

SNOSCX0 -JUNE 2013

# Precision Low-Side, 125 kSps Simultaneous Sampling, Current Sensor and Voltage Monitor with SPI

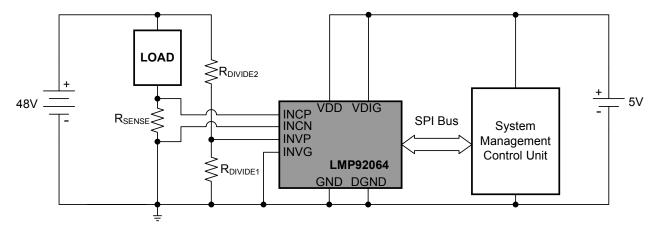
Check for Samples: LMP92064

# FEATURES

- Two Simultaneous Sampling 12-bit ADCs
  - Conversion Rate: 125 kSps (Min)
- 12-bit Current Sense Channel
  - Input-referred Offset: ±15 µV
  - Common-mode Voltage Range: -0.2V to 2V
  - Maximum Differential Input Voltage: +75 mV
  - Fixed Gain: 25 V/V
  - Gain Error: ±0.75 % (Max)
  - Bandwidth (-3dB): 70 kHz
  - DC PSRR: 100 dB
  - DC CMRR: 110 dB
- 12-bit Voltage Channel
  - INL: ±1LSB
  - Offset Error: ±2 mV (Max)
  - Gain Error: ±0.75% (Max)
  - Maximum Input Voltage: +2.048V
  - Bandwidth: 100 kHz
- Internal Reference
- SPI Frequency: Up to 20 MHz
- Temperature Range: -40°C to +105°C
- WSON-16 Package

# **APPLICATIONS**

- Enterprise Servers
- Telecommunications
- Power Management

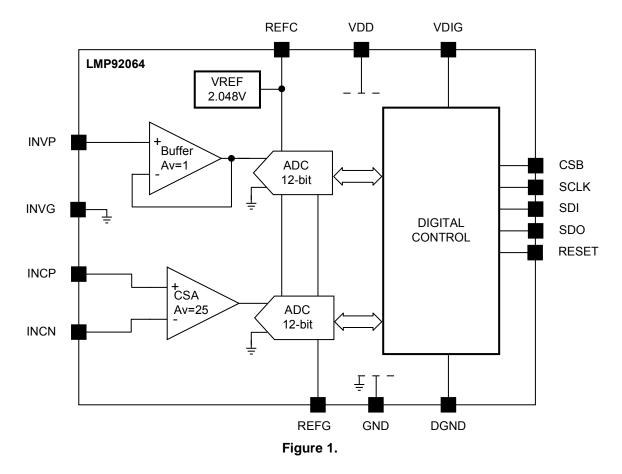

# DESCRIPTION

The LMP92064 is a precision low-side digital current sensor and voltage monitor with a digital SPI interface. This analog front-end (AFE) includes a precision current sense amplifier to measure a load current across a shunt resistor and a buffered voltage channel to measure the voltage supply of the load. The current and voltage channels are sampled simultaneously by independent 125 kSps 12-bit ADC converters, allowing for very accurate power calculations in unidirectional sensing applications.

The LMP92064 includes an internal 2.048V reference for the ADCs, eliminating the need of an external reference and reducing component count and board space.

A host can communicate with the LMP92064 using a four-wire SPI interface running at speeds of up to 20 MHz. The fast SPI interface allows the user to take advantage of the higher bandwidth ADC to capture fast varying signals. The four-wire interface with dedicated unidirectional input and output lines also allows for an easy interface to digital isolators in applications where isolation is required.

The LMP92064 operates from a single 4.5V to 5.5V supply and includes a separate digital supply pin. The LMP92064 is specified over a temperature range of  $-40^{\circ}$ C to  $105^{\circ}$ C, and is available in a 5mm x 4mm WSON-16 package.




