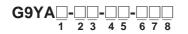
G9YA


High-frequency, High-capacity Coaxial Switch Supporting Bandwidth to 26.5 GHz

- Superior high-frequency characteristics, such as an isolation of 60 dB min., insertion loss of 0.8 dB max., and V.SWR of 1.7 max. at 26.5 GHz (50 Ω).
- Contact carry power of 120 W at 3 GHz.
- High sensitivity with rated power consumption of 700 mW for failsafe models and 500 mW for double-winding latching models.
- Models with TTL-driven double-winding latching and indicator terminals are available.

RoHS Compliant

Ordering Information

Model Number Legend:

- 1. Relay Function
 - None: Failsafe
 - K: Double-winding latching
 - T: TTL-driven double-winding latching (with self cut-off function)
- 2. Contact Form
 - 12: SPDT
- 3. Terminal Shape
- S: SMA
- 4. Frequency
 - 4: 26.5 GHz

- 5. Characteristic Impedance 5: 50Ω
- 6. Operating Terminal
- None: Soldering terminal P: Pin terminal
 - C: Connector cable
- 7. Indicator Terminal

None: No indicator terminal N: Indicator terminal

- 8. Data Package None: No data package
 - D: Data package

List of Models

Standard Models with Soldering Terminals

Classification	Contact form	Indicator terminal	Data package	Rated coil voltage	Model	Minimum packaging unit	
Failsafe	SPDT	No	No	4.5, 12, 15, 24, and 28 VDC	G9YA-12S-45	One per box	
			Yes	4.5, 12, 15, 24, and 28 VDC	G9YA-12S-45-D		
		Yes	No	4.5, 12, 15, 24, and 28 VDC	G9YA-12S-45-N		
			Yes	4.5, 12, 15, 24, and 28 VDC	G9YA-12S-45-ND		
Double-wind-	SPDT	No	No	4.5, 12, 15, 24, and 28 VDC	G9YAK-12S-45	One per box	
ing latching				Yes	4.5, 12, 15, 24, and 28 VDC	G9YAK-12S-45-D	
		Yes	No	4.5, 12, 15, 24, and 28 VDC	G9YAK-12S-45-N		
			Yes	4.5, 12, 15, 24, and 28 VDC	G9YAK-12S-45-ND		
TTL-driven	SPDT	No	No	5, 12, 15, and 24 VDC	G9YAT-12S-45	One per box	
double-wind- ing latching (with self cut-			Yes	5, 12, 15, and 24 VDC	G9YAT-12S-45-D		
		Yes No	No	5, 12, 15, and 24 VDC	G9YAT-12S-45-N		
off function)			Yes	5, 12, 15, and 24 VDC	G9YAT-12S-45-ND	1	

Standard Models with Pin Terminals

Classification	Contact form	Indicator terminal	Data package	Rated coil voltage	Model	Minimum packaging unit
Failsafe	SPDT	No	No	4.5, 12, 15, 24, and 28 VDC	G9YA-12S-45-P	One per box
			Yes	4.5, 12, 15, 24, and 28 VDC	G9YA-12S-45-PD	-
		Yes	No	4.5, 12, 15, 24, and 28 VDC	G9YA-12S-45-PN	
			Yes	4.5, 12, 15, 24, and 28 VDC G9YA-12S-45-PND 4.5, 12, 15, 24, and 28 VDC G9YAK-12S-45-P		
Double-wind- ing latching	SPDT	No	No	4.5, 12, 15, 24, and 28 VDC	G9YAK-12S-45-P	One per box
			Yes	4.5, 12, 15, 24, and 28 VDC	G9YAK-12S-45-PD	
		Yes	No	4.5, 12, 15, 24, and 28 VDC	G9YAK-12S-45-PN	
			Yes	4.5, 12, 15, 24, and 28 VDC	G9YAK-12S-45-PND	
TTL-driven	SPDT	No	No	5, 12, 15, and 24 VDC	G9YAT-12S-45-P	One per box
double-wind-			Yes	5, 12, 15, and 24 VDC	G9YAT-12S-45-PD	-
ing latching (with self cut-		Yes	No	5, 12, 15, and 24 VDC	G9YAT-12S-45-PN	1
off function)			Yes	5, 12, 15, and 24 VDC	G9YAT-12S-45-PND	1

