
SanDisk
Application Note

Interfacing SanDisk ATA PC Cards
and Flash ChipSets in

Memory Mapped Mode

SanDisk Corporation
140 Caspian Court

Sunnyvale, CA 94089
TEL: 408-542-0500 FAX: 408-542-0503

URL: http://www.sandisk.com

SanDisk Application Note © 1998 SANDISK CORPORATION2

SanDisk ® Corporation general policy does not recommend the use of its products in life support applications where in a
failure or malfunction of the product may directly threaten life or injury. Per SanDisk Terms and Conditions of Sale, the
user of SanDisk products in life support applications assumes all risk of such use and indemnifies SanDisk against all
damages.

The information in this document is subject to change without notice.

SanDisk Corporation shall not be liable for technical or editorial errors or omissions contained herein; nor for incidental or
consequential damages resulting from the furnishing, performance, or use of this material.

All parts of SanDisk documentation are protected by copyright law and all rights are reserved. This documentation may
not, in whole or in part, be copied, photocopied, reproduced, translated, or reduced to any electronic medium or machine
readable form without prior consent, in writing, from SanDisk Corporation.

SanDisk and the SanDisk logo are registered trademarks of SanDisk Corporation. CompactFlash is a trademark of SanDisk
Corporation.

Product names mentioned herein are for identification purposes only and may be trademarks and/or registered trademarks
of their respective companies.

© 1998 SanDisk Corporation. All rights reserved.

SanDisk products are covered or licensed under one or more of the following U.S. Patent Nos. 5,070,032; 5,095,344;
5,168,465; 5,172,338; 5,198,380; 5,200,959; 5,268,318; 5,268,870; 5,272,669; 5,418,752; 5,602,987. Other U.S. and
foreign patents awarded and pending.

Lit. No. 80-13-00103 Rev. 1 6/98 Printed in U.S.A.

SanDisk Application Note

SanDisk Application Note © 1998 SANDISK CORPORATION 3

1.0 Introduction
This application note presents design
considerations for implementing SanDisk products
using Memory Mapped Mode. Memory Mapped
Mode is an alternate method of addressing the
controller registers and can be used with any
SanDisk ATA product including the Flash
ChipSet. This mode is preferred in applications
where the SanDisk product is replacing socket
flash or for embedded designs that use a non-Intel
microprocessor. PC Card ATA Memory Mapped
Mode does not require an interface chip or socket
and card services software for implementation.
Please note that card registers names will be
capitalized. For more information on how these
registers function, please refer to the descriptions
in the SanDisk Product Manuals.

Memory Mapped Mode Features:

• Hot swapping without accessing the card’s
attribute memory to configure the card.
This is the product’s power on default
mode.

• 8 bit and 16 bit access to all card registers
is only controlled by CE1 and CE2. True
IDE Mode only allows 16 bit access to the
data register. If True IDE Mode is selected
for 8 bit hosts, a Set Features command
must be issued to the product to enable 8 bit
data transfers.

• Hardware select of data register with
high order address line A10 for host string
move execution, thus minimizing code
required for data transfer.

SanDisk Application Note

SanDisk Application Note © 1998 SANDISK CORPORATION4

2.0 Hardware Implementation
2.1 Required CPU Map

To utilize Memory Mapped Mode, the design must
provide unique CE1 and CE2 signals to the
controller which can be mapped into a specific
address in the CPU’s memory space. If 16 bit only
mode is desired, CE1 and CE2 can be tied together.
If A10 is used to select the data register, the
required memory space is 2K bytes. If the data
transfer is to be implemented using offset 0 or 8 &
9, the required memory map is only 16 bytes. (See
Figure 2-1 Register Mapping.)

2.2 Required Signals

The following signals are the minimum required
signals to implement Memory Mapped Mode. (See
Figure 2-2 Schematic.)

D15-D0 — This is the data bus which can be
either 8 bits or 16 bits depending on CE1 and CE2.
All data and commands use this bus.

CE1, CE2 — CE2 always selects the odd byte of
the word. CE1 will access the even byte or odd
byte depending on A0 and CE2. For 8 bit systems,
only CE1 should be used. For 16 bit systems, which
access 16 bits always, CE1 and CE2 should be used
concurrently. CE1 and CE2 should be decoded by
host logic to determine memory window.

OE — This is the output enable strobe generated
by the host. It is used to read data from the
SanDisk product.

WE — This is the write enable strobe generated by
the host. It is used to write data to the SanDisk
product.

