TOS]

Where OP is one of the following operators:

MCS BASIC-52 Users Manual

 71

OPBYTE = 24 (18H)—ABSOLUTE VALUE: [TOS] < ABS([TOS]).

The [TOS] is replaced by the absolute value of [TOS].

OPBYTE = 25 (19H)—INTEGER: [TOS] < INT([TOS]).

The [TOS] is replaced by the integer portion of [TOS].

OPBYTE = 26 (1AH)—SIGN: [TOS] < SGN([TOS]).

If [TOS] > 0 then [TOS] = 1, if [TOS] = 0 then [TOS] = 0, and if [TOS] < 0 then [TOS] = -1.

OPBYTE = 27 (1BH)—ONE'S COMPLEMENT:

[TOS] < NOT([TOS]). [TOS] must be a valid integer.

OPBYTE = 28 (1CH)—COSINE OPERATOR:

[TOS] < COS([TOS]). [TOS] must be between +-200000.

OPBYTE = 29 (1DH)—TANGENT OPERATOR:

[TOS] < TAN([TOS]). [TOS] must be between +- 200000 and [TOSl cannot equal PI/2, 3*PI/2,
5*PI/2..... (2*N+1)*PI/2.

OPBYTE = 30 (1EH)—SINE OPERATOR:

[TOSl < SIN([TOS]). [TOS] must be between +-200000.

OPBYTE = 31 (1FH)—SQUARE ROOT:

[TOS] < SQR ([TOS]). [TOS] must be >= 0.

OPBYTE = 32 (20H)—CBY OPERATOR:

[TOS] < CBY ([TOS]). [TOS] must be a valid integer.

OPBYTE = 33 (21H)—E TO THE [TOS] OPERATOR:

[TOS] < e(2.7182818)**[TOS]. e is raised to the [TOS] power.

OPBYTE = 34 (22H)—ATN OPERATOR:

[TOS] < ATN([TOS]). Arctangent, the value returned is between +- PI/2.

OPBYTE = 35 (23H)—LOG OPERATOR (natural LOG):

[TOS] < LOG([TOS])—[TOS] must be > 0.

OPBYTE = 36 (24H)—DBY OPERATOR:

[TOS] < DBY([TOS]). [TOS] must be between 0 and 255 inclusive.

OPBYTE = 37 (25H)—XBY OPERATOR:

[TOS] < XBY([TOS]). [TOS] must be a valid integer.

9.4 Special Operators

The next group of instructions place a value on the stack. The value placed on the stack is as
follows:

MCS BASIC-52 Users Manual

 72

OPBYTE = 38 (26H)—PI: [TOS] = PI.

PI (3.1415926) is placed on the [TOS].

OPBYTE = 39 (27H)—RND:

[TOS] = RND. A random number is placed on the [TOS].

OPBYTE = 40 (28H)—GET:

[TOS] = GET. The value of the special function operator, GET is put on the [TOS].

OPBYTE = 41 (29H)—FREE:

[TOS] = FREE. The value of the system control value, FREE is put on the [TOS].

OPBYTE = 42 (2AH)—LEN:

[TOS] = LEN. The value of the system control value, LEN is put on the [TOS].

OPBYTE = 43 (2BH)—XTAL:

[TOS] = XTAL. The value of the special function operator, XTAL is put on the [TOS].

OPBYTE = 44 (2CH)—MTOP:

[TOS] = MTOP. The value of the system control value, MTOP is put on the [TOS].

OPBYTE = 45 (2DH)—TIME:

[TOS] = TIME. The value of the special function operator, TIME is put on the [TOS].

OPBYTE = 46 (2EH)—IE:

TOS] = IE The value of the IE register is put on the [TOS].

OPBYTE = 47 (2FH)—IP:

[TOS] = IP. The value of the IP register is put on the [TOS].

OPBYTE = 48 (30H)—TIMER0:

[TOS] = TIMER0. The value of TIMER0 (TH0:TL0) is put on the [TOS].

OPBYTE = 49(31H)—TIMER1:

[TOS] = TIMERI. The value of TIMERI (TH1:TL1) is put on the [TOS].

OPBYTE = 50 (32H)—TIMER2:

[TOS] = TIMER2. The value of TIMER2 (TH2:TL2) is put on the [TOS].

OPBYTE = 51 (33H)—T2CON:

[TOS] = T2CON. The value of the T2CON register is put on the [TOS].

OPBYTE = 52 (34H)—TCON:

[TOS] = TCON. The value of the TCON register is put on the [TOS].

OPBYTE = 53 (35H)—TMOD:

[TOS] = TMOD. The value of the TMOD register is put on the [TOS].

MCS BASIC-52 Users Manual

 73

OPBYTE = 54 (36H)—RCAP2:

[TOS] = RCAP2. The value of the RCAP2 registers (RCAP2H:RCAP2L) is put on the [TOS].

OPBYTE = 55 (37H)—PORT1:

[TOS] = PORT1. The value of the PORT1 (P1) pins is placed on the [TOS].

OPBYTE = 56 (38H)—PCON:

[TOS] = PCON. The value of the PCON register is put on the [TOS].

9.5 Dual Operand Operators

The next group of instructions assume that TWO values are on the argument stack. If number
on the TOP of the argument stack is represented by the symbol [TOS] and the number NEXT to
TOP of the argument stack is represented by the symbol [NxTOS] and the argument stack pointer
is represented by the symbol AGSP, then the following instructions would take the general form:

TEMP1 = [TOS]
TEMP2= [NxTOS]
AGSP < AGSP + 6
RESULT = TEMP2 OP TEMP1
[TOS] = RESULT

Where OP is one of the following operators to be described.

Note that the group of instructions ALWAYS POP the argument stack by one FLOATING
POINT NUMBER SIZE (i.e. 6 bytes).

Errors can be handled in two different ways with the ADD, SUBTRACT, MULTIPLY, and
DIVIDE routines. One option is to let MCS BASIC-52 trap errors, should they occur during the
operation. With this option MCS BASIC-52 will print the appropriate error message to the console
device. The other option passes a status code to the user. After the operation the Accumulator
contains the status code information. The status information is as follows:

ACC.0—ARITHMETIC UNDERFLOW
ACC.1—ARITHMETIC OVERFLOW
ACC.2—RESULT WAS ZERO (not an error, just a condition)
ACC.3—DIVIDE BY ZERO
ACC.4—NOT USED, ZERO RETURNED
ACC.5—NOT USED, ZERO RETURNED
ACC.6—NOT USED, ZERO RETURNED
ACC.7—NOT USED, ZERO RETURNED

If an ARITH. OVERFLOW or a DIVIDE BY ZERO error occurs and the user is handling the
error condition, the floating point processor will return a result of +- 99999999E+ 127 to the argu-
ment stack. The user can do what they want to with this result (i.e. use it or waste it). An ARITH.
UNDERFLOW error will return to the argument stack a result of 0 (zero).

MCS BASIC-52 can perform the following dual operand operations:

OPBYTE = 9 (09H) EXPONENTIATION:

The [NxTOS] value is raised to the [TOS] power. RESULT= [NxTOS] ** [TOS].

Note: [TOS] must be less than 256.

MCS BASIC-52 Users Manual

 74

OPBYTE = 10 (0AH) MULTIPLY:

RESULT = [NxTOS] * [TOS]. If an error occurs during this operation (i.e. ARITH. OVERFLOW
or UNDERFLOW) MCS BASIC-52 will trap the error and print the error message to the console
device.

OPBYTE = 136 (88H) MULTIPLY:

 RESULT = [NxTOS] * [TOS]. If an error occurs during this operation, the status byte previously
discussed will be returned to the user.

OPBYTE = 11 (0BH) ADD:

RESULT = [NxTOS] + [TOS]. BASIC handles errors.

OPBYTE = 130 (82H) ADD:

RESULT = [NxTOS] + [TOS]. User handles errors.

OPBYTE = 12 (0CH) DIVIDE:

RESULT = [NxTOS] / [TOS]. BASIC handles errors.

OPBYTE = 138 (8AH) DIVIDE:

RESULT = [NxTOS] / [TOS]. User handles errors.

OPBYTE = 13 (0DH) SUBTRACT:

RESULT = [NxTOS] — [TOS]. BASIC handles errors.

OPBYTE = 132 (84H) SUBTRACT:

RESULT = [NxTOS] - [TOS]. User handles errors.

OPBYTE = 14 (0EH) EXCLUSIVE OR:

RESULT = [NxTOS] XOR [TOS], both values must be GREATER THAN OR EQUAL TO ZERO
and LESS THAN OR EQUAL TO 65535 (0FFFFH).

OPBYTE = 15 (0FH) LOGICAL AND:

 RESULT = [NxTOS] and [TOS], both values must be GREATER THAN OR EQUAL TO ZERO
and LESS THAN OR EQUAL TO 65535 (0FFFFH).

OPBYTE = 16 (10H) LOGICAL OR:

RESULT = [NxTOS] OR [TOS], both values must be GREATER THAN OR EQUAL TO ZERO
and LESS THAN OR EQUAL TO 65535 (0FFFFH).

OPBYTE = 18 (12H) TEST FOR EQUALITY:

IF [NxTOS] = [TOS] then, RESULT = 65535 (0FFFFH), else RESULT = 0.

OPBYTE = 19 (13H) TEST FOR GREATER THAN OR EOUAL:

IF [NxTOS] > = [TOS] then, RESULT = 65535 (0FFFFH), else RESULT = 0.

OPBYTE = 20 (14H) TEST FOR LESS THAN OR EQUAL:

IF [NxTOS] < = [TOS] then, RESULT = 65535 (0FFFFH), else RESULT = 0.

MCS BASIC-52 Users Manual

 75

OPBYTE = 21(15H) TEST FOR NOT EQUAL:

IF [NxTOS] <> [TOS] then, RESULT = 65535 (0FFFFH), else RESULT = 0.

OPBYTE = 22(16H) TEST FOR LESS THAN:

IF [NxTOS] < [TOS] then, RESULT = 65535 (0FFFFH), else RESULT = 0.

OPBYTE = 23(17H) TEST FOR GREATER THAN:

IF [NxTOS] > [TOS] then, RESULT = 65535 (0FFFFH), else RESULT = 0.

9.6 Added Link Routines to Version 1.1

Version 1.1 of MCS BASIC-52 contains a number of useful assembly language link routines that
were not available in Version 1.0. Most of these routines were designed to be used in conjunction
with the new Command/Statement extensions that are described in Chapter 11 of this manual. The
added link routines are as follows:

OPBYTE = 57 (39H) EVALUATE AN EXPRESSION WITHIN THE BASIC TEXT STRING AND
PLACE THE RESULT ON THE ARGUMENT STACK

This routine permits the user to evaluate a BASIC expression [expr] containing variables,
operators and constants. The result of the evaluated expression is placed on the floating point
argument stack. This lets the user evaluate expressions in "customized" statements and commands.
An example of use of this OPBYTE is given at the end of this section.

OPBYTE = 58 (3AH) PERFORM CRYSTAL DEPENDENT CALCULATIONS WITH THE VALUE
THAT IS ON THE ARGUMENT STACK

This routine is provided mainly to let the user write an assembly language Reset routine and
perform all of the crystal dependent calculations that are required by MCS BASIC-52. An example
of a customized Reset routine that uses this OPBYTE is presented in Chapter 11 of this manual.

OPBYTE = 63 (3FH) GET A CHARACTER OUT OF THE BASIC TEXT STRING

This routine permits the user to "pick" a character out of the BASIC program. For instance, in
BASIC the user could have the following:

10 CALL 1000H A

If the user executed the following in assembly language at 1000H:

MOV A, #63
LCALL 30H

The character A would be returned in the accumulator. The Basic text pointer is located in loca-
tion 8 (8H) (low byte) and 10 (0AH) (high byte) of the internal ram on the MCS BASIC-52 device. If
the user were to implement the above function, the basic text pointer must be advanced to the car-
riage return at the end of the statement before returning back to Basic. Failure to do this will cause
a BAD SYNTAX error when the user returns back to Basic. The following OPBYTE can be used to
advance the Basic Text pointer.

OPBYTE = 64 (40H) GET CHARACTER, THEN INCREMENT TEXT POINTER

This OPBYTE does the same thing as the previous one described, except that the BASIC text
pointer is incremented AFTER the character is read. An example of this OPBYTE is presented at
the end of this section.

MCS BASIC-52 Users Manual

 76

OPBYTE = 65 (41H) INPUT A CHARACTER FROM THE CONSOLE DEVICE, PUT IT IN THE
ACCUMULATOR, THEN RETURN

This OPBYTE permits the user to input characters from MCS BASlC-52's console input routine.
The character is placed in the accumulator upon return.

OPBYTE = 66 (42H) ENTER THE RUN MODE

This OPBYTE permits the user to start the execution of an MCS BASIC-52 program from assem-
bly language. The user need only insure that locations 19 (13H) and 20 (14H) of internal data mem-
ory contain the start address (high byte, low byte respectively) of the BASIC program.

OPBYTE = 129 (81H) INPUT AN ASCII FLOATING POINT NUMBER AND PLACE IT ON THE
ARGUMENT STACK. THE DPTR POINTS TO THE EXTERNAL RAM LOCATION, WHERE
THE ASCII TEXT STRING IS STORED

This routine assumes that the user has placed an ASCII text string somewhere in memory and
that this ASCII text string represents a valid floating point number. The user then puts the DPTR to
the starting address of this text string. After this OPBYTE is executed the text string will be con-
verted to a valid MCS BASIC-52 floating point number and placed on the argument stack and the
DPTR will be advanced to the end of the floating point number. If the DPTR does not point to a
text string that contains a valid floating point number, the accumulator will contain an 0FFH upon
return.