53

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

www.ti.com

# FUNCTIONAL BLOCK DIAGRAM





SNOSCX0 -JUNE 2013

#### **CONNECTION DIAGRAM**

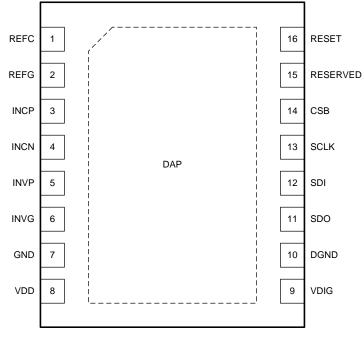



Figure 2. Top View WSON-16 Package

#### **Table 1. Pin Descriptions**

| P    | IN       | I/O <sup>(1)</sup> | DESCRIPTION                                             |
|------|----------|--------------------|---------------------------------------------------------|
| NAME | NO.      | 100                | DESCRIPTION                                             |
| 1    | REFC     | n/a                | Internal reference bypass capacitor pin                 |
| 2    | REFG     | G                  | Internal reference ground                               |
| 3    | INCP     | l                  | Positive current channel input                          |
| 4    | INCN     | l                  | Negative current channel input                          |
| 5    | INVP     | l                  | Positive voltage channel input                          |
| 6    | INVG     | G                  | Ground reference for the negative voltage channel input |
| 7    | GND      | G                  | Analog ground                                           |
| 8    | VDD      | Р                  | Analog power supply                                     |
| 9    | VDIG     | Р                  | Digital power supply                                    |
| 10   | DGND     | G                  | Digital ground                                          |
| 11   | SDO      | 0                  | SPI Bus push-pull serial data digital output            |
| 12   | SDI      | I                  | SPI Bus serial data digital input                       |
| 13   | SCLK     | l                  | SPI Bus clock digital input                             |
| 14   | CSB      | Ι                  | SPI Bus chip select bar digital input                   |
| 15   | RESERVED | n/a                | Reserved (Do not connect)                               |
| 16   | RESET    | I                  | Reset (high-active)                                     |
| n/a  | DAP      | n/a                | No connection (Do not connect)                          |

(1) G = Ground, I = Input, O = Output, P = Power

#### SNOSCX0 -JUNE 2013

### ABSOLUTE MAXIMUM RATINGS<sup>(1)(2)</sup>

Over operating free-air temperature range (unless otherwise noted)

|                                      |                                 | MIN     | MAX     | UNIT |
|--------------------------------------|---------------------------------|---------|---------|------|
| Analog Supply Voltage (VI            | )DD)                            | -0.3    | 6.0     | V    |
| Digital Supply Voltage (VD           | IG)                             | VDD-0.3 | VDD+0.3 |      |
| Voltage at Input Pins <sup>(3)</sup> |                                 | -0.3    | VDD+0.3 | V    |
| Storage Temperature Rang             | ge                              | -65     | 150     | °C   |
| Junction Temperature                 |                                 |         | 150     | °C   |
| Mounting temperature                 | Infrared or convection (20 sec) |         | 260     | °C   |
| ESD Tolerance                        | Human Body Model                |         | 2000    | V    |
|                                      | Charged Device Model            |         | 1000    | V    |

(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating Conditions is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

(2) All voltages are measured with respect to GND = DGND = 0V, unless otherwise specified.

(3) When the input voltage (VIN), at any pin exceeds power supplies (VIN < GND or VIN > VDD), the current at that pin must not exceed 5mA, and the voltage (VIN) at that pin must not exceed 6.0V. See *Pin Description* for additional details of input circuitry.

## THERMAL CHARACTERISTICS

Over operating free-air temperature range (unless otherwise noted)

|               |                                           |         |    | UNIT |
|---------------|-------------------------------------------|---------|----|------|
| $\theta_{JA}$ | Package thermal resistance <sup>(1)</sup> | WSON-16 | 44 | °C/W |

(1) The package thermal impedance is calculated in accordance with JESD 51-7. The maximum power dissipation must be de-rated at elevated temperatures and is dictated by  $T_{J(MAX)}$ ,  $\theta_{JA}$ , and the ambient temperature,  $T_A$ . The maximum allowable power dissipation  $P_{DMAX} = (T_{J(MAX)} - T_A)/\theta_{JA}$  or the number given in Absolute Maximum Ratings, whichever is lower.