A3-A0 — Selects basic registers to communicate to
the SanDisk product. This requires 16 bytes of host
address space. A0 is optional if CE1 and CE2 are
combined to enable 16 bit wide register access.

A10 (Optional) — Used to select the data register
to accommodate systems with string move
instructions. If A10 is high and other control
signals select the product, then A3-A0 is ignored.

RDY/BSY (Optional) — This signal is driven low
when the product is accessing memory. When it is
high, register access is allowed. After a data
transfer command is issued, this signal is used to
signify that the host can transfer data.

RESET (Optional) — When this signal is high,
the product is placed in a reset state. This signal
is only valid at power on. If a reset of the product
is required after power on, the device control
register should be used to issue a soft reset.

Decode
for

CE1
CE2

CPU
Memory

0:0

Error Register

Data 8-15

Command Register

LBA 16-23

LBA 0-7

Data 8-15

Alt Status/Drv Control

Data 0-7

LBA 24-27/Drive

LBA 8-15

Sector Count Reg

Data 0-7

CE1 CE2

E

C

A

8

6

4

2

0

5FEh

--

406h

404h

402h

400h

CE1

Byte (254)

--

--

Byte (4)

Byte (2)

Byte (0)

CE2

Byte (255)

--

--

Byte (5)

Byte (3)

Byte (1)

Figure 2-1 Register Mapping

SanDisk Application Note

SanDisk Application Note © 1998 SANDISK CORPORATION 5

Figure 2-2 Schematic

SanDisk Application Note

SanDisk Application Note © 1998 SANDISK CORPORATION6

3.0 Memory Mapped Mode Software Interface and
Driver Issues

Memory Mapped Mode is not supported in some of
the existing operating systems. Special software
may be required to access the product in Memory
Mapped Mode. SanDisk’s Host Developer’s Tool
Kit (order number SDDK-01) supports this mode of
access.

3.1 Host Memory versus Logical
Block Addressing (LBA)

SanDisk products are block mode storage devices
with the minimum block size of 512 bytes and the
maximum block size of 128 Kbytes (256 sectors).
This is normally referred to as a sector. Once a
block transfer is started all 512 bytes must be
transferred. During the transfer, the data can not
be accessed randomly. To access a sector’s data
randomly, it must be loaded into the host’s RAM.

SanDisk products support Logical Block
Addressing (LBA) method, which is defined in
the PC Card ATA specification. The LBA is an
address pointer to the starting block within the
SanDisk product’s internal memory. The SECTOR
COUNT REGISTER defines the number of blocks to
transfer at the specified starting block address.
The LBA consists of LBA 0 to LBA 27. This allows
for 268 gigabytes of address space available. LBA
0-7 is determined by writing OFFSET 3. LBA 8-23
is determined by writing OFFSET 4 and 5. LBA-24-
27 is located at OFFSET 6.

3.2 Error Register Handling in
16 Bit Mode

The PC Card ATA specification was derived from
the ANSI ATA specification currently used in
most x86 systems. The ANSI specification was
based on the Intel I/O memory access. This is the
same as our True IDE I/O Mode. In this mode, the

DATA REGISTER is 16 bits wide (1F0h), and the
next I/O address, the ERROR REGISTER (1F1h),
is only 8 bits wide. There is an exception with the
PC Card ATA, that is specified in our manuals.
The primary concern is with systems that
implement 16 bit wide access without A0
connected. In this configuration, the ERROR
REGISTER is available at OFFSET Dh, instead of
OFFSET 1h.

3.3 Data Transfer Sequence

CE1, CE2 and A0 are the signals used to determine
how data is transferred to the host. Memory
Mapped Mode offers more options for data
transfer width compared to the True IDE Mode of
operation. If a system only needs 8 bit transfers,
then only CE1 is required to transfer on D0-D7 and
A0 is used to determine ODD or EVEN byte. True
IDE Mode requires a SET FEATURES command to
be issued to the card before the data register can
be accessed in 8 bit mode. A0 is not used if the host
asserts both CE1 and CE2 for all accesses. See your
product’s SanDisk Product Manual for a detailed
description of this relationship.

Once the width of access is determined, there are
three different methods of accessing the DATA
REGISTER on the card. (This is the ATA Register
which is used to actually transfer the data to and
from the host) The first method is at the register
located at OFFSET 0. The second is to use the
duplicate DATA REGISTER located at OFFSET 8
and 9. The third method is to use the optional
signal A10, which selects the DATA REGISTER,
and ignores A1-A3, only using the CE, and OE or
WE signals to clock the data. This method is to
allow the host to use a string move command
instead of a move byte/word command repeated to
transfer the data. (See Figures 3-1 through 3-3.)