OPBYTE = 152 (98) OUTPUT, IN HEX, TO THE CONSOLE OUTPUT DRIVER, THE CONTENTS
OF R3:R1

This routine is used to display hex numbers, assuming that they are in registers R3:R1. If R3 = 0,
leading zeros can be suppressed by setting bit 54 (36H) before calling this routine. If bit 54 (36H) is
cleared when this routine is called, the driver will always output four hex digits followed by the
character H. This routine always outputs a space character (20H) to the console device, before any
hex digits are output. bit 54 (36H) is bit 6 of internal RAM location 38.

MCS-S1 MACRO ASSEMBLER

ISIS-II MCS-51 MACRO ASSEMBLER V1.0
OBJECT MODULE PLACED IN:F4:DEMO HEX
ASSEMBLER INVOKED BY: ASM51 :F4:DEMO

 1 ;**
 2 ;
 3 ; The following is an example of a program that uses the new OPPYTES
 4 ; available in version 1.1 of MCS BASIC-52. This code is by no means
 5 ; optimized but it is meant to demonstrate how the user can define
 6 ; "customized" commands and statements in version 1.1 of MCS BASIC.
 7 ;
 8 ; The new command defined here is DISPLAY. What it does is display a
 9 ; region of external data memory to the console device. The syntax
 1O ; for this statement is:
 11 ;
 12 ; DISPLAY [expr], [expr]
 13 ;
 14 ; Where the first expression is the starting address and the last
 15 ; expression is the ending address. In this example the DISPLAY is
 16 ; treated like a command which means that it cannot be executed in
 17 ; RUN mode.
 18 ;
 19 ; The output for the DISPLAY command is as follows:
 20 ;
 21 ; ADDRESS then 16 Bytes of Characters i. e.

MCS BASIC-52 Users Manual

 77

 22 ;
 23 ; 1000H 00H 22H 33H 27H
 24 ;
 25 ; Now on to the program.
 26 ;**
 27 ;
2002 28 ORG 2002H
 29
2002 5A 30 DB 5AH ; Tell basic that expansion option is
 31 ; present
2048 32 ORG 2048H
 33
2048 D22D 34 SETB 45 ; Set the bit that sags so
204A 22 35 RET
 36
2070 37 ORG 2070H ; Set up DPTR to Jump table
 38
2070 90207C 39 MOV DPTR,#VECTOR_TABLE
2073 22 40 RET
 41
2078 42 ORG 2078H ; Set up DPTR to expansion table
 43
2078 90207E 44 MOV DPTR,#USER_TABLE
2078 22 45 RET
 46
 47 VECTOR TABLE:
 48
207C 2087 49 DW DO_DISPLAY ; This is the address of DISPLAY
 50
 51 USER TABLE:
 52
207E 10 53 DB 10H ; Token for Display
207F 44495350 54 DB 'DISPLAY ; ASCII for display
2083 4C4159
2086 FF 55 DB 0FFH ; End of table (short table)
 56
 57
 58
 59 DO DISPLAY:
 60
2087 302F63 61 JNP 47,DUMMY ; make sure that MCS BASIC-52 is in
 62 ; the command mode. Bit 47 is set
 63 ; if it is.
 64
208A 7439 65 MOV A,#57 ; Evaluate the first expression after
208C 120030 66 LCALL 30H ; the keyword display, MCS BASIC-52
 67 ; will handle any errors. The value
 68 ; of the expression will be on the
 69 ; Argument Stack.
 70
208F 7440 71 MOV A,#64 ; Get the character after the expression
2091 120030 72 LCALL 30H ; and bump the BASIC text pointer
 73
2094 B42C6A 74 CJNE A,#',',C_ERROR ; Make sure it is a comma, if not do an
 75 ; error
 76
2097 7439 77 MOV A,#57 ; Evaluate the next expression (the
2099 120030 78 LCALL 30H ; ending address) and put it on the
 79 ; Argument Stack
 80
209C 7401 81 MOV A,#1 ; Convert the last expression (the
209E 120030 82 LCALL 30H ; ending address) on the stack to
 83 ; an integer and put it in R3:R1
 84
20A1 8918 85 MOV 18H,R1 ; Save the ending address in the user
20A3 8B19 86 MOV 19H,R3 ; reserved locations 18H and 19H. This
 87 ; is reserved as register bank 3
 88
20A5 7401 89 MOV A,#1 ; Convert the first expression (the
20A7 120030 90 LCALL 30H ; starting address) on the stack to

MCS BASIC-52 Users Manual

 78

 9l ; an Integer and put it in R3:R1
 92
20AA 891A 93 MOV 1AH.R1 ; Save the starting address in the user
20AC 8B1B 94 MOV 1BH.R3 ; reserved locations 1AH and 18H
 95
 96 ; Now everything is set up to loop
 97
20AE C3 98 LOOP1: CLR C ; Check to make sure that the starting
20AF E518 99 MOV A,18H ; or current address is <= the ending
20B1 951A 100 SUBB A,1AH ; address
20B3 E519 101 MOV A,19H
20B5 951B 102 SUBB A,1BH
20B7 5004 103 JNC LOOP2 ; If the carry is set, it's over
20B9 E4 104 CLR A ; Go to the command mode
20BA 020030 105 LJMP 30H ; (if display was a statement instead
 106 ; of a command. this routine would
 107 ; exit with a RET)
 108
20BD 7407 109 LOOP2: MOV A,#7 ; Do a carriage return, line feed
20BF 120030 110 LCALL 30H
 111
20C2 A91A 112 MOV R1.1AH ; Output the Starting address
20C4 AB1B 113 MOV R3.18H
 114
20C6 C236 115 CLR 36H ; Don't suppress leading zeros
20C8 7498 116 MOV A,#98H
20CA 120030 117 LCALL 30H
 118
20CD 851A82 119 LOOP3: MOV DPL,1AH ; Now, set up to read 16 bytes
20D0 851B83 120 MOV DPH,1BH ; put address in DPTR
 121
20D3 E0 122 MOVX A,@DPTR ; Read the byte in external RAM
20D4 A3 123 INC DPTR ; Bump to the next location
 124
20D5 85821A 125 MOV 1AH,DPL ; Save the Address
20D8 85831B 126 MOV 1BH,DPH
 127
20DB F9 128 MOV R1,A ; Output the byte
20DC 7B00 l29 MOV R3,#0 ; The high byte is always zero
20DE D236 130 SETB 36H ; Suppress leading Zeros
20E0 7498 131 MOV A,#98H
20E2 120030 132 LCALL 30H
 133
20E5 E51A 134 MOV A,1AH ; Check to see if on a 16 byte boundary
20E7 540F 135 ANL A,#0FH
20E9 70E2 136 JNZ LOOP3 ; Loop until on a 16 Byte Boundary
20EB 80C1 137 SJMP LOOP1
 138
 139 DUMMY:
 140
20ED 7407 141 MOV A,#7 ; Do a carriage return-line feed
20EF 120030 142 LCALL 30H
 143
20F2 7B21 144 MOV R3,#HIGH D_MSG ; Display the error message
20F4 7915 145 MOV R1,#LOW D_MSG
20F6 D234 146 SETB 52 ; Print from ROM
20F8 7406 147 MOV A,#6
20FA 120030 148 LCALL 30H
20FD E4 149 CLR A ; Go back to the command mode
20FE 020030 150 LJMP 30H
 151
 152 C_ERROR:
 153
2101 7407 154 MOV A,#7 ; Do what we did before
2103 120030 155 LCALL 30H
 156
2106 7B21 157 MOV R3,#HIGH C_MSG
2108 793B 158 MOV R1,#LOW C_MSG
210A D234 159 SETB 52
210C 7406 160 MOV A,#6

MCS BASIC-52 Users Manual

 79

210E 120030 161 LCALL 30H
2111 E4 162 CLR A
2112 020030 163 LJMP 30H
 164
2115 44495350 165 D_MSG: DB "DISPLAY IS A COMMAND, NOT A STATEMENT"
2119 4C415920
211D 49532041
2121 20434F4D
2125 4D414E44
2129 2C204E4F
212D 54204120
2131 53544154
2135 454D454E
2139 5422
 166
213B 594F5520 167 C_MSG: DB "YOU NEED A COMMA TO MAKE DISPLAY WORK"
213F 4E454544
2143 20412043
2147 4F4D4D41
214B 20544F20
214F 4D414B45
2153 20444953
2157 504C4159
215B 20574F52
215F 4B22 168
 169 END

ASSEMBLY COMPLETE. NO ERRORS FOUND

(that'- all it takes)

9.7 Interrupts

Interrupts can be handled by MCS BASIC-52 in two distinct ways. The first, which has already
been discussed, allows statements in an MCS BASIC-52 program to perform the required interrupt
routine. The ONTIME and ONEX1 statements enable this particular interrupt mode. Additionally,
setting bit 26.1H permits external interrupt 0 to act as a "fake" DMA input and the details of this
feature are in the Bells, Whistles, and Anomalies section of this manual. The second method of
handling interrupts in MCS BASIC-52 allows the programmer to write assembly language routines
to perform the interrupt task. This method yields a much faster interrupt response time, but, the
programmer must exercise some caution.

All interrupt vectors on the MCS BASIC-52 device are "mirrored" to external program memory
locations 4003H through 402BH inclusive. The only MCS BASIC-52 statements that enable the
interrupts on the 8052AH are the CLOCK1 and the ONEX1 statements. If interrupts are NOT
enabled by these statements, BASIC assumes that the user is providing the interrupt routine in
assembly language. The vectors for the various interrupts are as follows:

LOCATION INTERRUPT
4003H EXTERNAL INTERRUPT 0
400BH TIMER 0 OVERFLOW
4013H EXTERNAL INTERRUPT 1
401BH TIMER 1 OVERFLOW
4023H SERIAL PORT
402BH TIMER 2 OVERFLOW/EXTERNAL INTERRUPT 2

The programmer can enable interrupts in MCS BASIC-52 by using the statement IE =
IE.OR.XXH, where XX enables the appropriate interrupts. The bits in the interrupt register (IE) on
the 8052AH are defined as follows:

MCS BASIC-52 Users Manual

 80

BIT 7 6 5 4 3 2 1 0
 EA X ET2 ES ET1 EX1 ET0 EX0
 ENABLE UNDE- TIMER2 SERIAL TIMER1 EXT1 TIMER0 EXT0
 ALL FINED PORT

Interrupts are enabled when the appropriate bits in the IE register are set to a one. Details of the
8052AH interrupt structure are available in the MICROCONTROLLER USERS MANUAL available
from INTEL.

Important note: Before MCS BASIC-52 vectors to the user interrupt locations just described, the
PROCESSOR STATUS WORD (PSW) is PUSHed onto the stack. So, the user does not have to save
the PSW in the assembly language interrupt routine!!! HOWEVER, THE USER MUST POP THE
PSW BEFORE RETURNING FROM THE INTERRUPT.

Very important note: If the user is running some interrupt driven "background" routine while
MCS BASIC-52 is running a program, the user MUST NOT CALL any of the assembly language
routines available in the MCS BASIC-52 device. The only way the routines in the MCS BASIC-52
device can be accessed is when the CALL statement in MCS BASIC-52 is used to transfer control to
the users assembly language program. The reason for this is that the MCS BASIC-52 interpreter
must be in a "known" state before the user can call the routines available in the MCS BASIC-52
device and a "random" interrupt does not guarantee that the interpreter is in this known state. The
user should use register bank 3 to handle interrupt routines in assembly language.

9.8 Resource Allocation

Specific statements in MCS BASIC-52 require the use of certain hardware features on the device.
If the user wants to use these hardware features for interrupt driven routines, conflicts between
BASIC and the assembly language routine may occur. To avoid these potential conflicts, the
programmer needs to know what hardware features are used by MCS BASIC-52. The following is a
list of the commands and/or statements that use the hardware features on the 8052AH.

CLOCK1—uses TIMER/COUNTER 0 in the 13 bit 8048 mode.

PWM—uses TIMER/COUNTER 1 in the 16 bit mode

LIST#—uses TIMER/COUNTER 1 to generate baud rate in 16 bit mode

PRINT#—same as LIST#

PROG—uses TIMER/COUNTER 1 for programming pulse

ONEX1—uses external interrupt 1

In addition, TIMER/COUNTER 2 is used to generate the baud rate for the serial port. What the
preceding list means is that if CLOCK1, PWM, ONEX1, LIST#, PRINT#, and PROG com-
mands/statements are used by the programmer, the user MAY NOT use the associated
TIMER/COUNTER or external interrupt pin for an assembly language routine.

MCS BASIC-52 initializes the TIMER/COUNTER modes by writing a 244 (0F4H), 16 (10H), and
52 (34H) to the TCON, TMOD, and T2CON registers respectively. These registers are initialized
only during the Reset initialization sequence, and MCS BASIC-52 assumes that these registers are
NEVER changed. So, if the user changes the contents of TCON, TMOD, or T2CON, something
funny and/or disastrous is bound to happen if the Statements/Commands listed above are exe-
cuted. If the user does not execute any of the previously mentioned Statements or Commands, the
user is free to use the interrupts in any way suitable to the application.

MCS BASIC-52 Users Manual

 81

CHAPTER 10: System Configuration

10.1 Memory/Hardware Configuration

MCS BASIC-52 always requires at least 1K bytes of external memory. After reset, MCS BASIC-52
sizes the external memory. If less than 1K bytes of external memory are available, MCS BASIC-52
will not "sign-on." in fact, it will internally loop forever. This obviously is not too exciting, so it is
wise to hang some external memory on the MCS BASIC-52 device.

MCS BASIC-52 sizes consecutive external memory locations from 0000H until a memory failure
is detected. The sizing operation is performed simply by writing a 5AH to an external memory
location, then testing the location. If the particular memory location passes this test, BASIC then
writes a 00H to the location, then again, checks the location. MCS BASIC-52 only sizes the external
memory from locations 0 through 0DFFFH. Memory locations 0E000H through 0FFFFH are
reserved for user I/O and/or assembly language programs.