Standard Models with Connector Cables

Classification	Contact form	Indicator terminal	Data package	Rated coil voltage	Model	Minimum packaging unit	
Failsafe	SPDT	No	No	4.5, 12, 15, 24, and 28 VDC	G9YA-12S-45-C	One per box	
			Yes	4.5, 12, 15, 24, and 28 VDC	G9YA-12S-45-CD		
		Yes	No	4.5, 12, 15, 24, and 28 VDC	G9YA-12S-45-CN		
			Yes	4.5, 12, 15, 24, and 28 VDC	G9YA-12S-45-CND		
	SPDT		No	4.5, 12, 15, 24, and 28 VDC	G9YAK-12S-45-C	One per box	
ing latching			Yes	4.5, 12, 15, 24, and 28 VDC	G9YAK-12S-45-CD		
		Yes	No	4.5, 12, 15, 24, and 28 VDC	G9YAK-12S-45-CN		
			Yes	4.5, 12, 15, 24, and 28 VDC	G9YAK-12S-45-CND		
TTL-driven	SPDT	No	No	5, 12, 15, and 24 VDC	G9YAT-12S-45-C	One per box	
double-wind-			Yes	5, 12, 15, and 24 VDC	G9YAT-12S-45-CD		
ing latching (with self cut-		Yes	No	5, 12, 15, and 24 VDC	G9YAT-12S-45-CN	1	
off function)			Yes	5, 12, 15, and 24 VDC	G9YAT-12S-45-CND]	

Application Examples

- Mobile phone stations and antenna devices
- Wireless devices, wireless LAN, and disaster prevention wireless
- Test equipment, measuring equipment, and jigs
- Broadcasting facilities (digital TV, cable TV, and satellite broadcasting)

Specifications

Ratings

Indicator Rating

Rating	100 mA max. at 30 V
Contact resistance	1 Ω max. (See note 2.)
Note: 1. The above va	lues are initial values.

2. The contact resistance was measured with 10 mA at 1 VDC with a voltage drop method.

High-frequency Characteristics

Frequency	1 GHz max. 4 GHz max.		8 GHz max. 12.4 GHz max.		18 GHz max.	26.5 GHz max.
Item						
Insertion loss	0.2 dB		0.3 dB	0.4 dB	0.5 dB	0.8 dB
Isolation	85 dB 80 dB		70 dB	65 dB	60 dB	
V.SWR	1.1 1.15		1.25	1.35	1.5	1.7

Note: The above values are initial values.

Failsafe Model

G9YA-12S-45

Frequency	Rated current	Coil resistance	Must operate	Must release	Maximum	Power
Item			voltage	voltage	voltage	consumption
4.5 VDC	155.2 mA	29 Ω	80% max. of rated	10% min. of rated	150% of rated	Approx. 700 mW
12 VDC	58.5 mA	205 Ω	voltage	voltage	voltage	
15 VDC	46.7 mA	321 Ω	-			
24 VDC	29.2 mA	822 Ω	-			
28 VDC	25.0 mA	1,118 Ω	-			

Note: 1. The rated current and coil resistance are measured at a coil temperature of 23° C with a tolerance of $\pm 10\%$.

2. The operating characteristics are measured at a coil temperature of 23°C.

3. The maximum voltage is the highest voltage that can be imposed on the Relay coil instantaneously.

Double-winding Latching Model

G9YAK-12S-45

Frequency	Rated current	Coil resistance	Must set voltage	Must reset	Maximum	Power
Item				voltage	voltage	consumption
4.5 VDC	109.8 mA	41 Ω		80% max. of rated	150% of rated	Approx. 500 mW
12 VDC	41.7 mA	288 Ω	voltage	voltage	voltage	
15 VDC	33.3 mA	450 Ω				
24 VDC	20.8 mA	1,152 Ω				
28 VDC	17.9 mA	1,568 Ω				

Note: 1. The rated current and coil resistance are measured at a coil temperature of 23°C with a tolerance of ±10%.