#### **RECOMMENDED OPERATING CONDITIONS**<sup>(1)(2)</sup>

|                               | MIN | MAX | UNIT |
|-------------------------------|-----|-----|------|
| Analog Supply Voltage (VDD)   | 4.5 | 5.5 | V    |
| Digital Supply Voltage (VDIG) | VE  | DD  | V    |
| Temperature Range             | -40 | 105 | °C   |

(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating Conditions is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

(2) All voltages are measured with respect to GND = DGND = 0V, unless otherwise specified.



www.ti.com

## **ELECTRICAL CHARACTERISTICS**

Typical specifications are at 25°C. All specifications are at 4.5V  $\leq$  VDD  $\leq$  5.5V, VDIG = VDD and -0.2V  $\leq$  VCM  $\leq$  2V, unless otherwise specified. **Boldface limits apply at temperature extremes.** 

|                        | PARAMETER                                   | TEST CONDITIONS             | MIN          | ТҮР          | MAX           | UNIT       |
|------------------------|---------------------------------------------|-----------------------------|--------------|--------------|---------------|------------|
| CURRENT SE             | NSE INPUT CHANNEL                           |                             | · ·          |              |               |            |
| V <sub>OS</sub>        | Input-referred Offset Voltage               |                             |              | ±15          | ±60           | μV         |
| TCV <sub>OS</sub>      | Input-referred Offset Voltage Drift         |                             |              | ±280         |               | nV/ºC      |
|                        | Long-term Stability                         |                             |              | 0.3          |               | µV/mo      |
|                        | Resolution                                  |                             |              | 12<br>20     |               | Bits<br>μV |
| INL                    | Integral Non-Linearity Error                |                             |              | ±1<br>±0.025 |               | LSB<br>%   |
| DNL                    | Differential Non-Linearity Error            |                             |              | ±0.5         |               | LSB        |
| DC CMRR                | Common-Mode Rejection Ratio                 | –0.2V ≤ VCM ≤ 2V            |              | 110          |               | dB         |
| DC PSRR                | Power Supply Rejection Ratio                | 4.5V ≤ VDD ≤ 5.5V           |              | 100          |               | dB         |
| CMVR                   | Common-Mode Voltage Range                   | Low VCM                     |              | -0.2         |               | V          |
|                        |                                             | High VCM                    |              | 2            |               |            |
| V <sub>DIFF(MAX)</sub> | Maximum Differential Input Voltage<br>Range |                             |              | 75           |               | mV         |
| A <sub>V</sub>         | Current Shunt Amplifier Gain                |                             |              | 25           |               | V/V        |
|                        | Current Sense Channel Gain                  |                             |              | 50           |               | kCode/V    |
| GE                     | Gain Error (CSA, VREF and ADC)              |                             |              | -            | <u>⊧</u> 0.75 | %          |
| GD                     | Gain Drift                                  |                             |              | ±25          |               | ppm/°C     |
| RIN                    | Input Impedance                             |                             |              | 100          |               | GΩ         |
| BW                     | -3dB Bandwidth                              |                             |              | 70           |               | kHz        |
| VOLTAGE INF            | PUT CHANNEL                                 |                             |              |              |               |            |
|                        | Offset Error (Buffer and ADC)               |                             | -2           |              | 2             | mV         |
|                        | Resolution                                  |                             |              | 12           |               | Bits       |
| INL                    | Integral Non-Linearity Error                |                             |              | ±1<br>±0.025 |               | LSB<br>%   |
| DC PSRR                | Power Supply Rejection Ratio                |                             |              | 70           |               | dB         |
| V <sub>CHVP</sub>      | Full-Scale Input Voltage                    |                             |              | 2.048        |               | V          |
| A <sub>V</sub>         | Buffer Amplifier Gain                       |                             |              | 1            |               | V/V        |
|                        | Voltage Sense Channel Gain                  |                             |              | 2            |               | kCode/V    |
| GE                     | Gain Error (Buffer, VREF and ADC)           |                             |              | :            | ±0.75         | %          |
| RIN                    | Input Impedance                             |                             |              | 100          |               | GΩ         |
| BW                     | Bandwidth <sup>(1)</sup>                    |                             |              | 100          |               | kHz        |
| DIGITAL INPU           | T/OUTPUT CHARACTERISTICS                    | Į.                          |              |              |               |            |
| V <sub>IH</sub>        | Logical "1" Input Voltage                   |                             | 0.7*VDIG     |              |               | V          |
| V <sub>IL</sub>        | Logical "0" Input Voltage                   |                             |              | 0.3          | 8*VDIG        | V          |
| V <sub>OH</sub>        | Logical "1" Output Voltage                  | I <sub>SOURCE</sub> = 300µA | VDIG<br>0.15 |              |               | V          |
| V <sub>OL</sub>        | Logical "0" Output Voltage                  | I <sub>SINK</sub> = 300μA   |              |              | )GND<br>+0.15 | V          |
| SUPPLY CHA             | RACTERISTICS                                | •                           |              |              |               |            |
| I <sub>VDD</sub>       | Analog Supply Current                       |                             |              | 11           |               | mA         |
| I <sub>VDIG</sub>      | Digital Supply Current                      |                             |              | 2            |               | mA         |

