
GNU/Linux and EZ-USB®:
Controlling USB Devices From User-Space

Introduction
This application note and accompanying software demon-
strate how simple user-mode GNU/Linux applications can
communicate directly to EZ-USB® based USB devices, with-
out any need to write a kernel device driver. The author as-
sumes the reader has a working knowledge of GNU/Linux.
Some USB devices require the installation of kernel-mode
drivers to function properly under the Linux operating system;
writing kernel-mode drivers can be a complicated process.
But for other specialized USB devices, such as scanners, dig-
ital cameras, mass-storage devices, etc., communication be-
tween the host and the device can be accomplished directly,
without the need for device driver development, by utilizing
standard features of GNU/Linux starting with the 2.4 kernel.
These new features include “Hotplug” software, used to per-
form dynamic reconfiguration of USB devices, pre-written ge-
neric or class drivers, and the USB Device File System APIs.
The included application “HexPad”, consists of several com-
ponents that combine to communicate with an EZ-USB or
EZ-USB FX™ development board directly from user-space
using these features. The “HexPad” user interface is shown
in Figure 1.

When an EZ-USB or EZ-USB FX board is plugged into a USB
port, clicking on one of the “HexPad” buttons will cause the
corresponding character to light on the development board's
seven-segment LED.
The Hexpad components have been successfully installed,
built and executed on both a PC laptop running Redhat 7.2
Linux and an Apple® Macintosh® PowerBook® G4 computer
running Yellowdog Linux 2.2.

GNU/Linux Hotplug Operations
When GNU/Linux first boots, a “hotplug” system service is
invoked, which initializes the hotplugging functionality for
USB, PCI, networking, and other removable device catego-
ries.
When one of these devices is attached to the system, the
hotplug system executes /sbin/hotplug, which, in turn, in-
vokes /etc/hotplug/<device_type>.agent. The agent files use
environment variables, shell scripts, and text “database” files
to get information about loading drivers and firmware, per-
forming configuration tasks, and handling administrative
functions.
More detailed information about Hotplug functions can be
found at http://linux-hotplug.sourceforge.net.

getdevpath

bulk_out

usb
filesystem

usb
filesystem

VID / PID

"A" (0x41)

/proc/bus/usb/<bus>/<dev>

request
device table

device table

IOCTL Bulk OUT "A"

Bulk OUT "A"

Figure 1.
Cypress Semiconductor Corporation • 3901 North First Street • San Jose • CA 95134 • 408-943-2600
September 12, 2002

Linux and EZ-USB: Controlling USB Devices From User-Space
Preparing Your GNU/Linux System
The software described in this document was developed and
tested on Linux platforms running GNU/Linux based on the
RedHat 7.2 distribution. As Linux is an “always evolving” OS,
it is important that you obtain the latest Hotplug components
from http://linux-hotplug.sourceforge.net.

Installing “HexPad”
The archive “hexpad.tar.gz” consists of a “hexpad” directory
containing several files, listed in Table 1.

These directions assume you are using a windowing environ-
ment such as GNOME or KDE. They also assume you have
Tcl/Tk properly installed on your system.
Expand the gzipped tar file into your home directory and set
the resulting “hexpad” directory as the current working direc-
tory:

% tar zxf hexpad.tar.gz[1]

% cd ~/hexpad

Next, SU to root, and make a directory to hold the firmware
file and move the firmware file to the new directory:

% su
Password:
mkdir -p /etc/hotplug/usb/ezusb.fw
mv Bulk7Seg.hex /etc/hotplug/usb/ezusb.fw/

Then, move the HexPad hotplug script to the location where
the hotplug usb agent will find it, and make the script execut-
able.

mv hexpad_script /etc/hotplug/usb/
chmod 0775 /etc/hotplug/usb/hexpad_script

Next, add a line to the usb.usermap file to tell the Hotplug
USB agent to execute the HexPad script when the EZ-USB
development board is hotplugged into the system. You can
add the required line with this command:

cat ez.map >> /etc/hotplug/usb.usermap

Now you are ready to see if the hotplug scripts can discover
your EZ-USB board. Using this terminal window and type:

tail -f /var/log/messages

then attach a development board; if the proceeding steps
have been done correctly, you should see new messages be-
ing written to the log file. In particular, you should see a line
that contains “fxload... Bulk7Seg.hex”. Once the firmware file
downloads to the board, re-numeration occurs and the green
“monitor” LED lights up.
Now, open a new user terminal window, and change to the
“hexpad” directory). Then type