The MCS BASIC-52 program resides in the 8K of ROM available in INTEL's 8052AH device and
as a result requires that external memory be "partitioned" in a specific manner. The architecture of
the 8052AH is NOT Von Neumann. This means that Data and Program Memory do not reside in
the same physical address space on the 8052AH. Specifically, the /RD (pin 17) and /WR (pin 16)
pins on the 8052AH are used to enable data memory and /PSEN (pin 29) pin is used to enable
program memory. Depending on the hardware configuration, MCS BASIC-52 operates in two dis-
tinct "memory" modes.

RAM ONLY mode: In this mode of operation, Read/write memory is connected to the MCS
BASIC-52 device starting at memory address 0000H. Memory can be placed up to location 0FFFFH.

MCS BASIC-52 Users Manual

 82

In this mode of operation the decoded addresses are used to generate the chip select (/CS) signal
for the RAM devices. The RD pin on the 8052AH is used to generate the OUTPUT ENABLE (/OE)
strobe and the /WR pin generates the write enable (/WE or /WR) strobe. /PSEN is not used in the
RAM only mode of operation. The RAM only mode of operation offers the simplest hardware con-
figuration available for the MCS BASIC-52 device. An example of this configuration is shown in
Figure 1. Since /PSEN is not used in the RAM only mode, the user may not CALL assembly lan-
guage routines. The RAM only also does not support EPROM programming. In general, the RAM
only mode will be used only to "check out" the device during the initial system development stage.

RAM/EPROM mode: The RAM/EPROM mode of operation allows for the complete system
implementation of MCS BASIC-52. This mode of operation requires that external memory be
mapped in a certain manner. The RAM/EPROM memory configuration is as follows:

1) The /RD and the /WR pins on the MCS BASlC-52 device are used to enable RAM memory that
is addressed from 0000H to 7FFFH. Addresses are used to decode the chip select (/CS) for the RAM
devices and /RD and /WR are used to enable the /OE and /WE or (/WR) pins respectively.

2) The /PSEN pin on the MCS BASIC-52 device is used to enable EPROM memory that is
addressed from 2000H to 7FFFH. Addresses are used to decode the chip select (/CS) for the
EPROM devices and /PSEN is used to enable the /OE pin.

3) For addresses between 8000H and 0FFFFH both the /RD and the /PSEN pin on the MCS
BASIC-52 device are used to enable the memory. Either EPROM or RAM devices can be placed in
this address space. To permit both the /RD and the /PSEN pins to enable addresses in this address
space, /RD and /PSEN must be logically ANDed together. This can be accomplished with a simple
TTL gate such as a 74LS08. The /WR pin on the MCS BASIC-52 device is used to write to RAM

MCS BASIC-52 Users Manual

 83

memory in this same address space. The /PSEN and /RD signals do not have to be ANDed beyond
address 7FFFH to enable MCS BASIC-52 to program an EPROM. This is only a suggestion since it
will permit the user to execute assembly language routines as well as MCS BASIC-52 programs that
are located in this address space.

This scheme of memory addressing actually permits MCS BASIC-52 to address 96K bytes of
memory, 32K of RAM devices, 32K of EPROM/ROM devices and 32K of combined
RAM/EPROM/ROM devices. Since /RD and /PSEN are ANDed for addresses from 8000H through
0FFFFH, the 8052AH "looks like" a Von Neumann machine in this address space. The XBY and
CBY special function operators will yield the same value when their arguments are between 8000H
and 0FFFFH.

When the EPROM programming feature in MCS BASIC-52 is used, BASIC assumes that the
EPROM to be programmed is addressed starting at location 8000H. MCS BASIC-52 can only pro-
gram EPROMS addressed between 8000H and 0FFFFH. When the PROG command is used for the
first time, on an erased EPROM, MCS BASIC-52 stores this program beginning at address 8010H.
Locations 8000H through 800FH are used to save the baud rate information, plus configuration in-
formation. Some suggestions for implementation of the RAM/EPROM mode are shown in Figure 2.

10.2 EPROM Programming Configuration/Timing

With the proper hardware, the MCS BASIC-52 device can program just about any EPROM or
EEPROM device. The only requirement for EPROM programming is that the EPROM to be pro-
grammed is addressed starting at location 8000H. MCS BASIC-52 requires very little external
hardware to program EPROMs. All of the critical EPROM programming timings are generated by
three I/O port pins on the MCS BASIC-52 device. These pins provide the following signals:

P1.3—ALE DISABLE: PORT 1, bit 3 (pin 4 on the 8052AH) is used to disable the ALE signal to
the external latched required by the 8052AH when external memory is addressed. This pin should
be logically ANDed with ALE. A simple TTL gate, such as a 74LS08 can be used to perform the
ANDing function. Under normal operation, P1.3 is in a logical high state (1). ONLY DURING
EPROM PROGRAMMING IS P1.3 PLACED IN A LOGICAL LOW STATE (0). Disabling the ALE
signal to the external latch is required to program EPROMs because of the way MCS BASIC-52 car-
ries out the EPROM programming process.

MCS BASIC-52 Users Manual

 84

During programming, MCS BASIC-52 treats I/O PORT 0 and I/O PORT 2 as I/O ports, not as
address/data ports. MCS BASIC-52 first writes the low order address to be programmed to PORT 0.
The data in PORT 0 is then latched into the external address latch and then MCS BASIC-52 disables
the ALE signal to the latch by clearing bit P1.3. Thus, the low order address is "permanently" stored
in the external latch. MCS BASIC-52 then writes the high order address to PORT 2 and the data to
be programmed to PORT 0. So, the external address latch contains the low order address, PORT 2

MCS BASIC-52 Users Manual

 85

contains the high order address, and PORT 0 contains the data when EPROM programming
occurs.

Important notes: When PORT 0 on the 8052AH is used as an I/O port, the output structure is an
"open drain" configuration. This requires that "pull-up" resistors be placed on PORT 0 to permit
MCS BASIC-52 to program EPROMs. Experimentally, 10K ohm pull-ups resistors on PORT 0 have
yielded satisfactory results.

MCS BASIC-52 Users Manual

 86

In Version 1.1, INT0 must be kept high when programming EPROMs.

P1.4—PROGRAM PULSE WIDTH: PORT 1, bit 4 (pin 5 on the 8052AH) is used to provide the
50 millisecond or the 1 millisecond programming pulse. The length of the programming pulse is
determined by whether the "normal" or the "INTELligent" EPROM programming mode is selected.
MCS BASIC-52 calculates the length of the programming pulse from the assigned crystal value. So,
be sure the proper XTAL has been assigned. The accuracy of this pulse is within 10 CPU clock
cycles. This pin is normally in a logical high (1) state. It is asserted low (0) to program the EPROMs.

MCS BASIC-52 Users Manual

 87

Depending on the EPROM to be programmed this signal will be used in different ways. More
about this later.

P1.5—ENABLE PROGRAM VOLTAGE: PORT 1, bit 5 (pin 6 on the 8052AH) is used to enable
the EPROM programming voltage. This pin is normally in a logical high (1) state. Prior to the
EPROM programming operation, this pin is brought to a logical low (0) state. This pin is used to
turn on or off the high voltage (12.5 volts to 25 volts, depending on the EPROM) required to pro-
gram the EPROMs.

The timing for the EPROM programming pins is shown in Figure 3. The hardware required to
program different devices is shown in Figure 4. Note that with very little external hardware the
MCS BASIC-52 device can program virtually all commercially available EPROMS. Additionally,
Figure 5 suggests a circuit using an INTEL 2816A EEPROM. This circuit also features a push button
erase option.

Important note: MCS BASIC-52 calculates the programming pulse width when the XTAL value
is assigned. To insure proper programming, make sure XTAL is assigned the proper value. MCS
BASIC-52 performs the programming pulse width calculation to within 5 clock cycles, so the accu-
racy of the programming pulse is well within the limits of any EPROM device.

10.3 Serial Port Implementation

The serial port I/O signals on the 8052AH are TTL compatible signals. They are typically not
compatible with most terminals. Figure 6 suggests hardware options for making the serial interface
compatible with terminals. The serial port is initialized by MCS BASIC-52 to the 8-bit uart mode. In
this mode 8 data bits, plus one start and one stop bit are transmitted. Parity is not used.

MCS BASIC-52 Users Manual

 88

CHAPTER 11: Reset Options (Version 1.1 Only)

Version 1.1 of MCS BASIC-52 contains numerous Reset options that were not available in Ver-
sion 1.0. They are discussed in detail in chapters 3.2 through 3.5 of this manual. Briefly, they are as
follows:

PROG1: Saves only the serial port baud rate for a power-up or Reset condition.

PROG2: Saves the serial port baud rate and automatically runs the first program that is saved in
EPROM on a power-up or Reset condition.

PROG3: Saves the serial port baud rate plus the assigned MTOP value. If RAM is available
beyond the assigned MTOP value, it will not be cleared during a power-up or Reset condition.

PROG4: Saves the serial port baud rate plus the assigned MTOP value, just like PROG3, but also
automatically runs the first program that is saved in EPROM on a power-up or Reset condition.

PROG5: Does the same thing as PROG4, however, if external memory location 5FH contains the
character 0A5H on a power-up or Reset condition, external memory will not be cleared. This mode
assumes that the user has employed some type of memory back-up.

PROG6: Does the same thing as PROG5, but CALLs external program memory location 4039H
during a Reset or power-up sequence. This option also requires the user to put the character 0A5H
in external memory location 5FH to insure that external RAM will not be cleared during Reset or
power-up. The user must put an assembly language Reset routine in external memory location
4039H or else this Reset mode will crash. When the user returns from the customized assembly
language Reset routine, three options exist:

OPTION 1 FOR PROG6: If the carry bit is cleared (carry = 0) upon return from the user Reset
routine MCS BASIC-52 will enter the auto-baud rate determining routine. The user must then type
a space character (20H) on the terminal to complete the Reset routine and produce a Reset message
on the terminal.

OPTION 2 FOR PROG6: If the carry bit is set (carry = 1) and bit 0 of the accumulator is cleared
(ACC. 0 = 0) MCS BASIC-52 will produce the standard sign-on message upon return from the user
supplied Reset routine. The baud rate will be the one that was saved when the PROG6 option was
used.

OPTION 3 FOR PROG6: If the carry bit is set (carry = 1) and bit 0 of the accumulator is set
(ACC. 0 = 1), MCS BASIC-52 will execute the first program stored by the user in EPROM (starting
address of the program is 8010H) upon return from the user supplied Reset routine.

If these options are still not sufficient to address the needs of a specific application, one other
option exists and it functions as follows:

After Reset, MCS BASIC-52 initializes the special function registers SCON, TMOD, TCON, and
T2CON with the following respective values, 5AH, 10H, 54H, and 34H. If the user places the char-
acter 0AAH in external code memory location 2001H (remember code memory is enabled by
/PSEN), MCS BASIC-52 will CALL external code memory location 2090H immediately after these
special function registers are initialized. No other registers or memory locations will be altered
except that the accumulator will contain a 0AAH and the DPTR will contain a 2001H.

MCS BASIC-52 Users Manual

 89

Since MCS BASIC-52 does not write to the above mentioned Special Function Registers at any
time except during the Reset or power-up sequence the user has the option of modifying any of
the Special Function Registers with this Reset option. Upon returning from this Reset mode, the
MCS BASIC-52 software package will clear the internal memory of the 8052AH and proceed with
the Reset routine. The PROG1 through PROG6 options will function as usual.

Now, suppose the user does not want to enter the normal Reset routines, or the user wants to
implement some type of "warm" start-up routine. This can be accomplished simple by initializing
the necessary Special Function Registers and then jumping back into either MCS BASIC-52's com-
mand mode or run mode. For a warm start-up or Reset (warm means that the MCS BASIC-52
device was Reset, but power was not removed—i.e. the user hit the Reset button) the following
must be initialized:

SCON, TMOD, TCON, T2CON, if the user does not want to use the values that MCS BASIC-52
supplies.

RCAP2H and RCAP2L must be loaded with the proper baud rate values. If the user has pro-
grammed an EPROM with one of the PROG1 through PROG6 options, the proper baud rate value
will be stored in external data memory locations 8001H (RCAP2H) and 8002H (RCAP2L).

The stack pointer (Special Function Register SP) must be initialized with the contents of the
stack pointer SAVE location, which is in internal data memory location 3EH. A MOV SP, 3EH
assembly language instruction will accomplish the stack pointer initialization.

After the above are initialized by the user supplied Reset routine, the user may enter MCS
BASIC-52's command mode by executing the following:

CLR A
LJMP 30H

Now, it is important to remember that the previous description applies only to a "warm" Reset
with power remaining to the MCS BASIC-52 system. This means that the user must also provide
some way of detecting the difference between a warm Reset and a power-on Reset. This usually
involves some type of flip-flop getting set with a power-on-clear signal from the users power sup-
ply. The details of implementing this Reset detection mechanism will not be discussed here as the
possible hardware options vary depending upon the design.

The user may also implement a "cold start" reset option with the previously described reset
mode. The following code details what is necessary to implement a cold start option.