SanDisk Application Note

SanDisk Application Note © 1998 SANDISK CORPORATION 7

Figure 3-1 Identify Drive Command State Listing

SanDisk Application Note

SanDisk Application Note © 1998 SANDISK CORPORATION8

Figure 3-2 Read Sector Command State Listing

SanDisk Application Note

SanDisk Application Note © 1998 SANDISK CORPORATION 9

Figure 3-3 Write Sector Command State Listing

SanDisk Application Note

SanDisk Application Note © 1998 SANDISK CORPORATION10

3.4 Memory Control Using A10
and RDY/BSY

A10 and RDY/BSY can be used by the host system
to allow a state machine to directly transfer the
card’s buffer memory to the host’s memory
without host CPU intervention. The state
machine would start after the command register is
written with a data transfer command. The
directional control would be determined on the
command issued. The number of blocks to transfer
would be loaded from a write to the sector count
register.

The protocol, after a command is written, would be
for the RDY/BSY signal output from the card to
signal a DMA REQUEST to the host. The host
would then assert A10 to the card for DMA
ACKNOWLEDGE, and the state machine would
then generate 256 cycles of CE, with either WE or
OE depending on the direction of transfer. After
256 cycles the host would deassert A10 and the
card’s RDY/BSY signal will go BSY until the next
sector transfer. When the sector count register is
zero, the host is interrupted that the transfer has
completed and the status of the transfer is
determined.

3.5 Existing Driver Support

SanDisk’s HDTK supports Memory Mapped Mode
using 8 bit, 8/16 bit and 16 bit only access methods.
This code is written in “C” and has been ported to
many industry standard processors.

Microsoft Win CE has a driver to access our cards
in Memory Mapped Mode. The HP 3xx series of
HPCs uses Memory Mapped Mode for the
CompactFlash™ slot.

Microsoft Win 95 and Win NT do not support
Memory Mapped Mode for PC Card ATA. There
are add on drivers that will support Memory
Mapped Mode though.

SanDisk Application Note

SanDisk Application Note © 1998 SANDISK CORPORATION 11

4.0 ATA Command Set Implementation
For an embedded application, not all the ATA
commands would be required. This application
note discusses the minimum required commands to
access data from the SanDisk device.

4.1 Minimum Required Commands

Identify Drive Command (ECh) — This command
enables the host to receive device information
such as total number of sectors available to the
host.

Read Sector Command (20h) — This command
transfers data from the device to the host. The
transfer can be from 1 sector to 256 sectors of 512
bytes each.

Write Sector Command (30h) — This command
transfers data from the host to the device. The
transfer size is the same as the Read Sector
Command transfer size.

Request Sense Command (03h) — An extended
error code is provided when this command is
issued after a normal ATA error.

4.2 Additional Commands

Execute Drive Diagnostics (90h) — This function is
done when the device is powered on. For the host
to check the device after power on, this command
should be issued.

Translate Sector (87h) — This command is useful
if the sector information, such as HotCount, is
desired. HotCount is the number of writes that the
sector has endured.

Power Commands — The power commands are not
required in most systems. SanDisk devices will
power down after every command, unless the
power commands override this.

For application specific, embedded systems, all of
the implemented ATA commands need not be
supported in the system software. Most of the
supported commands are only there for backwards
software compatibility and are seldom used.

SanDisk Application Note

SanDisk Application Note © 1998 SANDISK CORPORATION12

5.0 HDTK IDE Porting
5.1 IDE Porting Overview

The SanDisk Host Developer’s Tool Kit (HDTK) provides a mechanism to access the ATA function in a
system. Currently, the HDTK offers support of the FAT File System and several peripheral bus
interfaces. The file system and the bus interface are enabled or disabled by just setting a few options.
There are also many features built into the HDTK to allow you to take advantage of SanDisk products.
The HDTK provides a high level of data management through its FAT File System or low level driver
directly accessible to the storage devices. The HDTK works with or without the Interrupt Service
routine. To access the hardware, the HDTK needs to know your system specific requirements. This is
done through by configuring the file SDCONFIG.H.

5.2 SDCONFIG.H

To configure the HDTK, one must modify SDCONFIG.H. The SDCONFIG.H header file contains many
options and system specific definitions that must be provided. Some of these options are compilation
options that exist only during compilation to allow the compiler to select certain code. Others will be
active at run-time. There are different sections for each peripheral bus interface such as IDE, PCMCIA,
SPI and MMC in this file. Most of the time, for a selected configuration, the options are already set. You
may need to modify a few options to match your platform for memory mapping or I/O mapping,
interrupt driven or not, 16-bit or 8-bit peripheral bus.