(1) No analog filter; limited by sampling rate.

#### SNOSCX0 -JUNE 2013

## TIMING CHARACTERISTICS

Typical specifications are at 25°C. All specifications are at  $4.5V \le VDD \le 5.5V$ , VDIG = VDD and a 20 pF capacitive load on SDO, unless otherwise specified.

|                   | PARAMETER                                       | TEST CONDITIONS | MIN | TYP | MAX | UNIT |
|-------------------|-------------------------------------------------|-----------------|-----|-----|-----|------|
| t <sub>DS</sub>   | SDI to SCLK rising edge setup time              |                 | 10  |     |     | ns   |
| t <sub>DH</sub>   | SCLK rising edge to SDI hold time               |                 | 10  |     |     | ns   |
| f <sub>CLK</sub>  | Frequency of SCLK                               |                 | 100 |     |     | Hz   |
|                   |                                                 |                 |     |     | 20  | MHz  |
| t <sub>HIGH</sub> | High width of SPI clock                         |                 | 25  |     |     | ns   |
| t <sub>LOW</sub>  | Low width of SPI clock                          |                 | 25  |     |     | ns   |
| t <sub>S</sub>    | CSB falling edge to SCLK rising edge setup time |                 | 10  |     |     | ns   |
| t <sub>C</sub>    | SCLK rising edge to CSB rising edge hold time   |                 | 30  |     |     | ns   |
| t <sub>DV</sub>   | SCLK falling edge to valid SDO readback data    |                 |     |     | 20  | ns   |
| t <sub>RST</sub>  | Reset pin pulse width                           |                 | 3.5 |     |     | ns   |
| t <sub>CONV</sub> | Conversion rate of all channels                 |                 | 125 |     |     | kSps |



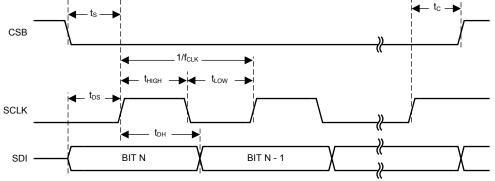
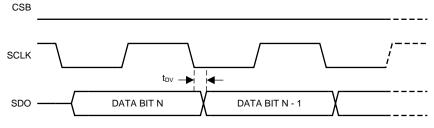
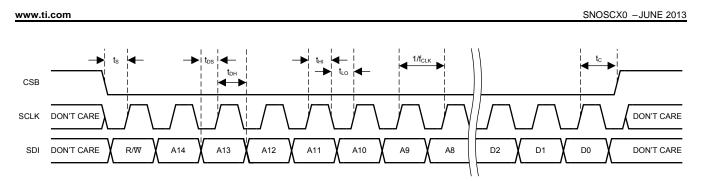