EXAMPLE:

 ORG 2001H
 ;
 DB 0AAH ; TELL BASIC THAT RESET IS EXTERNAL
 ;
 ORG 2090H ; LOCATION BASIC WILL CALL FOR RESET
 ; AT THIS POINT BASIC HAS PLACED A 5AH IN
 ; SCON, A 10H IN TMOD, A 54H IN TCON AND
 ; A 34H IN T2CON
 ;
 ; FIRST CLEAR THE INTERNAL MEMORY
 MOV R0,#0FFH ; LOAD R0 WITH THE TOP OF INTERNAL MEMORY
 CLR A ; SET ACCUMULATOR = 0
 RESET1: MOV @R0.A ; LOOP UNTIL ALL THE INTERNAL RAM IS CLEARED
 DJNZ R0.RESET1
 ;
 ; NOW SET UP THE STACK POINTER AND THE STACK
 ; POINTER HOLDING REGISTER
 MOV SP,#4DH ; 4DH IS THE INITIALIZED VALUE OF THE STACK

MCS BASIC-52 Users Manual

 90

 MOV 3EH,#4DH ; THIS IS THE SP HOLDING REGISTER
 ; NOW CLEAR THE EXTERNAL RAM, IN THIS
 ; EXAMPLE ASSUME THAT 1FFFH BYTES OF RAM
 ; ARE AVAILABLE
 ; THE USER MUST CLEAR AT LEAST THE FIRST 512
 ; BYTES OF RAM FOR A COLD START RESET
 ;
 MOV R3,#HIGH 1FFFH
 MOV R1,#LOW 1FFFH
 MOV DPTR,#0FFFFH
 RESET2: INC DPTR ; DPTR = 0 THE FIRST TIME THRU
 CLR A
 MOVX @DPTR,A ; CLEAR THE RAM. A MEMORY TEST PROGRAM COULD
 ; BE IN THIS LOOP
 MOV A,R3 ; NOW TEST FOR THE MEMORY LIMITS
 CJNE A,DPH-RESET2
 MOV A,R1
 CJNE A,DPL.RESET2
 ;
 ; WHEN YOU GET HERE, YOU ARE DONE
 ;
 ; NOW SET UP THE MEMORY POINTERS- FIRST MTOP
 ;
 MOV DPTR.#10AH ; LOCATION OF MTOP IN EXTERNAL RAM
 MOV A,#HIGH 1FFFH ; SAVE MTOP
 MOVX @DPTR,A
 INC DPTR ; NOW, SAVE THE LOW BYTE
 MOV A,#LOW 1FFFH
 MOVX @DPTR,A
 ;
 ; NOW SET UP THE VARTOP POINTER, WITH NO STRINGS.
 ; VARTOP = MEMTOP
 ;
 MOV DPTR,#104H ; LOCATION OF VARTOP IN EXTERNAL RAM
 MOV A,#HIGH 1FFFH
 MOVX @DPTR,A
 INC DPTR
 MOV A,#LOW 1FFFH
 MOVX @DPTR,A
 ;
 ;
 ; NOW SAVE THE MATRIX POINTER "DIMUSE". THIS POINTER IS
 ; DESCRIBED IN THE APPENDIX, WITH NO PROGRAM IN RAM.
 ; DIMUSE = 525 AFTER RESET
 ;
 MOV DPTR,#108H ; LOCATION OF DIMUSE IN EXTERNAL RAM
 MOV A,#HIGH 528
 MOVX @DPTR,A
 INC DPTR
 MOV A,#LOW 528
 MOVX @DPTR,A
 ;
 ; NOW SAVE THE VARIABLE POINTER "VARUSE" THIS POINTER IS
 ; ALSO DESCRIBED IN THE APPENDIX. AFTER RESET VARUSE = VARTOP
 ;
 MOV DPTR,#106H ; LOCATION OF VARUSE IN EXTERNAL RAM
 MOV A,#HIGH 1FFFH
 MOVX @DPTR,A
 INC DPTR
 MOV A,#LOW 1FFFH
 MOVX @DPTR,A
 ;
 ; NOW SETUP BASICS CONTROL STACK AND ARGUMENT STACK
 ;
 MOV 9H,#0FEH ; THIS INITIALIZES THE ARGUMENT STACK
 MOV 11H,#0FEH ; THIS INITIALIZES THE CONTROL STACK
 ;
 ; NOW TELL BASIC THAT NO PROGRAM IS IN RAM. THIS IS NOT NEEDED
 ; IF THE USER HAS A PROGRAM IN RAM
 ;

MCS BASIC-52 Users Manual

 91

 MOV DPTR,#512 ; LOCATION OF THE START OF A USER PROGRAM
 MOV A,#01H ; END OF FILE CHARACTER
 MOVX @DPTR,A
 ; NOW PUSH THE CRYSTAL VALUE ON TO THE STACK AND LET BASIC
 ; CALCULATE ALL CRYSTAL DEPENDENT PARAMETERS
 ;
 SJMP RESET3
 ;
XTAL: DB 88H ; THIS IS THE FLOATING POINT VALUE
 DB 00H ; FOR AN 11.0592 MHZ CRYSTAL
 DB 00H
 DB 92H
 DB 05H
 DB 11H
 ;
RESET3: MOV DPTR,#XTAL ; SET UP TO PUSH CRYSTAL VALUE
 MOV A,9 ; GET THE ARG STACK
 CLR C
 SUBB A,#6 ; DECREMENT ARG STACK BY ONE FP NUMBER
 Mov 9,A
 MOV R0,A ; SAVE THE CALCULATED ADDRESS IN R0
 MOV P2,#1 ; THIS IS THE ARG STACK PAGE ADDRESS
 MOV R1,#6 ; NUMBER OF BYTES TO TRANSFER
 ;
RESET4: CLR A ; TRANSFER ROM CRYSTAL VALUE TO THE
 MOVC A,@A+DPTR ; ARGUMENT STACK OF BASIC
 MOVX @R0,A
 INC DPTR ; BUMP THE POINTERS
 DEC R0
 DJNZ R1,RESET4 ; LOOP UNTIL THE TRANSFER IS COMPLETE
 ;
 ; NOW CALL BASIC TO DO ALL THE CRYSTAL CACULATIONS
 ;
 MOV A,#58 ; OPBYTE FOR CRYSTAL CALCULATION
 LCALL 30H ; DO THE CALCULATION
 ;
 ; NOW TELL BASIC WHERE START OF THE USER BASIC PROGRAM IS
 ; BY LOADING THE START ADDRESS. IF THE PROGRAM IS IN EPROM
 ; 13H WOULD = HIGH 8011H AND 14H = LOW 8011H. ANYWAY
 ; ADDRESS 13H:14H MUST POINT TO THE START OF THE BASIC
 ; PROGRAM
 ;
 MOV 13H,#HIGH 512 ; THIS TELLS BASIC THAT THE START OF
 MOV 14H.#LOW 51Z ; THE PROGRAM IS IN LOCATION 512
 ;
 ; NOW THE SERIAL PORT MUST BE INITIALIZED. THE USER
 ; CAN SET UP THE SERIAL PORT TO ANY DESIRED CONFIGURATION
 ; HOWEVER, THIS DEMO CODE WILL SHOW THE AUTO BAUD ROUTINE
 MOV R3,#00H ; INITIALIZE THE AUTO BAUD COUNTERS
 MOV R1,#00H
 MOV R0,#04H
 JB RXD,$; LOOP UNTIL A START BIT IS RECEIVED
 ;
 ;
RESET5: DJNZ R0,$; WASTE 8 CLOCKS INITIALLY. SIX CLOCKS
 ; IN THE LOOP (16) TOTAL
 CLR C ; 1 CLOCK (1)
 MOV A,R1 ; 1 CLOCK (2)
 SUBB A,#1 ; 1 CLOCK (3)
 MOV R1,A ; 1 CLOCK (4)
 MOV A,R3 ; 1 CLOCK (5)
 SUBB A,#00H ; 1 CLOCK — R3:R1 = R3:R1 - 1 (6)
 MOV R3,A ; 1 CLOCK (7)
 MOV R0,#3 ; 1 CLOCK (8)
 JNB RXD,RESET5 ; 2 CLOCKS (10), WAIT FOR END OF SPACE
 JB RXD,$; WAIT FOR THE SPACE TO END (20H)
 JNB RXD,$; WAIT FOR THE STOP BIT
 MOV RCAP2H.R3 ; LOAD THE TIMER 2 HOLDING REGISTERS
 MOV RCAP2L.R1
 ;

MCS BASIC-52 Users Manual

 92

 ; NOW YOU CAN ADD A CUSTOM SIGN ON MESSAGE
 ;
 MOV R3,#HIHH MSG ; PUT ADDRESS OF MESSAGE in R3:R1
 MOV R1,#LOW MSG
 SETB 52 ; PRINT FROM ROM
 MOV A,#6 ; OP BYTE TO PRINT TEXT STRING
 LCALL 30H
 ;
 ; NOW OUTPUT A CR LF
 ;
 MOV A,#7 ; OP BYTE FOR CRLF
 LCALL 30H
 ;
 ; G0 TO THE COMMAND MODE
 ;
 CLR A
 JMP 30H
 ;
MSG: DB 'CUSTOM SIGN ON MESSAGE'
 DB 22H ; TERMINATES MESSAGE
 ;
 END

To summarize what the user must do to successfully implement a "COLD START" RESET:

1) The user must clear the internal RAM of the MCS BASIC-52 device and at least the first 512
bytes of external RAM memory.

2) The user must initialize the stack pointer (special function register—SP) and the stack pointer
holding register (internal RAM location 3EH) with a value that is between 4DH and 0E0H. 4DH
gives MCS BASIC-52 the maximum stack size.

3) The user must initialize the following pointers in external RAM. MTOP at location 10AH
(high byte) and 10BH (low byte). VARTOP at locations 104H (high byte) and 105H (low byte).
DIMUSE at locations 108H (high byte) and 109H (low byte). VARUSE at locations 106H (high byte)
and 107H (low byte). Details of what needs to be in these locations are presented in appendix A.8
of this manual.

4) The control stack pointer (location 11H in internal memory) and the argument stack pointer
(location 09H in internal memory) must also be initialized with the value 0FEH. If the user is not
going to assign the XTAL (crystal) value in BASIC, then the XTAL value must be pushed onto the
argument stack and the user must do an OPBYTE 58 call to MCS BASIC-52.

5) The user must also initialize the start address of a program. The start address is in locations
13H (high byte) and 14H (low byte) of internal data memory. If the user BASIC program is in RAM,
then 13H: 14H = 512, if the user program is the first program in EPROM, then 13H: 14H = 8011H.

6) The user must finally initialize the serial port. Any scheme can be used (as long as it works!!)

The added reset options should go a long way toward making MCS BASIC-52 configurable to
any custom application.

MCS BASIC-52 Users Manual

 93

CHAPTER 12: Command/Statement Extensions (Version 1.1 Only)

MCS BASIC-52 V1.1 provides a simple, but yet effective way for the user to add commands
and/or statements to the ones that are provided on the chip. All the user must do is write a few
simple programs that will reside in external code memory. The step by step approach is as follows:

STEP 1: The user must first inform the MCS BASIC-52 device that the expansion options are
available. This is done by putting the character 5AH in code memory location 2002H. When MCS
BASIC-52 enters the command mode it will examine code memory location 2002H. If a 5AH is in
this location, MCS BASIC-52 will CALL external code memory location 2048H. The user must then
write a short routine to set bit 45 (2DH), which is bit 5 of internal memory location 37 (decimal) and
place this routine at code memory location 2048H. Setting bit 45 tells MCS BASIC-52 that the
expansion option is available. The following simple code will accomplish all that is stated above:

ORG 2002H
DB 5AH
;
ORG 2048H
SETB 45
RET

STEP 2: With bit 45 set, MCS BASIC-52 will CALL external code memory location 2078H every
time it attempts to tokenize a line that has been entered. At location 2078H, the user must load the
DPTR (Data Pointer) with the address of the user supplied lookup table, complete with tokens.

STEP 3: The user needs the following information to generate a user token table:

1) THE USER TOKENS ARE THE NUMBERS 10H THROUGH 1FH (16 TOKENS AVAILABLE)

2) THE USER TOKEN TABLE BEGINS WITH THE TOKEN, FOLLOWED BY THE ASCII TEXT
THAT IS TO BE REPRESENTED BY THAT TOKEN, FOLLOWED BY A ZERO (00H) INDICATING
THE END OF THE ASCII, FOLLOWED BY THE NEXT TOKEN.

3) THE TABLE IS TERMINATED WITH THE CHARACTER 0FFH.

EXAMPLE:

 ORG 2078H
;
 MOV DPTR,#USER_TABLE
 RET
;
 ORG 2200H ; THIS DOES NOT NEED TO BE IN THIS LOCATION
USER_TABLE:
;
 DB 10H ; FIRST TOKEN
 DB 'DISPLAY' ; USER KEYWORD
 DB 00H ; KEYWORD TERMINATOR

 DB 11H ; SECOND TOKEN
 DB 'TRANSFER' ; SECOND USER KEYWORD
 DB 00H ; KEYWORD TERMINATOR

 DB 12H ; THIRD TOKEN (UP TO 16)
 DB 'ROTATE' ; THIRD USER KEYWORD
 DB 0FFH ; END OF USER TABLE

This same user table is used when MCS BASIC-52 "de-tokenizes" a line during a LIST.

MCS BASIC-52 Users Manual

 94

STEP 4: Step 3 tokenizes the user keyword, this means that MCS BASIC-52 translates the user
keyword into the user token. So, in the preceding example, the keyword TRANSFER would be
replaced with the token 11H. When MCS BASIC-52 attempts to execute the user token, it first
makes sure that the user expansion option bit is set (bit 45), then CALLS location 2070H to get the
address of the user vector table. This address is placed in the DPTR. The user vector table consist of
series of Data Words that define the address of the user assembly language routines.