2. The operating characteristics are measured at a coil temperature of 23°C.

3. The maximum voltage is the highest voltage that can be imposed on the Relay coil instantaneously.

TTL-driven Latching Model

G9YAT-12S-45

Frequency	TTL k	ogic level	Electronic self cut-off	Switching frequency	
ltem					
	ON	OFF			
5 VDC	2.4 to 5.5 V	0 to 0.5 V	Yes	180 operations per minute	
12 VDC				max.	
15 VDC				(ON time:OFF time = 1:1)	
24 VDC					

Note: 1. The rated current and coil resistance are measured at a coil temperature of 23°C with a tolerance of ±10%

2. The operating characteristics are measured at a coil temperature of 23°C.

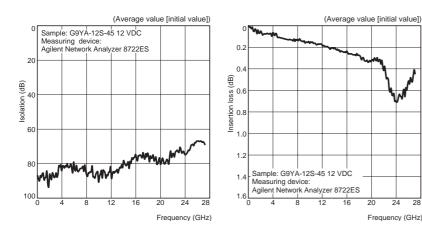
3. The maximum voltage is the highest voltage that can be imposed on the Relay coil instantaneously.

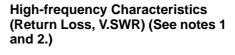
Models with Indicator Terminals

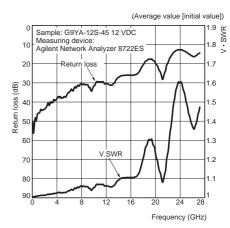
Note: An extra 140 to 300 mW of power consumption is added to models with indicator terminals, due to the operating coil and voltage specifications.

Characteristics

	Туре	Failsafe model	Double-winding latching model	TTL-driven latching model					
Item	Model	G9YA-12S-45	G9YAK-12S-45	G9YAT-12S-45					
Contact resist	ance (See note 3.)	100 mΩ max.							
Operating (set	:) time	15 ms max.							
Release (reset	:) time	15 ms max.							
Minimum set/r	eset pulse time		100 ms						
Insulation resistance (See note 4.)		1,000 MΩ min. (at 500 VDC)							
Dielectric	Coil and contacts	500 VAC, 50/60 Hz for 1 min							
strength	Coil and ground, contacts and ground	500 VAC, 50/60 Hz for 1 min							
	Contacts of same polarity	500 VAC, 50/60 Hz for 1 min							
Vibration	Destruction	10 to 55 to 10 Hz, 2.5-mm single amplitude (5.0-mm double amplitude)							
resistance	Malfunction	10 to 55 to 10 Hz, 1.5-mm single amplitude (3.0-mm double amplitude)							
Shock	Destruction	1,000 m/s ²							
resistance	Malfunction	500 m/s ²							
Endurance	Mechanical	5,000,000 operations min. (at 3	36,000 operations/hour)						
	Electrical	5,000,000 operations min. (3 GHz, 5 W, 50 Ω , V.SWR 1.2 max.) at a switching frequency of 1,800 operations/hour							
Contact carry	power	120 W (at 3 GHz, 50 Ω , V.SWR \leq 1.15) with an ambient temperature of 40°C							
Ambient temp	erature	Operating: -55 to 85°C (with no icing or condensation)							
Ambient humi	dity	Operating: 5 to 85%							
Weight		Approx. 50 g							


Note: 1. The above values are initial values.


- 2. Rated and characteristic (initial) values are for a standard temperature of 23°C and a humidity of 65% unless otherwise indicated.
- 3. The contact resistance was measured with 10 mA at 1 VDC with a voltage drop method.
- 4. The insulation resistance was measured with a 500-VDC megohmmeter applied to the same parts as those used for checking the dielectric strength.

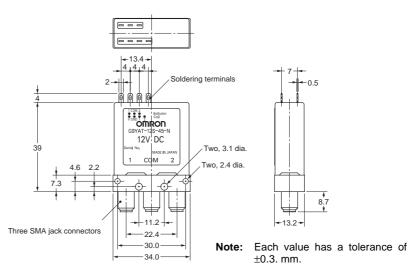

Engineering Data

High-frequency Characteristics (Isolation) (See notes 1 and 2.)