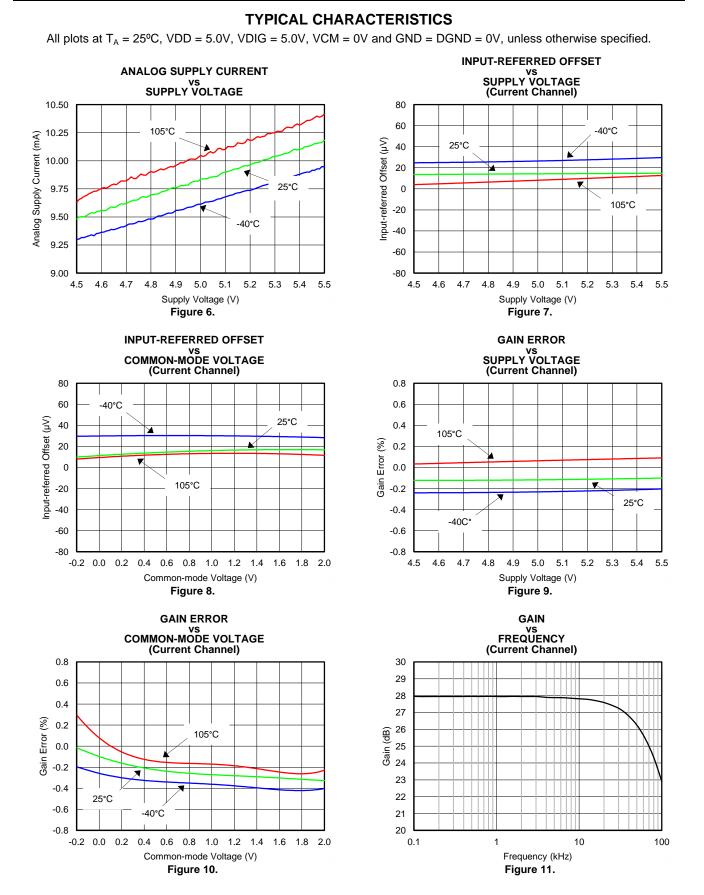

Figure 3. Serial Control Port Timing – Write









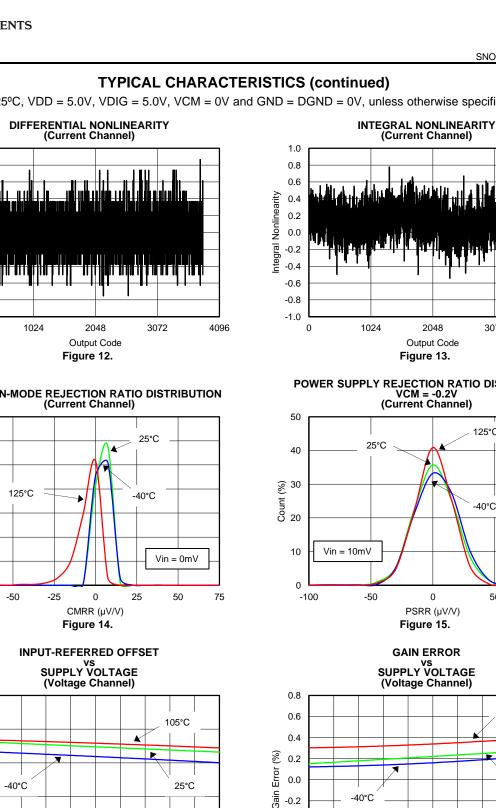


Figure 5. Serial Control Port Write – MSB First, 16-bit Instruction, Timing Measurements