EXAMPLE:

 ORG 2070H ; LOCATION BASIC CALLS TO GET USER LOOKUP
 ;
 MOV DPTR,#VECTOR_TABLE
 ;
VECTOR_TABLE: ;
 DW RUN_DISPLAY ; ADDRESS OF DISPLAY ROUTINE, TOKEN (10H)
 DW RUN_TRANSFER ; ADDRESS OF TRANSFER ROUTINE, TOKEN (11H)
 DW RUN_ROTATE ; ADDRESS OF ROTATE ROUTINE, TOKEN (12H)
 ;
 ORG 2300H ; AGAIN, THESE ROUTINES MAY BE PLACED ANYWHERE
 ;
RUN DISPLAY: ;
 ; USER ASM CODE FOR DISPLAY GOES HERE
 ;
RUN TRANSFER: ;
 ; USER ASM CODE FOR TRANSFER GOES HERE
 ;
RUN_ROTATE: ;
 ; USER ASM CODE FOR ROTATE GOES HERE
 ;

Note that the ordinal position of the data WORDS in the user vector table must correspond to
the token, so the user statement with the token 10H must be the first DW entry in the vector table,
11H, the second, 12H, the third, and so on. The order of the tokens in the user table is not impor-
tant!! The following user lookup table would function properly with the previous example:

EXAMPLE:

USER_TABLE:
 ;
 DB 13H ; THE TOKENS DO NOT HAVE
 DB 'ROTATE' ; TO BE IN ORDER IN THE
 DB 00H ; USER LOOKUP TABLE
 DB 10H
 DB 'DISPLAY'
 DB 00H
 DB 12H
 DB 'TRANSFER'
 DB 0FFH ; END OF TABLE

The user may also use the command/statement extension option to re-define the syntax of MCS
BASIC-52. This is done simply by placing your own syntax in the user table and placing the appro-
priate BASIC token in front of your re-defined keyword. A complete listing of all MCS BASIC-52
tokens and keywords are provided in the back of this chapter. MCS BASIC-52 will always list out
the program using the user defined syntax, but it will still accept the standard keyword as a valid
instruction. As an example, suppose that the user would like to substitute the keyword HEXOUT
for PH1., then the user would generate the following entry in the user table:

EXAMPLE:

USER_TABLE:

 DB 8FH ; TOKEN FOR PH1.
 DB 'HEXOUT' ; TO BE IN ORDER IN THE

MCS BASIC-52 Users Manual

 95

 DB 00H ; USER LOOKUP TABLE
 ;
 DB 10H
 DB 'DISPLAY'
 DB 00H

 ;REST OF USER_TABLE
 ;
 DB 0FFH ; END OF TABLE

MCS BASIC-52 will now accept the keyword HEXOUT and it will function in a manner identi-
cal to PH1. PH1 will still function correctly, however HEXOUT will be displayed when the user
LIST a program.

TOKEN KEYWORD TOKEN KEYWORD TOKEN KEYWORD
80H LET 0B0H ABS 0ECH <=
81H CLEAR 0B1H INT 0EDH <>
82H PUSH 0B2H SGN 0EEH <
83H GOTO 0B3H NOT 0EFH >
84H PWM 0B4H COS 0FOH RUN
85H PH0. 0B5H TAN 0FlH LIST
86H UI 0B6H SIN 0F2H NULL
87H UO 0B7H SOR 0F3H NEW
88H POP 0B8H CBY 0F4H CONT
89H PRINT 0B9H EXP 0F3H PROG
89H P. 0BAH ATN 0F6H XFER
89H ? (V1.1 ONLY) 0BBH LOG 0F7H RAM
8AH CALL 0BCH DBY 0F8H ROM
8BH DIM 0BDH XBY 0F9H FPROG
8CH STRING 0BEH PI 0FAH-0FFH NOT USED
8DH BAUD 0BFH RND
8EH CLOCK 0C0H GET
8FH PH1. 0C1H FREE
90H STOP 0C2H LEN
91H ONTIME 0C3H XTAL
92H ONEX1 0C4H MTOP
93H RETI 0C5H TIME
94H DO 0C6H IE
95H RESTORE 0C7H IP
96H REM 0C8H TIMER0
97H NEXT 0C9H TIMER1
98H ONERR 0CAH TIMER2
99H ON 0CBH T2CON
9AH INPUT 0CCH TCON
9BH READ 0CDH TMOD
9CH DATA 0CEH RCAP2
9DH RETURN 0CFH PORT1
9EH IF 0D0H PCON
9FH GOSUB 0D1H ASC(
0A0H FOR 0D2H USING(
0A1H WHILE 0D2H U.(
0A2H UNTIL 0D3H CHR(
0A3H END 0D4H-0DFH NOT USED
0A4H TAB 0E0H (
0A5H THEN 0E1H **
0A6H TO 0E2H *
0A7H STEP 0E3H +
0A8H ELSE 0E4H /
0A9H SPC 0E5H -
0AAH CR 0E6H .XOR.
0ABH IDLE 0E7H .AND.
0ACH ST@ (V1.1 ONLY) 0E8H .OR.
0ADH LD@ (V1.1 ONLY) 0E9H - (NEGATE)
0AEH PGM (V1.1 ONLY) 0EAH =
0AFH RROM(V1.1 ONLY) 0EBH >=

MCS BASIC-52 Users Manual

 96

CHAPTER 13: Mapping User Code Memory

You might have noticed by now that some of external code memory locations that MCS BASIC-
52 calls and uses are located around 2000H and some of the locations are located around 4000H.
Specifically, they are as follows:

LOCATION FUNCTION
2001H ON RESET, MCS BASIC-52 LOOKS FOR A 0AAH IN THIS LOCATION, IF
 PRESENT, CALLS LOCATION 2090H
2002H MCS BASIC-52 EXAMINES THIS LOCATION TO SEE IF THE USER
 WANTS TO IMPLEMENT THE COMMAND/STATEMENT EXTENSION OP-
 TION, A 05AH IS TO BE PLACED IN THIS LOCATION TO EVOKE THE
 COMMAND/EXTENSION OPTION
2048H MCS BASIC-52 CALLS THE LOCATION IF THE USER WANTS TO IMPLE-
 MENT THE COMMAND/STATEMENT EXTENSION OPTION. THE USER
 WILL USUALLY SET BIT 45 THEN RETURN.
2070H MCS BASIC-52 CALLS THIS LOCATION TO GET THE USER VECTOR TA-
 BLE ADDRESS WHEN THE COMMAND/STATEMENT EXTENSION OP-
 TION IS EVOKED. THE ADDRESS OF THE VECTOR TABLE IS PUT IN
 THE DPTR BY THE USER.
2078H MCS BASIC-52 CALLS THIS LOCATION TO GET THE USER LOOKUP TA-
 BLE ADDRESS WHEN THE COMMAND/STATEMENT EXTENSION OP-
 TION IS EVOKED. THE ADDRESS OF THE LOOKUP TABLE IS PUT IN
 THE DPTR BY THE USER.
2090H MCS BASIC-52 CALLS THIS LOCATION WHEN THE USER EVOKES THE
 ASSEMBLY LANGUAGE RESET OPTION
4003H EXTERNAL INTERRUPT 0
400BH TIMER0 INTERRUPT
4013H EXTERNAL INTERRUPT 1
401BH TIMER1 INTERRUPT
4023H SERIAL PORT INTERRUPT
402BH TIMER 2 INTERRUPT
4030H USER CONSOLE OUTPUT
4033H USER CONSOLE INPUT
4036H USER CONSOLE STATUS
403CH USER PRINT@ OR LIST@ VECTOR
4100H-41FFH USER CALLS FROM 0 TO 7FH

Other vectors between 2040H and 2090H also exist, but they are mainly for testing purposes,
but for your information they are:

LOCATION FUNCTION
2040H TRAP LOCATION FOR EXTERNAL INTERRUPT 0 IF BIT 26H OF INTER-
 NAL RAM IS SET AND THE DMA OPTION IS EVOKED. PSW IS NOT
 PUSHED ONTO STACK. INTERRUPTS OF COURSE, MUST BE ENA-
 BLED. ALSO, THIS LOCATION WILL BE CALLED FOR CONSOLE OUT-
 PUT IF BIT 2CH OF INTERNAL RAM IS SET.
2050H TRAP LOCATION FOR SERIAL PORT INTERRUPT IF BIT 1FH OF INTER-
 NAL RAM IS SET. PSW IS PUSHED ONTO THE STACK.
2060H CALLED FOR CONSOLE INPUT IF BIT 32H OF INTERNAL RAM IS SET.
2068H CALLED FOR CONSOLE STATUS CHECK IF BIT 32H OF INTERNAL RAM
 IS SET.
2088H TIMER1 INTERRUPT TRAP IF BIT 1AH OF INTERNAL RAM IS SET. PSW
 IS PUSHED ONTO THE STACK.

Contrary to popular belief, these vectors were not chosen to force the user to buy bigger
EPROMs. They are chosen so that addresses 2000H and 4000H can be overlayed and create no
conflicts. The Overlayed addresses would appear as 2001H, 2002H, 4003H, 400BH, 4013H, 401BH,
4023H, 402BH, 4030H, 4033H, 4036H, 4039H, 2040H, 2048H, 2050H, 2060H, 2068H, 2070H, 2078H,
2088H, 2090H, and 4100H thru 41FFH. The diagram on the next page illustrates how to implement
overlapping addresses for 2000H and 4000H. By using overlapping addresses, the user can imple-
ment all MCS BASIC-52 user expansion options with only a few hundred bytes of EPROM.

MCS BASIC-52 Users Manual

 97

The reason this type of addressing scheme was chosen is that it permits the designer to offer
custom versions of MCS BASIC-52, by using the vector locations in the 2000H region. And give the
designers OEM the ability to take advantage of the I/O vectors located in the 4000H region.

As an added note, the MCS-51 instruction set is object relocateble on 2K boundaries if no
LCALL or LJMP instructions are used. This means that it is possible for the designer to ORG a pro-
gram for 2000H and actually execute the program at 2800H, 3000H, 3800H, etc. If the user does not
use the LCALL or LJMP instructions.

MCS BASIC-52 Users Manual

 98

APPENDIX A

A.1 Memory Usage (Version 1.0)

The following list specifies what locations in internal and external memory MCS BASIC-52 uses,
and what these locations are used for. This information can largely be regarded as "for your infor-
mation," but it can be used to do things like alter the pulse width of a EPROM programming pulse,
etc.

INTERNAL MEMORY ALLOCATION:

LOCATION(S) IN HEX MCS BASIC-52 USAGE
00H THRU 07H "WORKING REGISTER BANK"
08H BASIC TEXT POINTER—LOW BYTE
09H ARGUMENT STACK POINTER
0AH BASIC TEXT POINTER—HIGH BYTE
0BH THRU 0FH TEMPORARY BASIC STORAGE
10H READ TEXT POINTER—LOW BYTE
11H CONTROL STACK POINTER
12H READ TEXT POINTER—HIGH BYTE
13H START ADDRESS OF BASIC PROGRAM—HIGH BYTE
14H START ADDRESS OF BASIC PROGRAM—LOW BYTE
15H NULL COUNT
16H PRINT HEAD POSITION FOR OUTPUT
17H FLOATING POINT OUTPUT FORMAT TYPE
18H THRU 21H NOT USED—RESERVED FOR USER
22H BITS USED SPECIFICALLY AS FOLLOWS

BIT 22.0H SET WHEN "ONTIME" STATEMENT IS EXECUTED
BIT 22.1H SET WHEN BASIC INTERRUPT IN PROGRESS
BIT 22.2H SET WHEN "ONEX1" STATEMENT IS EXECUTED
BIT 22.3H SET WHEN "ONERR" STATEMENT IS EXECUTED
BIT 22.4H SET WHEN "ONTIME" INTERRUPT IS IN PROGRESS
BIT 22.5H SET WHEN A LINE IS EDITED
BIT 22.6H SET WHEN EXTERNAL INTERRUPT IS PENDING
BIT 22.7H WHEN SET, CONT COMMAND WILL WORK

23H BITS USED SPECIFICALLY AS FOLLOWS

BIT 23.0H USED AS FLAG FOR "GET" OPERATOR
BIT 23.1H SET WHEN INVALID INTEGER FOUND IN TEXT
BIT 23.2H TEMPORARY BIT LOCATION
BIT 23.3H CONSOLE OUTPUT CONTROL, 1 = LINE PRINTER
BIT 23.4H CONSOLE OUTPUT CONTROL, 1 = USER DEFINED
BIT 23.5H BASIC ARRAY INITIALIZATION BIT
BIT 23.6H CONSOLE INPUT CONTROL, 1 = USER DEFINED
BIT 23.7H RESERVED

24H BITS USED SPECIFICALLY AS FOLLOWS

BIT 24.0H STOP STATEMENT OR CONTROL-C ENCOUNTERED
BIT 24.1H 0 = HEX INPUT, 1 = FP INPUT
BIT 24.2H 0 = RAM MODE, 1 = ROM MODE
BIT 24.3H ZERO FLAG FOR DOUBLE BYTE COMPARE
BIT 24.4H SET WHEN ARGUMENT STACK HAS A VALUE
BIT 24.5H RETI INSTRUCTION EXECUTED
BIT 24.6H RESERVED
BIT 24.7H RESERVED

25H BITS USED SPECIFICALLY AS FOLLOWS

BIT 25.0H RESERVED, SOFTWARE TRAP TEST
BIT 25.1H FIND THE END OF PROGRAM, IF SET
BIT 25.2H RESERVED

MCS BASIC-52 Users Manual

 99

BIT 25.3H INTERRUPT STATUS SAVE BIT
BIT 25.4H SET WHEN PROGRAM EXECUTION IS COMPLETE
BIT 25.5H RESERVED, EXTERNAL TRAP TEST
BIT 25.6H SET WHEN CLOCK1 EXECUTED, ELSE CLEARED
BIT 25.7H SET WHEN BASIC IS IN THE COMMAND MODE

26H BITS USED SPECIFICALLY AS FOLLOWS

BIT 26.0H SET TO DISABLE CONTROL-C
BIT 26.1H SET TO ENABLE "FAKE" DMA
BIT 26.2H RESERVED
BIT 26.3H SET TO EVOKE "INTELLIGENT" PROM PROGRAMMING
BIT 26.4H SET TO PRINT TEXT STRING FROM ROM
BIT 26.5H RESERVED
BIT 26.6H SET TO SUPPRESS ZEROS IN HEX MODE PRINT
BIT 26.7H SET TO EVOKE HEX MODE PRINT