High-frequency Characteristics (Insertion Loss) (See notes 1 and 2.)

Note: 1. The tests were conducted at an ambient temperature of 23°C.

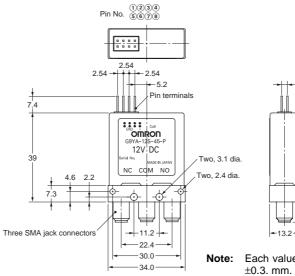
2. The high-frequency characteristics will vary according to the connectors. Be sure to check operation including durability at the actual device before use.


Dimensions

Note: All units are in millimeters unless otherwise indicated.

Models with Soldering Terminals

G9YA-12S-45-□ G9YAK-12S-45-□ G9YAT-12S-45-□

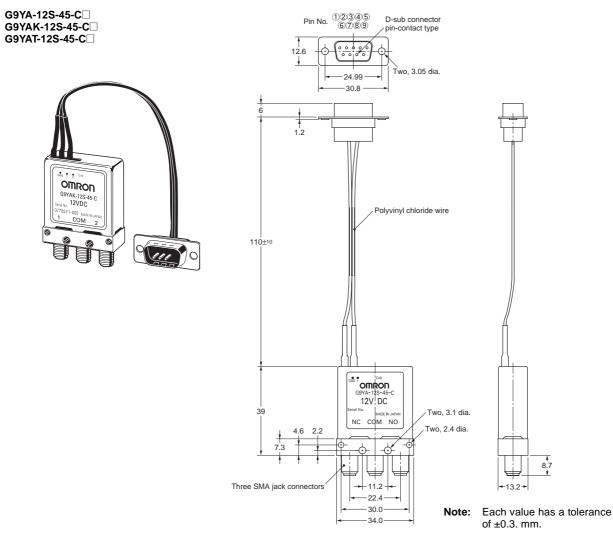

Soldering Terminal Arrangement

E a lla a Ca		
Failsafe	Double-winding latching	TTL-driven double-winding latching
		V GND Logic 1 Logic 2
0 0 0 0 0 0 0 0 0 0 0 0 0 0		0 0 0 0 7051 2 Gu OMRON G9VAT-125-45 1 COM 2 0 0 0 0 1 COM 2
		1 COM 2
		V GND Logic 1 Logic 2
0 0 0 (1) 0 (1	Image: Construction of the second	○ ○ ○ ○ ○ ○ ○ ○
	C COM NO C COM NO C C C C C C C C C C C C C C C C C C C	$\begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$

Models with Pin Terminals

G9YA-12S-45-P□ G9YAK-12S-45-P□ G9YAT-12S-45-P□

Note: Each value has a tolerance of ± 0.3 . mm.


8.7 \$

₽2.54

Pin Terminal Arrangement

		Indicator				Coil			
Pin number		1	2	3	4	5	6	7	8
Without indica-	Failsafe						GND		+
tor terminals	Double-winding latching						GND	1	2
	TTL-driven double-wind- ing latching					V	GND	Logic 1	Logic 2
With indicator	Failsafe		NC	COM	NO		GND		+
terminals	Double-winding latching		1	COM	2		GND	1	2
	TTL-driven double-wind- ing latching		1	COM	2	V	GND	Logic 1	Logic 2

Models with Connector Cables

Pin Terminal Arrangement

		Indicator			Coil					
	Pin number	1	2	3	4	5	6	7	8	9
Without indica-	Failsafe							GND	+	
tor terminals	Double-winding latching							GND	1	2
	TTL-driven double-wind- ing latching						V	GND	Logic 1	Logic 2
With indicator	Failsafe		NC	COM	NO			GND	+	
terminals	Double-winding latching		1	COM	2			GND	1	2
	TTL-driven double-wind- ing latching		1	СОМ	2		V	GND	Logic 1	Logic 2

Precautions

Note: For general precautions refer to precautions for Relays in PCB Relays Group Catalog (Cat. No. X033).