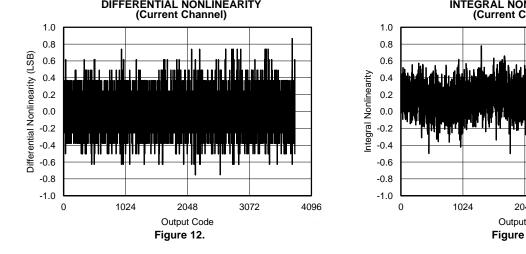
TEXAS INSTRUMENTS

SNOSCX0 -JUNE 2013

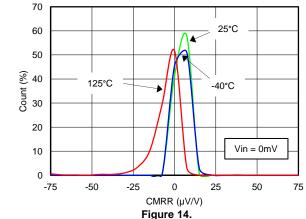
www.ti.com

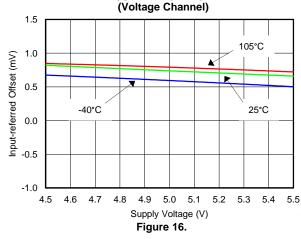



8



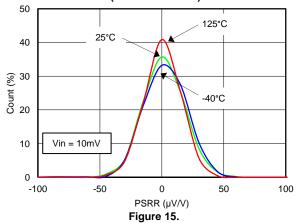


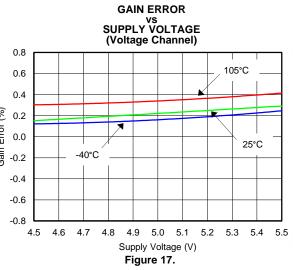



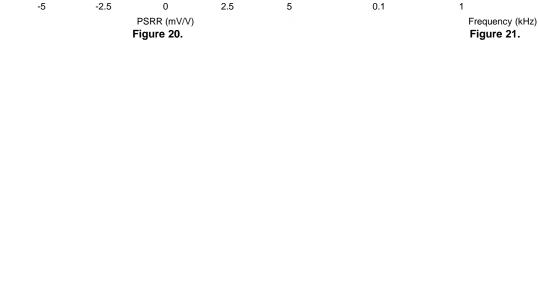



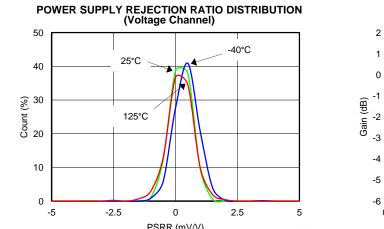

All plots at T<sub>A</sub> = 25°C, VDD = 5.0V, VDIG = 5.0V, VCM = 0V and GND = DGND = 0V, unless otherwise specified.

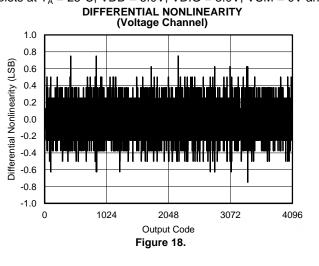



COMMON-MODE REJECTION RATIO DISTRIBUTION (Current Channel)





(Current Channel) 3072 4096 Output Code


POWER SUPPLY REJECTION RATIO DISTRIBUTION VCM = -0.2V (Current Channel)











Output Code

Figure 19.

GAIN vs FREQUENCY

(Voltage Channel)

**TYPICAL CHARACTERISTICS (continued)** 

SNOSCX0 -JUNE 2013

Copyright © 2013, Texas Instruments Incorporated

10

100



www.ti.com



## **APPLICATION INFORMATION**

#### **Current Sense Input Channel**

The current sensing channel of the LMP92064 has a high impedance differential amplifier followed by a 12-bit analog-to-digital converter. The binary code result of a conversion is stored as a right-justified 16-bit number as shown in Table 2, where the 4 most significant bits are always 0. Due to an offset auto-calibration feature of the current sense channel path, the top 256 codes are clipped at code 3840, denoted by the trailing zeros found in the equivalent binary code of the maximum positive input voltage.

The output data of the current sense channel is accessible on registers 0x0203 and 0x0202.

| DESCRIPTION                    | ANALOG VALUE               | DIGITAL (               | DUTPUT   |
|--------------------------------|----------------------------|-------------------------|----------|
| Full scale range               | V <sub>FS</sub> = 81.92 mV |                         |          |
| Least significant bit (LSB)    | V <sub>FS</sub> / 4096     | BINARY CODE<br>[B15:B0] | HEX CODE |
| Maximum Positive Input Voltage | V <sub>FS</sub> – 256 LSB  | 0000 1111 0000 0000     | 0x0F00   |
| Zero                           | 0V                         | 0000 0000 0000 0000     | 0x0000   |

#### Table 2. Ideal Current Channel Input Voltages and Output Codes

#### Selection of the Current Sense Resistor

The accuracy of the current measurement depends heavily on the accuracy of the shunt resistor  $R_{SENSE}$ . Its value depends on the application and it is a compromise between signal accuracy, maximum permissible voltage loss and power dissipation in the shunt resistor. High values of  $R_{SENSE}$  provide better accuracy at lower currents by minimizing the effects of offset, while low values of  $R_{SENSE}$  minimize voltage loss in the supply section, but at the expense of low-end accuracy.

The use of a "4-terminal" or "Kelvin" sense resistor is highly recommended. See the CURRENT INPUT ERROR SOURCES AND LAYOUT CONSIDERATIONS section for more information.