27H "BIT" ADDRESSABLE BYTE COUNTER
28H THRU 3DH BIT AND BYTE FLOATING POINT WORKING SPACE
3EH INTERNAL STACK POINTER HOLDING REGISTER
3FH LENGTH OF USER DEFINED STRING—$
40H TIMER 1 RELOAD LOCATION—HIGH BYTE
41H TIMER 1 RELOAD LOCATION—LOW BYTE
42H BASIC TEXT POINTER SAVE LOCATION—HIGH BYTE
43H BASIC TEXT POINTER SAVE LOCATION—LOW BYTE
44H RESERVED
45H TRANSCENDENTAL FUNCTION TEMP STORAGE
46H TRANSCENDENTAL FUNCTION TEMP STORAGE
47H MILLI-SECOND COUNTER FOR REAL TIME CLOCK
48H SECOND COUNTER FOR REAL TIME CLOCK—HIGH BYTE
49H SECOND COUNTER FOR REAL TIME CLOCK—LOW BYTE
4AH TIMER 0 RELOAD FOR REAL TIME CLOCK
4BH SOFTWARE SERIAL PORT BAUD RATE—HIGH BYTE
4CH SOFTWARE SERIAL PORT BAUD RATE—LOW BYTE
4DH THRU 0FFH 8052AH STACK SPACE AND USER WORKING SPACE

00H AND 01H "LAST" END OF FILE ADDRESS FOR RAM FILE (H-L)
02H AND 03H CURRENT END OR FILE ADDRESS FOR RAM FILE (H-L)
04H LENGTH OF THE CURRENT EDITED LINE
05H AND 06H LN NUM IN BINARY OF CURRENT EDITED LINE (H-L)
07H THRU 49H BASIC INPUT BUFFER
50H THRU 5FH FLOATING POINT OUTPUT TEMP
60H THRU 0FEH CONTROL STACK
0FFH CONTROL STACK OVERFLOW
100H LOCATION TO SAVE "GET" CHARACTER
101H LOCATION TO SAVE ERROR CHARACTER CODE
102H AND 103H LOCATION TO GO TO ON USER "ONERR" (H-L)
104H AND 105H TOP OF VARIABLE STORAGE (H-L)
106H AND 107H FP STORAGE ALLOCATION (H-L)
108H AND 109H MEMORY ALLOCATED FOR MATRICES (H-L)
10AH AND 10BH TOP OF MEMORY ASSIGNED TO BASIC (H-L)
10CH AND 10DH RANDOM NUMBER SEED (H-L)
10EH THRU 113H CRYSTAL VALUE
114H THRU 11FH FLOATING POINT TEMPS
120H AND 121H LOCATION TO GO TO ON ONEX1 INTERRUPT (H-L)
122H AND 123H NUMBER OF BYTES ALLOCATED FOR STRINGS (H-L)
124H THRU 127H ONTIME INTERRUPT AND LINE NUMBER (H-L)
128H AND 129H "NORMAL" PROM PROGRAMMER TIME OUT (H-L)
12AH AND 12BH "INTELLIGENT" PROM PROGRAMMER TIME OUT (H-L)
12CH RESERVED
12DH THRU 1FEH ARGUMENT STACK

Note: (H-L) means high byte—low byte. in external memory all 16 bit binary numbers are
stored with the high byte in the first (lower order) address and the low byte in the next sequential
address.

MCS BASIC-52 Users Manual

 100

A.2 Memory Usage (Version 1.1)

The following list specifies what locations in internal and external memory locations are used by
Version 1.1 of MCS BASIC-52. Any differences between V1.0 and V1.1 are in bold face type.

INTERNAL MEMORY ALLOCATION: (VERSION 1.1)

LOCATION(S) IN HEX MCS BASIC-52 USAGE
00H THRU 07H "WORKING REGISTER BANK"
08H BASIC TEXT POINTER—LOW BYTE
09H ARGUMENT STACK POINTER
0AH BASIC TEXT POINTER—HIGH BYTE
0BH THRU 0FH TEMPORARY BASIC STORAGE (Available to user in BASIC
 CALLS to ASM routines)
10H READ TEXT POINTER—LOW BYTE
11H CONTROL STACK POINTER
12H READ TEXT POINTER—HIGH BYTE
13H START ADDRESS OF BASIC PROGRAM—HIGH BYTE
14H START ADDRESS OF BASIC PROGRAM—LOW BYTE
15H NULL COUNT
16H PRINT HEAD POSITION FOR OUTPUT
17H FLOATING POINT OUTPUT FORMAT TYPE
18H THRU 21H NOT USED—RESERVED FOR USER
22H BITS USED SPECIFICALLY AS FOLLOWS

BIT 22.0H SET WHEN "ONTIME" STATEMENT IS EXECUTED
BIT 22.1H SET WHEN BASIC INTERRUPT IN PROGRESS
BIT 22.2H SET WHEN "ONEX1" STATEMENT IS EXECUTED
BIT 22.3H SET WHEN "ONERR" STATEMENT IS EXECUTED
BIT 22.4H SET WHEN "ONTIME" INTERRUPT IS IN PROGRESS
BIT 22.5H SET WHEN A LINE IS EDITED
BIT 22.6H SET WHEN EXTERNAL INTERRUPT IS PENDING
BIT 22.7H WHEN SET, CONT COMMAND WILL WORK

23H BITS USED SPECIFICALLY AS FOLLOWS

BIT 23.0H USED AS FLAG FOR "GET" OPERATOR
BIT 23.1H ! SET WHEN PRINT@ OR LIST@ IS EVOKED
BIT 23.2H ! RESERVED, TRAPS TIMER 1 INTERRUPT
BIT 23.3H CONSOLE OUTPUT CONTROL, 1 = LINE PRINTER
BIT 23.4H CONSOLE OUTPUT CONTROL, 1 = USER DEFINED
BIT 23.5H BASIC ARRAY INITIALIZATION BIT
BIT 23.6H CONSOLE INPUT CONTROL, 1 = USER DEFINED
BIT 23.7H ! RESERVED, USED TO TRAP SERIAL PORT INTERRUPT

24H BITS USED SPECIFICALLY AS FOLLOWS

BIT 24.0H STOP STATEMENT OR CONTROL-C ENCOUNTERED
BIT 24.1H ! USER IDLE BREAK BIT
BIT 24.2H ! SET DURING AN INPUT INSTRUCTION
BIT 24.3H ! RESERVED
BIT 24.4H SET WHEN ARGUMENT STACK HAS A VALUE
BIT 24.5H RETI INSTRUCTION EXECUTED
BIT 24.6H ! RESERVED, TRAPS EXTERNAL INTERRUPT 0
BIT 24.7H ! SET BY USER TO SIGNIFY THAT A VALID LIST@ OR
 PRINT@ DRIVER IS PRESENT

25H BITS USED SPECIFICALLY AS FOLLOWS

BIT 25.0H RESERVED, SOFTWARE TRAP TEST
BIT 25.1H FIND THE END OF PROGRAM, IF SET
BIT 25.2H ! SET DURING A DIM STATEMENT
BIT 25.3H INTERRUPT STATUS SAVE BIT
BIT 25.4H ! RESERVED, INPUT TRAP
BIT 25.5H ! SET TO SIGNIFY EXPANSION IS PRESENT
BIT 25.6H SET WHEN CLOCK1 EXECUTED, ELSE CLEARED
BIT 25.7H SET WHEN BASIC IS IN THE COMMAND MODE

26H BITS USED SPECIFICALLY AS FOLLOWS

MCS BASIC-52 Users Manual

 101

BIT 26.0H SET TO DISABLE CONTROL-C
BIT 26.1H SET TO ENABLE "FAKE" DMA
BIT 26.2H ! RESERVED, OUTPUT TRAP
BIT 26.3H SET TO EVOKE "INTELLIGENT" PROM PROGRAMMING
BIT 26.4H SET TO PRINT TEXT STRING FROM ROM
BIT 26.5H ! SET WHEN CONTROL-S ENCOUNTERED
BIT 26.6H SET TO SUPPRESS ZEROS IN HEX MODE PRINT
BIT 26.7H SET EVOKE HEX MODE PRINT

27H "BIT" ADDRESSABLE BYTE COUNTER
28H THRU 3DH BIT AND BYTE FLOATING POINT WORKING SPACE
3EH INTERNAL STACK POINTER HOLDING REGISTER
3FH LENGTH OF USER DEFINED STRING—$
40H TIMER 1 RELOAD LOCATION—HIGH BYTE
41H TIMER 1 RELOAD LOCATION—LOW BYTE
42H BASIC TEXT POINTER SAVE LOCATION—HIGH BYTE
43H BASIC TEXT POINTER SAVE LOCATION—LOW BYTE
44H RESERVED
45H TRANCENDENTAL FUNCTION TEMP STORAGE
46H TRANCENDENTAL FUNCTION TEMP STORAGE
47H MILLI-SECOND COUNTER FOR REAL TIME CLOCK
48H SECOND COUNTER FOR REAL TIME CLOCK—HIGH BYTE
49H SECOND COUNTER FOR REAL TIME CLOCK—LOW BYTE
4AH TIMER 0 RELOAD FOR REAL TIME CLOCK
4BH ! USER ARGUMENT FOR ONTIME—HIGH BYTE
4CH ! USER ARGUMENT FOR ONTIME—LOW BYTE
4DH THRU 0FFH 8052AH STACK SPACE AND USER WORKING SPACE

00H THRU 03H ! NOT USED, RESERVED
04H LENGTH OF THE CURRENT EDITED LINE
05H AND 06H LN NUM IN BINARY OF CURRENT EDITED LINE (H-L)
07H THRU 56H ! BASIC INPUT BUFFER
56H THRU 5DH ! BINARY TO INTEGER TEMP
5EH ! USED FOR RUN TRAP MODE (= 34H)
5FH ! USED FOR POWER-UP TRAP (= 0A5H)
60H THRU 0FEH CONTROL STACK
00FH CONTROL STACK OVERFLOW
100H LOCATION TO SAVE "GET" CHARACTER
101H LOCATION TO SAVE ERROR CHARACTER CODE
102H AND 103H LOCATION TO GO TO ON USER "ONERR" (H-L)
104H AND 105H TOP OF VARIABLE STORAGE (H-L)
106H AND 107H FP STORAGE ALLOCATION (H-L)
108H AND 109H MEMORY ALLOCATED FOR MATRICIES (H-L)
10AH AND 10BH TOP OF MEMORY ASSIGNED TO BASIC (H-L)
10CH AND 10DH RANDOM NUMBER SEED (H-L)
10EH THRU 113H CRYSTAL VALUE
114H THRU 11FH FLOATING POINT TEMPS
120H AND 121H LOCATION TO GO TO ON ONEX1 INTERRUPT (H-L)
122H AND 123H NUMBER OF BYTES ALLOCATED FOR STRINGS (H-L)
124H AND 125H ! SOFTWARE SERIAL PORT BAUD RATE (H-L)
126H AND 127H ! LINE NUMBER FOR ONTIME INTERRUPT (H-L)
128H AND 129H "NORMAL" PROM PROGRAMMER TIME OUT (H-L)
12AH AND 12BH "INTELLIGENT" PROM PROGRAMMER TIME OUT (H-L)
12CH RESERVED
12DH THRU 1FEH ARGUMENT STACK

Note: (H-L) still means high byte—low byte, in external memory all 16 bit binary numbers are
stored with the high byte in the first (lower order) address and the low byte in the next sequential
address.

A.3 Using the PWM Statement

The PWM statement can be used to generate quite accurate frequencies. The following table lists
the reload values 8 octaves of an equal tempered chromatic scale. The reload values are for the first

MCS BASIC-52 Users Manual

 102

two arguments of the PWM statement, so it is assumed that a square wave is being generated. The
reload values assume a 11.0592 MHz crystal.

 IDEAL ACTUAL HEX
NOTE OCTAVE FREQUENCY FREQUENCY RELOAD RELOAD
 C 1 32.703 32.704 14090 370AH
 C# 1 34.648 34.649 13299 33F3H
 D 1 36.708 36.708 12553 3109H
 D# 1 38.891 38.889 11849 2E49H
 E 1 41.203 41.202 11184 2BB0H
 F 1 43.654 43.653 10556 293CH
 F# 1 46.246 46.215 9963 26EBH
 G 1 48.999 49.000 9404 24BCH
 G# 1 51.913 51.915 8876 22ACH
 A 1 55.000 55.001 8378 20BAH
 A# 1 58.270 58.270 7908 1EE4H
 B 1 61.735 61.736 7464 1D28H
 C 2 65.406 65.408 7045 1B85H
 C# 2 69.296 69.293 6650 19FAH
 D 2 73.416 73.411 6277 1885H
 D# 2 77.782 77.785 5924 1724H
 E 2 82.406 82.403 5592 15D8H
 F 2 87.308 87.306 5278 149EH
 F# 2 92.498 92.493 4982 1376H
 G 2 97.998 98.000 4702 125EH
 G# 2 103.826 103.830 4438 1156H
 A 2 110.000 110.002 4189 105DH
 A# 2 116.540 116.540 3954 0F72H
 B 2 123.470 123.472 3732 0E94H
 C 3 130.812 130.798 3523 0DC3H
 C# 3 138.592 138.586 3325 0CFDH
 D 3 146.832 146.845 3138 0C42H
 D# 3 155.564 155.570 2962 0B92H
 E 3 164.812 164.807 2796 0AECH
 F 3 174.616 174.612 2639 0A4FH
 F# 3 184.996 184.986 2491 09BBH
 G 3 195.996 196.001 2351 092FH
 G# 3 207.652 207.661 2219 08ABH
 A 3 220.000 219.952 2095 082FH
 A# 3 233.080 233.080 1977 07B9H
 B 3 246.940 246.946 1866 074AH
 C 4 261.624 261.669 1761 06E1H
 C# 4 277.184 277.256 1662 067EH
 D 4 293.664 293.690 1569 0621H
 D# 4 311.128 311.141 1481 05C9H
 E 4 329.624 329.614 1398 0576H
 F 4 349.232 349.355 1319 0527H
 F# 4 369.992 370.120 1245 04DDH
 G 4 391.992 391.836 1176 0498H
 G# 4 415.304 415.135 1110 0456H
 A 4 440.000 440.114 1047 0417H
 A# 4 466.160 465.925 989 03DDH
 B 4 493.880 493.890 933 03A5H
 C 5 523.248 523.042 881 0371H
 C# 5 554.368 554.512 831 033FH
 D 5 587.238 587.006 785 0311H
 D# 5 622.256 621.862 741 02E5H
 E 5 659.248 659.228 699 02BBH
 F 5 698.464 698.182 660 0294H
 F# 5 739.984 739.647 623 026FH
 G 5 783.984 783.674 588 024CH
 G# 5 830.608 830.270 555 022BH
 A 5 880.000 879.389 524 020CH
 A# 5 932.320 932.793 494 01EEH
 B 5 987.760 986.724 467 01D3H
 C 6 1046.496 1047.272 440 01B8H
 C# 6 1108.736 1107.692 416 01A0H
 D 6 1174.656 1175.510 392 0188H
 D# 6 1244.512 1245.405 370 0172H