% ./getdevpath -v547 -p1002

and the system should respond with
/proc/bus/usb/bbb/ddd

where bbb is a three-digit number corresponding to the USB
root hub and ddd is the three-digit device number assigned to
your device by the USB subsystem. (If you have more than
one of these devices, this will only show the first one.)
Next, build the bulk_out tool:
 % gcc -o bulk_out bulk_out.c

Finally, run the hexpad application
% ./hexpad

As you click on the application's buttons, the corresponding
characters appear on the seven-segment LED.
Now, detach and re-attach the development board. Notice
that, in the messages log file being displayed in the root ter-
minal, the USB subsystem has assigned a new device num-
ber to the device. With the HexPad application still running,
click on a button and verify that the application still finds the
dev board.

Configuring the Dev Board For HexPad
When the development board is plugged into the system, the
kernel detects the event and invokes the hotplug helper ap-
plication (by default, /sbin/hotplug) with the single parameter
usb, as well as setting certain environment variables, such as
the vendor and product id's for the device. The helper appli-
cation then launches the USB agent script. The function of
this script is to open and read various USB map files, looking
for a match to our device. We added the line
hexpad_script 0x0003 0x0547 0x0080 0x0001 0x0000 0x00 0x00
0x00 0x00 0x00 0x00 0x00000000

to the usb.usermap file. The agent script line above translates
as follows: use the first hexadecimal number as a bit mask
that in conjunction with the next two hex numbers identifies
the board’s VID and PID[2]. When the board is hotplugged,
the script named in the 1st field is executed to perform device
configuration. The “hexpad_script” file is listed below.
#!/bin/sh
hexpad_script
FIRMWARE=usb/ezusb.fw/Bulk7Seg.hex
/sbin/fxload -I $FIRMWARE

Configuration scripts executed by the Hotplug system in the
way described can perform any task necessary to prepare a

Table 1.

Bulk7Seg.hex 8051 firmware in “hex” format

Bulk7Seg.tar.gz firmware source files

bulk_out.c Source code of interface to
usbdevfs

ez.map Data added to usb.usermap

getdevpath Shell script

Hexpad_script Hotplug script

Hexpad Tcl/tk application

Note:
1. The “%” prompt in code listings indicates normal user-level login, while “#” indicates super-user-, or root-, level login.
2. “VID” is Vendor ID; “PID” is Product ID.
2

Linux and EZ-USB: Controlling USB Devices From User-Space
USB device for use. In the case of the HexPad application,
our script calls the HotPlug “fxload” utility to download our
firmware file to the EZ-USB dev board. In more complex cas-
es, it can do quite a lot more, such as tell system services
about the new device.

The Bulk7Seg Firmware
The Bulk7Seg.hex file was developed on a Windows® 2000
platform using the Keil µVision2 IDE and the Cypress/Anchor
Firmware Frameworks, both of which are included in the
EZ-USB Development Kit installation.
The principal routine of Bulk7Seg is shown here:
#define LED_ADDR0x21

BYTE xdata Digit[] = { 0xc0, 0xf9, 0xa4, 0xb0, 0x99, 0x92,
0x82, 0xf8, 0x80, 0x98, 0x88, 0x83, 0xc6, 0xa1, 0x86, 0x8e
};

void TD_Poll(void) // Called repeatedly while the device is
idle
{

BYTE c;

// Is there something in the OUT2BUF buffer?

if (! (EPIO[OUT2BUF_ID].cntrl & bmEPBUSY))
if (EPIO[OUT2BUF_ID].bytes > 0)
{

// convert ascii char to 0..15

c = OUT2BUF[0] - 0x30;

if (c > 9)
c = c - 0x11 + 10;

EZUSB_WriteI2C(LED_ADDR, 0x01, &(Digit[c]));

EZUSB_WaitForEEPROMWrite(LED_ADDR);

EPIO[OUT2BUF_ID].bytes = 0;
}

}

The TD_Poll routine looks for single-byte input at endpoint 2.
When a new byte is available, the routine converts the byte
from an ascii hex character in the range ['0'..'F'] to a single
byte integer from 0 to 15. This integer becomes the index to
Digit, an array of codes corresponding to the individual seg-
ments of the seven-segment array. When the specific code is
written to LED_ADDR, the character appears on the LED.