There is only one peripheral bus interface selected at one time. The choices are:
• USE_TRUE_IDE

• USE_PCMCIA

• USE_SPI

• USE_MMC

• USE_SPI_EMULATION

• USE_MMC_EMULATION

To select IDE interface, the USE_TRUE_IDE option must be set. Set USE_TRUE_IDE to 1 to use the
ATA protocol. Depending on the development platform, memory or I/O mapped mode should be set or
cleared respectively.

The File System is enabled or disabled via the USE_FILE_SYSTEM option. Set USE_FILE_SYSTEM to
1 to enable the File System. Otherwise, set USE_FILE_SYSTEM to zero to disable the File System. The
two examples below show use with an IDE interface and the File System. To select the IDE interface as
a stand alone configuration in Memory Mapped Mode, the SDCONFIG.H must be modified as follows:

#defineN_CONTROLLERS 1 /* Use 1 IDE controller in the system */
#defineDRIVES_PER_CONTROLLER1 1 /* Number of drives on first controller */
#defineDRIVES_PER_CONTROLLER2 0 /* Number of drives on second controller */
#defineUSE_FILE_SYSTEM 0 /* Indicate there is no file system */
#defineUSE_TRUE_IDE 1 /* Indicate the IDE interface is selected */
#defineUSE_MEMODE 1 /* Use memory mapped mode */
#defineUSE_INTERRUPT 0 /* No interrupt service. Use polling technique */
#defineUSE_LBA_ONLY 1 /* Use Logical Block Address */
#defineWORD_ACCESS_ONLY 1 /* if 1 access registers as byte-pairs, 16-bit Bus */
#defineUSE_SET_FEATURES 0 /* Disable SanDisk Flash product feature */
#defineUSE_CONTIG_IO 1 /* Use 16-byte contiguous register address range */

SanDisk Application Note

SanDisk Application Note © 1998 SANDISK CORPORATION 13

To configure the IDE interface for use with the File System, the user must modify the SDCONFIG.H as
follows:

#defineN_CONTROLLERS 1 /* Use 1 IDE controller in the system */
#defineDRIVES_PER_CONTROLLER1 1 /* Number of drives on first controller */
#defineDRIVES_PER_CONTROLLER2 0 /* Number of drives on second controller */
#defineUSE_FILE_SYSTEM 1 /* Indicate the FAT File System is in use */
#defineUSE_TRUE_IDE 1 /* Indicate the IDE interface is selected */
#defineUSE_MEMODE 1 /* Use memory mapped mode */
#defineUSE_INTERRUPT 0 /* No interrupt service. Use polling technique */
#defineUSE_LBA_ONLY 1 /* Use Logical Block Address */
#defineWORD_ACCESS_ONLY 1 /* if 1 access registers as byte-pairs (16-bit Bus) */
#defineUSE_SET_FEATURES 1 /* Enable SanDisk flash product feature */
#defineUSE_CONTIG_IO 1 /* Use 16-byte contiguous register address range */

Other options should be configured to match your system requirements. Please consult the HDTK guide
for more information.

For each selected peripheral bus there is a peripheral section to describe all hardware information
such as number of IDE controllers, number of drives per controller, controller base address, etc.

In the IDE section, the user must provide the system specific hardware register definitions. The name
of the registers and definitions below should not be modified because the code relies on these
definitions. Only the values are allowed to change.

In Memory Mapped Mode, the base address of the IDE controller must be specified. Other options
should be set to zero if not configured.

ATA_PRIMARY_MEM_ADDRESS 0xF0000 /* First memory base address */
ATA_SECONDARY_MEM_ADDRESS 0x00000 /* Second memory base address */

After configuring the SDCONFIG.H, the user must provide several routines related to the hardware
initialization, interrupt and timer services.

5.3 System Specific Code

The HDTK IDE driver is based on the ATA (AT attachment) specification. Electrical signals and
timings of the platform must meet the ATA specification requirement. Also, depending on the system
hardware (memory or I/O), all timings related to the Flash device have to be implemented properly.

Most of the time, the HDTK will provide most of the code. Only the portions of the software related to
your system need to be implemented. This system specific code is the only code that needs to be written
for the specific platform. The HDTK does not provide this access in portable C code. Instead, the
HDTK defines several function prototypes to simplify and make the porting easier.