MCS BASIC-52 Users Manual

 103

 E 6 1318.496 1320.343 349 015DH
 F 6 1396.928 1396.364 330 014AH
 F# 6 1479.968 1481.672 311 0137H
 G 6 1567.968 1567.347 294 0126H
 G# 6 1661.216 1663.538 277 0115H
 A 6 1760.000 1758.779 262 0106H
 A# 6 1864.640 1865.587 247 00F7H
 B 6 1975.520 1977.682 233 00E9H
 C 7 2092.992 2094.545 220 00DCH
 C# 7 2217.472 2215.385 208 00D0H
 D 7 2349.312 2351.020 196 00C4H
 D# 7 2489.024 2490.811 185 00B9H
 E 7 2636.992 2633.143 175 00AFH
 F 7 2793.856 2792.727 165 00A5H
 F# 7 2959.936 2953.846 156 009CH
 G 7 3135.936 3134.694 147 0093H
 G# 7 3322.432 3315.108 139 008BH
 A 7 3520.000 3517.557 131 0083H
 A# 7 3729.280 3716.129 124 007CH
 B 7 3951.040 3938.362 117 0075H
 C 8 4185.984 4189.091 110 006EH
 C# 8 4434.944 4430.770 104 0068H
 D 8 4698.624 4702.041 98 0062H
 D# 8 4987.048 5008.695 92 005CH
 E 8 5273.984 5296.552 87 0057H
 F 8 5587.712 5619.512 82 0052H
 F# 8 5919.872 5907.692 78 004EH
 G 8 6217.872 6227.027 74 004AH
 G# 8 6644.864 6678.261 69 0045H
 A 8 7040.000 7089.231 65 0041H
 A# 8 7458.560 7432.258 62 003EH
 B 8 7902.080 7944.827 58 003AH

The following program generates the appropriate reload values for the PWM statement, using
any crystal. The user enters the desired frequency and the crystal and the program determined the
reload values and errors.

>1O INPUT "ENTER CRYSTAL FREQUENCY - ",X
>20 T-12/X
>30 INPUT "ENTER DESIRED FREQUENCY FOR PWM - ",F
>40 F1=1/F
>50 C=(F1/T)/2 : REM CALCULATE RELOAD VALUE
>60 IF C<20 THEN 30
>70 C1=C-INT(C) : REM CALCULATE FRACTION
>80 IF C1<.5 THEN 90 : C=C+1
>90 PRINT : PRINT "THE DESIRED FREQUENCY IS - ",X,"HZ"
>100 C=INT(C) : PRINT
>110 PRINT "THE ACTUAL FREQUENCY IS - ",1/(2*C*T),"HZ"
>120 PRINT
>130 PRINT "THE RELOAD VALUE FOR PWM IS - ",C," IN HEX - ",: PH1.C
>140 INPUT "ANOTHER FREQUENCY, 1=YES. 0=N0 - ",Q
>150 1F Q=1 THEN 20

A.4 Baud Rates and Crystals

The 16 bit auto-reload timer/counter (TIMER2) that is used to generate baud rates for the MCS
BASIC-52 device is capable of generating accurate baud rates with a number of crystals. The fol-
lowing is a list of crystals that will accurately generate 9600 baud on the MCS BASIC-52 device.
Additionally, the crystal values on the left hand side of the table will accurately generate 19200
baud.

 XTAL RCAP2 RELOAD XTAL RCAP2 RELOAD
 3.680400 65524 3.993600 65523
 4.300800 65522 4.608000 65521
 4.915200 65520 5.222400 65519
 5.529600 65518 5.836800 65517

MCS BASIC-52 Users Manual

 104

 6.144000 65516 6.451200 65515
 6.758400 65514 7.065600 65513
 7.372800 65512 7.680000 65511
 7.987200 65510 8.294400 65509
 8.601600 65508 8.908800 65507
 9.216000 65506 9.523200 65505
 9.830400 65504 10.137600 65503
10.444800 65502 10.752000 65501
11.059200 65500 11.366400 65499
11.673600 65498 11.980800 65497

With the crystals listed above. the accuracy of the baud rate generator and the real time clock
will depend ONLY on the absolute accuracy of the crystal. Note that the baud rate generator for
the 8052AH is so accurate that any crystal above 10 MHz will generate 9600 baud to within 1.5%
accuracy.

The following program generates the appropriate TIMER2 reload values for a given baud rate.
The user supplies the system clock frequency and the desired baud rate and the program calculates
the proper TIMER2 reload value. Additionally, percent error, for both the baud rate generator and
MCS BASlC-52's real time clock are calculated and displayed.

>10 INPUT"ENTER CRYSTAL - ",X
>20 INPUT"ENTER BAUD RATE - ",B
>30 R=X/(32*B) : T=X/76800
>40 R1=R-INT(R) : T1=T-INT(T)
>50 IF R1<.5 THEN 80
>60 R1=1-R1
>70 R=R+1
>80 IF T1<.5 THEN 110
>90 T1=1-T1
>100 T=T+1
>110 PRINT "TIMER2 RELOAD VALUE IS - ",USING(######),INT(65536-R)
>120 PRINT "BAUD RATE ERROR IS - ",USING(## ###),(R1/R)*100,"%"
>130 PRINT "REAL TIME CLOCK ERROR IS - "(T1/T)*100,"/."

A.5 Quick Reference

COMMANDS:
COMMAND FUNCTION EXAMPLE(S)
RUN Execute a program RUN
CONT CONTinue after a STOP or control-C CONT
LIST LIST program to the console device LIST
 LIST 10-50
LIST# LIST program to serial printer LIST#
 LIST# 50
LIST@ LIST program to user driver (version 1.1 LIST@
 only) LIST@ 50
NEW erase the program stored in RAM NEW
NULL set NULL count after carriage return- NULL
 line feed NULL 4
RAM evoke RAM mode, current program in RAM
 READ/WRITE memory
ROM evoke ROM mode, current program in ROM
 ROM/EPROM memory ROM 3
XFER transfer a program from ROM/EPROM to RAM XFER
PROG save the current program in EPROM PROG
PROG1 save baud rate information in EPROM PROG1
PROG2 save baud rate information in EPROM PROG2
 and execute program after RESET
PROG3 save baud rate and MTOP information in PROG3
 EPROM (version 1.1 only)
PROG4 save baud rate and MTOP information in PROG4
 EPROM and execute program after
 RESET (version 1.1 only)
PROG5 same as PROG4 except that external PROG5

MCS BASIC-52 Users Manual

 105

 RAM is not cleared on RESET or power
 up if external RAM contains a 0A5H in
 location 5EH (version 1.1 only)
PROG6 same as PROG6 except that external PROG6
 code location 4039H is CALLED after
 RESET (version 1.1 only)
FPROG save the current program in EPROM FPROG
 using the INTELligent algorithm
FPROG1 save baud rate information in EPROM FPROG1
 using the INTELligent algorithm
FPROG2 save baud rate information in EPROM FPROG2
 and execute program after RESET, use
 INTELligent algorithm
FPROG3 same as PROG3, except INTELligent FPROG3
 programming algorithm is used (version
 1.1 only)
FPROG4 same as PROG4, except INTELligent FPROG4
 programming algorithm is used (version
 1.1 only)
FPROG5 same as PROG5, except INTELligent FPROG5
 programming algorithm is used (version
 1.1 only)
FPROG6 same as PROG6, except INTELligent FPROG6
 programming algorithm is used (version
 1.1 only)
BAUD set baud rate for line printer port BAUD 1200
CALL CALL assembly language program CALL 9000H
CLEAR CLEAR variables, interrupts and Strings CLEAR
CLEARS CLEAR Stacks CLEARS
CLEARI CLEAR Interrupts CLEARI
CLOCK1 enable REAL TIME CLOCK CLOCK1
CLOCK0 disable REAL TIME CLOCK CLOCK0
DATA DATA to be read by READ statement DATA 100
READ READ data in DATA statement READ A
RESTORE RESTORE READ pointer RESTORE
DIM allocate memory for arrayed variables DIM A(20)
DO set up loop for WHILE or UNTIL DO
UNTIL test DO loop condition (loop if false) UNTIL A= 10
WHILE test DO loop condition (loop if true) WHILE A= B
END terminate program execution END
FOR-TO-{STEP} set up FOR-NEXT loop FOR A= 1 TO 5
NEXT test FOR-NEXT loop condition NEXT A

STATEMENTS:
STATEMENT FUNCTION EXAMPLE(S)
GOSUB execute subroutine GOSUB 1000
RETURN RETURN from subroutine RETURN
GOTO GOTO program line number GOTO 500
ON GOTO conditional GOTO ON A GOTO 5,20
ON GOSUB conditional GOSUB ON A GOSUB 2,6
IF-THEN-{ELSE} conditional test IF A<B THEN A=0
INPUT INPUT a string or variable INPUT A
LET assign a variable or string a value LET A= 10
 (LET is optional)
ONERR ONERRor GOTO line number ONERR 1000
ONTIME generate an interrupt when TIME is equal ONTIME 10, 1000
 to or greater than ONTIME argument-line
 number is after comma
ONEX1 GOSUB to line number following ONEX1 ONEX1 1000
 when INT1 pin is pulled low
PRINT PRINT variables, strings or literals PRINT A
 P. is shorthand for PRINT
PRINT# PRINT to software serial port PRINT# A
PH0. PRINT HEX mode with zero suppression PH0. A
PH1. PRINT HEX mode with no zero PH1. A
 suppression
PH0.# PH0. to line printer PH0.# A
PH1.# PH1.# to line printer PH1.# A
PRINT@ PRINT to user defined driver (version 1.1 PRINT@ 5*5

MCS BASIC-52 Users Manual

 106

 only)
PH0.@ PH0. to user defined driver (version 1.1 PH0. @
 only) XBY(5EH)
PH1.@ PH1. to user defined driver (version 1.1 PH1.@ A
 only)
PGM Program an EPROM (version 1.1 only) PGM
PUSH PUSH expressions on argument stack PUSH 10, A
POP POP argument stack to variables POP A, B, C
PWM PULSE WIDTH MODULATION PWM 50, 50, 100
REM REMark REM DONE
RETI RETurn from Interrupt RETI
STOP break program execution STOP
STRING allocate memory for Strings STRING 50, 10
UI1 evoke User console Input routine UI1
UI0 evoke BASIC console Input routine UI0
UO1 evoke User console Output routine UO1
UO0 evoke BASIC console Output routine UO0
ST@ store top of stack at user specified ST@ 1000H
 location (version 1.1 only) ST@ A
LD@ load top of stack from user specified LD@ 1000H
 location (version 1.1 only) LD@ A
IDLE wait for interrupt (version 1.1 only) IDLE
RROM run a program in EP(ROM) (version 1.1 RROM 3
 only)

OPERATORS—DUAL OPERAND:
OPERATOR FUNCTION EXAMPLE(S)
+ ADDITION 1 + 1
/ DIVISION 10/2
** EXPONENTATION 2**4
* MULTIPLICATION 4*4
- SUBTRACTION 8 – 4
.AND. LOGICAL AND 10.AND.5
.OR. LOGICAL OR 2.0R.1
.XOR. LOGICAL EXCLUSIVE OR 3.XOR.2

OPERATORS—SINGLE OPERAND:
ABS() ABSOLUTE VALUE ABS(-3)
NOT() ONES COMPLEMENT NOT(0)
INT() INTEGER INT(3.2)
SGN() SIGN SGN(- 5)
SQR() SQUARE ROOT SQR(100)
RND RANDOM NUMBER RND
LOG() NATURAL LOG LOG(10)
EXP() "e" (2.7182818) TO THE X EXP(10)
SIN() RETURNS THE SINE OF ARGUMENT SIN(3.14)
COS() RETURNS THE COSINE OF COS(0)
 ARGUMENT
TAN() RETURNS THE TANGENT OF TAN(.707)
 ARGUMENT
ATN() RETURNS ARCTANGENT OF ATN(1)
 ARGUMENT

OPERATORS—SPECIAL FUNCTION:
CBY() READ PROGRAM MEMORY P. CBY(4000)
DBY() READ/ASSIGN INTERNAL DATA DBY(99)=10
 MEMORY
XBY() READ/ASSIGN EXTERNAL DATA P. XBY(10)
 MEMORY
GET READ CONSOLE P. GET
IE READ/ASSIGN IE REGISTER IE=82H
IP READ/ASSIGN IP REGISTER IP=0
PORT1 READ/ASSIGN l/O PORT 1 (P1) PORT1=0FFH
PCON READ/ASSIGN PCON REGISTER PCON=0
RCAP2 READ/ASSIGN RCAP2 RCAP2=100
 (RCAP2H:RCAP2L)
T2CON READ/ASSIGN T2CON REGISTER P. T2CON

MCS BASIC-52 Users Manual

 107

TCON READ/ASSIGN TCON REGISTER TCON=10H
TMOD READ/ASSIGN TMOD REGISTER P. TMOD
TIME READ/ASSIGN THE REAL TIME CLOCK P. TIME
TIMER0 READ/ASSIGN TIMER0 (TH0: TL0) TIMER0=0
TIMER1 READ/ASSIGN TIMER1 (TH1: TL1) P. TIMER1
TIMER2 READ/ASSIGN TIMER2 (TH2: TL2) TIMER2=0FFH

STORED CONSTANT:
PI PI — 3.1415926 PI

A.7 Floating Point Format

MCS BASIC-52 stores all floating point numbers in a normalized packed BCD format with an
offset binary exponent. The simplest way to demonstrate the floating point format is to use an
example. If the number PI (3.1415926) was stored in location X, the following would appear in
memory.