The HexPad User Interface
The HexPad application has these functional components:
hexpad, getdevpath, and bulk_out. Full listings for each of
these components will be found in the “Listings” section of this
document.
The hexpad component is a Tcl/Tk script file that constructs
and displays the HexPad user interface. In this application,
arguments to the routine MakeButtons, the characters '0'
through 'F', become both the text displayed on the buttons as
well as the parameter passed to the procedure b_out.

proc b_out {c} {
 exec ./getdevpath -v547 -p1002 | ./bulk_out -c$c
}

proc MakeButtons {args} {
 set b 0
 set c 1
 set r 4
foreach val $args {
 button .$b -text $val -command "b_out $val"
 grid .$b -column $c -row $r
 incr b
 incr c
 if {$c == 5} {
 set c 1
 set r [expr $r - 1]
 }
 }
}

MakeButtons 0 1 2 3 4 5 6 7 8 9 A B C D E F

The b_out procedure executes this shell command:
./getdevpath -v547 -p1002 | ./bulk_out -c$c

The getdevpath script obtains a list of all devices attached to
the system’s root hubs by reading the USB file system's
/proc/bus/usb/devices file. By comparing the vendor and
product ID's in the list to the -v and -p parameters, the script
extracts the corresponding bus and device numbers, builds
the file system path to our dev board, and writes the path
string to stdout. The format of the /proc/bus/usb/devices file
is documented in most Linux distributions in /Documenta-
tion/usb/proc_usb_info.txt, in your Linux distribution.
The bulk_out program provides the interface to the usb file
system. The dev board's file system path is read from stdin,
and the character to be displayed comes in through the -c
argument.
After declaring the data structure to contain information about
the bulk_out transfer

struct usbdevfs_bulktransfer bulk;

and moving the character to be displayed to a “holding” buffer,
the program reads the path name (that was constructed by
the getdevpath script) from stdin.

scanf("%s",fname);

Next, the device is opened, the bulk data structure is filled in,
and a bulk transfer ioctl call is made

ioctl(fd, USBDEVFS_BULK, &bulk);

This ioctl call sends the one-byte buffer to the dev board by a
BULK_OUT transfer. causing the character to be displayed
on the LED, as described on page 3.
3

Linux and EZ-USB: Controlling USB Devices From User-Space
Conclusion
In a similar fashion, many standard USB functions can be
performed from user-space. See the file /usr/src/<linux>/in-
clude/linux/usbdevice_fs.h for details, and the kernel source
in /usr/src/<linux>/drivers/usb/devio.c for information about
how to use each ioctl request. Note: “<linux>” should be re-
placed with the partial path to the GNU/Linux source directory
on your system; on my system, this is “linux-2.4.7.10”.
We have discussed the USB file system and Hotplug facilities
introduced in the 2.4 Linux kernel. Then we demonstrated
how several types of components (C programs, shell scripts
and Tcl/Tk) can be used together to achieve desired results.

This user-space solution can be used for several purposes.
Shell scripts can be used for repeated device testing; device
driver functionality can be prototyped quickly; finally, end-user
applications can be developed and deployed without requir-
ing extensive device driver development or installation.

References and Links
Information about USB programming for GNU/Linux can be
found here: http://www.linux-usb.org
This URL: http://linux-hotplug.sourceforge.net provides de-
tails on hotplugging, as well as links to up-to-date downloads
for hotplug scripts and the fxload utility.
4

Linux and EZ-USB: Controlling USB Devices From User-Space
Listings

bulk_out.c

/*
 * Bulk Transfer
 * © 2002 Cypress Semiconductor
 *
 */
include <stdlib.h>
include <stdio.h>
include <getopt.h>
include <string.h>
include <sys/ioctl.h>
include <sys/types.h>
include <sys/stat.h>
include <fcntl.h>
include <linux/ioctl.h>
include <linux/usbdevice_fs.h>

int main(int argc, char*argv[])
{
int opt;
char fname[256];
const char *buf;

struct usbdevfs_bulktransfer bulk;
int fd, rc;

 while ((opt = getopt(argc, argv, "c:")) != EOF)
 switch (opt) {

case 'c':
 buf = optarg;
 break;

 default:
 break;
 }

scanf("%s",fname);

// open the device
if ((fd = open(fname,O_RDWR)) < 0)
{

printf("file open error\n");
return -1;

}

// set up bulk-transfer data structure
bulk.ep = 2;
bulk.len = 1;
bulk.timeout = 100;
bulk.data = (void *)buf;

// pass bulk-transfer struct to usb file system
if (ioctl(fd, USBDEVFS_BULK, &bulk) < 0)
{

printf("bulk xfer error\n");
return -1;