Precautions for Correct Use

Relay Handling

- Relays are precision components. Do not subject the Relay to vibration or shock in excess of the standard values, whether before or after mounting. The original performance cannot be maintained if the Relay is subjected to abnormal vibration or shock or dropped. Also, do not subject the Relay to vibration or shock in excess of the rated values when it is still packaged.
- Avoid subjecting the Relay to direct sunlight when it is being used, stored or transported. Keep the Relay at conditions of normal temperature, humidity, and pressure.
- The Relay is not sealed. It cannot be washed.
- Be absolutely sure not to wire the Relay incorrectly. Incorrect wiring will result in failure of Relay functions and damage or fire in the Relay, in addition to affecting external circuits.
- Recommended torque for mounting the SMA connectors is the MIL-C-39012 standard of 0.90±0.1 N·m. The conditions, however, depend on the compatibility with the material of the connectors.
- Use of two or more Relays may result in change in the Relay characteristics due to interference in the magnetic fields generated by the Relays. Be sure to check operation using the actual devices before use.
- Use a power supply for the coil operating power supply with a maximum ripple of 5%. Be sure to check operation using the actual devices before use.
- Operation in excess of the coil ratings, contact ratings, switching service life or other specifications may result in abnormal heat generation, smoke, or fire.

Latching Relay Mounting

Make sure that the vibration or shock generated from other devices (e.g., Relays) on the same panel during operation or resetting do not exceed the values provided in the catalog, otherwise the latching Relay that has been set may be reset or vice versa. The latching Relay is reset before shipping. If excessive vibration or shock is imposed, however, the latching Relay may be set accidentally. Be sure to apply a reset signal before use.

Long-term Continuously ON Contacts

Using the Relay in a circuit where the Relay will be ON continuously for long periods (without switching) can lead to unstable contacts because the heat generated by the coil itself will deteriorate the insulation, causing a film to develop on the contact surfaces. We recommend using a latching Relay (magnetic-holding Relay) in this kind of circuit. If a failsafe Relay must be used in this kind of circuit, use a full-loop circuit design to provide protection against possible poor connections and coil disconnection.

ALL DIMENSIONS SHOWN ARE IN MILLIMETERS.

To convert millimeters into inches, multiply by 0.03937. To convert grams into ounces, multiply by 0.03527.

Cat. No. K131-E1-01 In the interest of product improvement, specifications are subject to change without notice. OMRON RELAY & DEVICES Corporation

Low Signal Relay Division

Marketing & Product Engineering Department

1110, Sugi, Yamaga-city, Kumamoto-Pref., 861-0596 Japan

Tel: (81)968-44-4194/Fax: (81)968-44-4107

Using Relays in an Atmosphere Containing Corrosive Gas (Silicon, Sulfuric, or Organic Gas)

Do not use Relays in a location where silicon gas, sulfuric gas (SO_2, H_2S) , or organic gas is present. If Relays are used for a long period in an atmosphere of sulfuric gas or organic gas, contact surfaces may become corroded and cause contact instability and obstruction, and terminal soldering characteristics may be degraded. If Relays are stored or used for a long time in an atmosphere of silicon gas, a silicon coating will be generated on contact surfaces, causing contact failure.

Connecting to Coil Terminals and Indicator Terminals

I. Models with Soldering Terminals

Perform manual soldering under the following conditions. Soldering iron tip temperature: 280 to 300°C Soldering time: Approx. 3 s max.

II. Models with Pin Terminals

Heed the following precautions when using models with pin terminals.

- Connectors for use: Straight dip type for panels Male connectors: HKP-8M29 (Honda Tsushin Kogyo) Refer to the general catalog of Honda Tsushin Kogyo for connector models and specifications.
- 2. The sockets do not have a lock mechanism. Pulling the lead wires, shock, or long-term vibration may cause the connectors to become disconnected. Heed the following precautions.
 - Securely fix the Relay and connectors and make sure that no force is pulling on the lead wires during use.
 - Fully insert the socket into the Relay connector.
- 3. Do not solder the lead wires directly to the pin connectors.