LOCATION VALUE DESCRIPTION
 X 81H EXPONENT—81H = 10**1, 82H = 10**2,
 80H = 10**0, 7FH = 10**-1 etc.
 THE NUMBER ZERO IS REPRESENTED WITH A
 ZERO EXPONENT
 X-1 00H SIGN BIT—00H = POSITIVE, 01 H = NEGATIVE OTHER BITS ARE
 USED AS TEMPS ONLY DURING A CALCULATION
 X-2 26H LEAST SIGNIFICANT TWO DIGITS
 X-3 59H NEXT LEAST SIGNIFICANT TWO DIGITS
 X-4 41H NEXT MOST SIGNIFICANT TWO DIGITS
 X-5 31H MOST SIGNIFICANT TWO DIGITS

Because MCS BASIC-52 normalizes all numbers, the most significant digit is never a zero unless
the number is zero.

A.8 Storage Allocation

This section is intended to answer the question—where does MCS BASIC-52 store its variables
and strings?

Two 16 bit pointers stored in external memory control the allocation of strings and variables and
an additional two pointers control the allocation of scalar variables and dimensioned variables.
These pointers are located and defined as follows:

LOCATION (H-L) NAME DESCRIPTION
10AH-10BH MTOP THE TOP OF RAM THAT IS ASSIGNED TO BASIC
104H-105H VARTOP VARTOP = MTOP - (THE NUMBER OF BYTES OF MEM-
 ORY THAT THE USER HAS ALLOCATED FOR STRINGS).
 IF STRINGS ARE NOT USED, VARTOP = MTOP
106H-107H VARUSE AFTER A NEW, CLEAR, OR RUN IS EXECUTED, VARUSE =
 VARTOP, EVERYTIME THE USER ASSIGNS OR USES A
 VARIABLE VARUSE IS DECREMENTED BY A COUNT OF 8.
108H-109H DIMUSE AFTER A NEW, CLEAR, OR RUN IS EXECUTED, DIMUSE =
 [LENGTH OF THE USER PROGRAM THAT IS IN RAM MEM-
 ORY + STARTING ADDRESS OF THE USER PROGRAM IN
 RAM (512) + THE LENGTH OF ONE FLOATING POINT
 NUMBER (6)]. IF NO PROGRAM IS IN RAM MEMORY,
 DIMUSE = 518 AFTER A CLEAR IS EXECUTED

MCS BASIC-52 stores string variables between VARTOP and MTOP. $(0) is stored from
VARTOP to VARTOP + (user defined string length + 1), $(1) is stored from VARTOP + (user
defined string length + 1) + 1 to VARTOP + 2 * (user defined string length + 1) etc. If MCS
BASIC-52 attempts to access a string that is outside the bounds established by MTOP, a MEMORY
ALLOCATION error is generated. Now, Scalar variables are stored from VARTOP "down" and

MCS BASIC-52 Users Manual

 108

Dimensioned variables are stored from DIMUSE "up." When the user dimensions a variable either
implicitly or explicitly the value of DIMUSE increases by the number of bytes required to store that
dimensioned variable. For example, if the user executes a DIM A(10) statement, DIMUSE would
increase by 66. This is because the user is requesting storage for 11 numbers (A(0) through A(10))
and each number requires 6 bytes for storage and 6 * 11 = 66.

As mentioned in the previous example, every time the user defines a new variable the VARUSE
pointer decrements by a count of 8. Six of the eight counts are due to the memory required to store
a floating point number and the other two counts are the storage required for the variable name
(i.e. A1, B7, etc). The variable B7 would be stored as follows:

LOCATION VALUE DESCRIPTION
 X 37H THE ASCII VALUE—7, IF B7 WAS A DIMENSIONED VARIABLE THE
 MOST SIGNIFICANT BIT OF THIS LOCATION WOULD BE SET. IN
 VERSION 1.1 THIS LOCATION ALWAYS CONTAINS THE ASCII
 VALUE FOR THE LAST CHARACTER USED TO DEFINE A
 VARIABLE
 X-1 42H THE ASCII VALUE—B, IN VERSION 1.1 OF MCS BASIC-52 THIS
 LOCATION CONTAINS THE ASCII VALUE OF THE FIRST CHARAC-
 TER USED TO DEFINE A VARIABLE PLUS 26 * THE NUMBER OF
 CHARACTERS USED TO DEFINE A VARIABLE, IF THE VARIABLE
 CONTAINS MORE THAN 2 CHARACTERS.

 X-2 ?? THE NEXT SIX LOCATIONS WOULD CONTAIN THE FLOATING
 THRU POINT NUMBER THAT THE VARIABLE IS ASSIGNED TO, IF THE
 X-7 VARIABLE WAS A SCALAR VARIABLE. IF THE VARIABLE WAS Dl-
 MENSIONED, X-2 WOULD CONTAIN THE LIMIT OF THE DIMENSION
 (I.E. THE MAX. NUMBER OF ELEMENTS IN THE ARRAY) AND
 X-3: X-4 WOULD CONTAIN THE BASE ADDRESS OF THE ARRAY.
 THIS ADDRESS IS EQUAL TO THE OLD VALUE OF THE DIMUSE
 POINTER BEFORE THE ARRAY WAS CREATED

Whenever a new scalar or dimensioned variable is used in a program, MCS BASIC-52 checks
both the DIMUSE and VARUSE pointers to make sure that VARUSE > DIMUSE. If the relationship
is not true, a MEMORY ALLOCATION error is generated.

To Summarize: Strings are stored from VARTOP to MTOP. Scalar variables are stored from
VARTOP "down" and VARUSE points to the next available scalar location. Dimensioned variables
are stored from the end of the user program in RAM "up." If no program is in RAM this location is
518 . DIMUSE keeps track of the number of bytes the user has allocated for dimensioned variables.
If DIMUSE >= VARUSE a MEMORY ALLOCATION error is generated

A.9 Format Of an MCS BASIC-52 Program

This section answers the question "How does MCS BASIC-52 store a program?"

LINE FORMAT

Each line of MCS BASIC-52 text consists of tokens and ASCII characters, plus 4 bytes of over-
head. Three of these four bytes are stored at the beginning of every line. The first byte contains the
length of a line in binary and the second two bytes are the line number in binary. The fourth byte
is stored at the end of the line and this byte is always a 0DH or a carriage return in ASCII. An
example of a typical line is shown below, assume that this is the first line of a program in RAM.

10 FOR I = I TO 10: PRINT 1: NEXT I

LOCATION BYTE DESCRIPTION
512 11H THE LENGTH OF THE LINE IN BINARY (17D BYTES)
513 00H HIGH BYTE OF THE LINE NUMBER
514 0AH LOW BYTE OF THE LINE NUMBER

MCS BASIC-52 Users Manual

 109

515 0A0H THE TOKEN FOR "FOR"
516 49H THE ASCII CHARACTER "I"
517 0EAH THE TOKEN FOR "="
518 31H THE ASCII FOR "1"
519 0A6H THE TOKEN FOR "TO"
520 31H THE ASCII FOR "1"
521 30H THE ASCII FOR "0"
522 3AH THE ASCII FOR ":"
523 89H THE TOKEN FOR "PRINT"
524 49H THE ASCII FOR "I"
525 3AH THE ASCII FOR ":"
526 97H THE TOKEN FOR "NEXT"
527 49H THE ASCII FOR "I"
528 0DH END OF LINE (CARRIAGE RETURN)

TO FIND THE LOCATION OF THE NEXT LINE, THE LENGTH OF THE LINE IS ADDED TO
THE LOCATION WHERE THE LENGTH OF THE LINE IS STORED. IN THIS EXAMPLE, 512 +
17D = 529, WHICH IS WHERE THE NEXT LINE IS STORED.

The END of a program is designated by the value 01H. So, in the previous example if line 10
was the only line in the program, location 529 would contain the value 01H. A program simply
consists of a number of lines packed together in one continuous block with the last line ending in a
0DH, 01H sequence.

EPROM FILE FORMAT

The EPROM File format consists of the same line and program format, previously described
except that each program in the EPROM file begins with the value 55H. The value 55H is only used
by MCS BASIC-52 to determine if a valid program is present. If the user types ROM 6, MCS BASIC-
52 actually goes through the first program stored in EPROM line by line until the END of program
(01H) is found, then it examines the next location to see if a 55H is stored in that location. It then
goes through that program line by line. This process is repeated 6 times. If the character 55H is not
found after the end of a program, MCS BASIC-52 will return with the PROM mode error message.
This would mean that less than six programs were stored in that EPROM.

The first program stored in EPROM (ROM 1) always begins at location 8010H and this location
will always contain a 55H. The actual user program will begin at location 8011H.

EPROM locations 8000H through 800FH are reserved by MCS BASIC-52. These locations con-
tain initialization information when the PROGX options are used. Version 1.0 of MCS BASIC-52
only used the first three bytes of this reserved EPROM area. The information stored in these bytes
is as follows:

LOCATION DESCRIPTION
8000H CONTAINED A 31H IF PROG 1 WAS USED, CONTAINED A 32H IF PROG 2
 WAS USED
8001H BAUD RATE (RCAP2H)
8002H BAUD RATE (RCAP2L)

Version 1.1 of MCS BASIC-52 uses the same locations as Version 1.0, but additionally locations
8003H and 8004H (high byte, low byte) are used to store the MTOP information for the PROG 3, 4,
5, 6 options.

Important note: The PROG X options simply store ASCII character following the PROG com-
mand in location 8000H. That is why PROG 1 stores a 31H in location 8000H, PROG 2 a 32H,
PROG 3 (Version 1.1 only) a 33H etc. If the user employs the user defined reset option defined in
Chapter 11 of this manual, it would be possible for the user to create unique PROG options. For
example, PROG A would store a 41H in location 8000H and upon Reset the user could examine

MCS BASIC-52 Users Manual

 110

this location with an assembly language routine and generate a unique PROG A reset routine for
that particular application.

A.10 Answers to a Few Questions

QUESTION: Why can't MCS BASIC-52 access the 8052's special function register SCON?

ANSWER: The only time the user would likely change the contents of SCON is if the user is
writing custom I/O drivers in assembly language. If the user is writing assembly language I/O driv-
ers, then the user can change the contents of SCON in assembly language. Changing the contents
of SCON can cause MCS BASIC-52's console routines to crash.

QUESTION: I have written an upload/download routine using my computer, but when I
download a program, MCS BASIC-52 misses characters, why?

ANSWER: MCS BASIC-52 is actually capable of accepting characters at 38,400 baud. The prob-
lem is that after MCS BASIC-52 receives a carriage return (cr), it tokenizes the line of text that was
just entered. Depending on how complicated and how long the line is, MCS BASIC-52 can take up
to a couple of hundred milliseconds to tokenize the line. If the user keeps stuffing characters into
the serial port while MCS BASIC-52 is tokenizing the line, the characters will be lost. What the user
must do in the download routine is wait until MCS BASIC-52 responds with the prompt character
(>) after a carriage return is sent to the MCS BASIC- 52 device. The prompt (>) informs the user
that MCS BASIC-52 is ready to receive characters from the console device.

QUESTION: I am writing in assembly language and I notice that the 8052AH has no decrement
DPTR instruction. What is the easiest, shortest or simplest way to decrement the DPTR?

ANSWER: The shortest one we know is:

 XCH A,DPL ; SWAPA<>DPL
 JNZ DECDP ; DPH = DPH-1 IF DPL = O
 DEC DPH
DECDP: DEC A ; DPL = DPL-1
 XCH A,DPL

This routine affects no flags or registers (except the DPTR) either!

QUESTION: After Reset or power-up, MCS BASIC-52 does not return the proper value for
MTOP, what's the problem?

ANSWER: Virtually every time this problem occurs it is because something is wrong with the
decoding circuitry in the system or one or more of the address lines to the RAM are open or
shorted. The user should make sure that all of the address lines to the system RAM are connected
properly!

A simple memory test can be implemented in the command mode to verify the addressing to
the RAM. First set XBY(1000H) = 55, then walk ones across the address (i.e. P. XBY(1001H) - P.
XBY(1002H) - P. XBY(1004H) — P. XBY(1008H) P. XBY(1010H)) until all locations are tested. If for
instance, P. XBY(1008H) returns a result of 55, then address line 3 (A3) would probably be open or
shorted.

MCS BASIC-52 Users Manual

 111

A11 Pin-Out List

The following is a list of the most common devices found in a MCS-52 system.

MCS BASIC-52 Users Manual

 112

A.12 References

• J. Sack and J: Meadows, Entering BASIC, Science Research Associates, 1973.
• C. Pegels, BASIC: A Computer Programming Language, Holden-Day, Inc., 1973.
• J. Kemeny and T. Kurtz, BASIC Programming, People Computer Company, 1967.
• Albrecht, Finkle, and Brown, BASIC, People Computer Company, 1973.
• T. Dwyer, A Guided Tour of Computer Programming in BASIC, Houghton Mifflin Co., 1973.
• Eugene H. Barnett, Programming Time Shared Computers in BASIC, Wiley-Interscience,

L/C 72-175789.
• Programming Language #2, Digital Equipment Corp., Maynard, Mass. 01754.
• 101 BASIC Computer Games, Digital Equipment Corp., Maynard, Mass. 01754.
• What to do After You Hit Return. People Computer Company.
• BASIC-80 REFERENCE MANUAL, Intel Corp., Santa Clara, Calif