}

 return 0;
}

5

Linux and EZ-USB: Controlling USB Devices From User-Space
getdevpath

#!/bin/sh
getdevpath
#
Copyright(c) 2002 Cypress Semiconductor
#
this script reads /proc/bus/usb/devices and builds the
proper usb file system path to the device corresponding
to the caller's vid and pid arguments. The pathname is
written to stdout.
#
usage: getdevpath -vVID -pPID
where VID is Vendor ID in hex
and PID is Product ID in hex

set variables
MYVID=
MYPID=
TLINE=
BUS=
DEV=
EURIKA=

function usage() {
 cat <<EOF
Usage: $0 -vVID -pPID
 -v Vendor ID in hex
 -p Product ID in hex
 -? this help message
EOF
 exit 0
}

parse command-line arguments
while getopts ":v:p:" opt; do
 case $opt in
 v) MYVID=$OPTARG ;;
 p) MYPID=$OPTARG ;;
 \?) usage ;;
 esac
done

pad VID and PID with left-end zeros
COUNT=`echo $MYVID | wc -c`
while [$COUNT -lt 5]
 do
 MYVID=`echo 0$MYVID`
 let COUNT=COUNT+1
 done

COUNT=`echo $MYPID | wc -c`
while [$COUNT -lt 5]
 do
 MYPID=`echo 0$MYPID`
 let COUNT=COUNT+1
 done

VID and PID both equal to "0000" is invalid
if ["$MYPID" == "0000"]
then
 if ["$MYVID" == "0000"]
 then
 usage;
6

Linux and EZ-USB: Controlling USB Devices From User-Space
 fi
fi

set result in temp file for later checking
echo "false" > eurika

read usb devices list, taking the lines with useful info

cat /proc/bus/usb/devices | grep "T:\|P:" |

while
 read LINE
do
 if [`expr substr "$LINE" 1 1` == "T"]
 then
 TLINE=$LINE
 else
 VID=`expr substr "$LINE" 12 4`
 PID=`expr substr "$LINE" 24 4`
 if [$VID == $MYVID]
 then
 if [$PID == $MYPID]
 then
 echo $TLINE > tline
 BUS=`awk '{print $2}' < tline | cut -c5-`
 COUNT=`echo $BUS | wc -c`
 while [$COUNT -lt 4]
 do
 BUS=`echo 0$BUS`
 let COUNT=COUNT+1
 done
 DEV=`awk '{print $8}' < tline`
 COUNT=`echo $DEV | wc -c`
 while [$COUNT -lt 4]
 do
 DEV=`echo 0$DEV`
 let COUNT=COUNT+1
 done
 rm tline
 echo "true" > eurika
 echo /proc/bus/usb/$BUS/$DEV
 fi
 fi

 fi

done

if [`cat eurika` == "false"]
then
 echo "device not found"
fi

rm eurika

end of file
7

Linux and EZ-USB: Controlling USB Devices From User-Space
Hexpad
#!/bin/sh
\
exec wish "$0" "$@"

wm title . HexPad

proc b_out {c} {
 exec ./getdevpath -v547 -p1002 | ./bulk_out -c$c
}

proc MakeButtons {args} {
 set b 0
 set c 1
 set r 4
 foreach val $args {
 button .$b -text $val -command "b_out $val"
 grid .$b -column $c -row $r
 incr b
 incr c
 if {$c == 5} {
 set c 1
 set r [expr $r - 1]
 }
 }
}

MakeButtons 0 1 2 3 4 5 6 7 8 9 A B C D E F

end of file

EZ-USB is a registered trademark and EZ-USB FX is a trademark of Cypress Semiconductor Corporation. Apple, Macintosh, and
PowerBook are registered trademarks of Apple Computer, Inc. Windows is a registered trademark of Microsoft Corporation. All
other product and company names mentioned in this document may be trademarks or registered trademarks of their respective
holders.

approved dsg 9/12/02
© Cypress Semiconductor Corporation, 2002. The information contained herein is subject to change without notice. Cypress Semiconductor Corporation assumes no responsibility for the use
of any circuitry other than circuitry embodied in a Cypress Semiconductor product. Nor does it convey or imply any license under patent or other rights. Cypress Semiconductor does not authorize
its products for use as critical components in life-support systems where a malfunction or failure may reasonably be expected to result in significant injury to the user. The inclusion of Cypress
Semiconductor products in life-support systems application implies that the manufacturer assumes all risk of such use and in doing so indemnifies Cypress Semiconductor against all charges.