# Current Sense Input Channel Common-Mode and Differential Voltage Range (Dynamic Range Considerations)

The input voltage should be in the range of -0.2V to 2V. The input can withstand voltage up to VDD+0.3V absolute maximum but the operational range is limited to 2V. Operation below -0.2V or above 2V on either input pin will introduce severe gain errors and non-linearity.

The maximum differential voltage (defined as the voltage difference between INCP and INCN) for which the part is designed to work is 75 mV. Larger differential or common mode input voltages will not damage the part (as long as the input pins remain between GND-0.3V and VDD+0.3V), however, exposure for extended periods may affect device reliability. The ADC output code will not roll over and will clip at min or max scale when the maximum differential voltage is exceeded.

#### **Current Input Error Sources and Layout Considerations**

The traces leading to and from the sense resistor can be significant error sources. With small value sense resistors (<100 m $\Omega$ ), trace resistance shared with the load can cause significant errors. It is recommended to connect the sense resistor pads directly to the LMP92064's INCP and INCN inputs using "Kelvin" or "4-wire" connection techniques. An example is shown in Figure 22.



www.ti.com

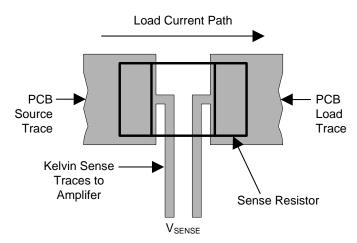



Figure 22. 4-Wire "Kelvin" Sensing Technique

Since the sense traces only carry the amplifier bias current, the connecting input traces can be thinner, signal level traces. The traces should be one continuous piece of copper from the sense resistor pad to the LMP92064 input pin pad, and ideally on the same layer with minimal vias or connectors. This can be important around the sense resistor if it is generating any significant heat. To minimize noise pickup and thermal errors, the input traces should be treated as a signal pair and routed tightly together with a direct path to the input pins. The input traces should be run away from noise sources, such as digital lines, switching supplies or motor drive lines.

## Voltage Sense Input Channel

The voltage sensing channel of the LMP92064 has a high impedance buffer amplifier followed by a 12-bit analog-to-digital converter. The binary code result of a conversion is also stored as a right-justified 16-bit number as shown in Table 3, where the 4 most significant bits are always 0.

The output data of the voltage sense channel is accessible on registers 0x0201 and 0x0200.

| DESCRIPTION                    | ANALOG VALUE             | DIGITAL O               | UTPUT    |
|--------------------------------|--------------------------|-------------------------|----------|
| Full scale range               | V <sub>FS</sub> = 2.048V | _                       |          |
| Least significant bit (LSB)    | V <sub>FS</sub> / 4096   | BINARY CODE<br>[B15:B0] | HEX CODE |
| Maximum Positive Input Voltage | V <sub>FS</sub> – 1 LSB  | 0000 1111 1111 1111     | 0x0FFF   |
| Zero Code Voltage              | 0V                       | 0000 0000 0000 0000     | 0x0000   |

 Table 3. Ideal Voltage Channel Input Voltages and Output Codes

#### Selection of the Voltage Input Resistor Divider

The input buffer amplifier of the voltage channel can tolerate high source impedances, which enables scaling the input voltage with the use of an external resistor divider. The accuracy of the voltage measurements depends on the accuracy of the components used for the resistor divider as well as the impedance of the divider.

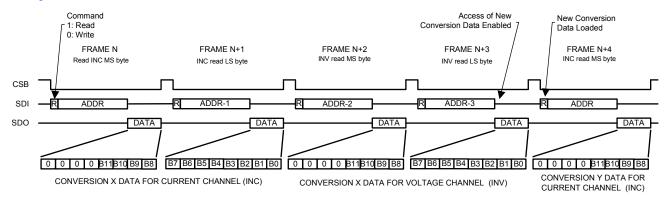
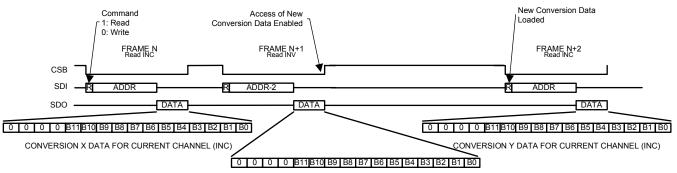
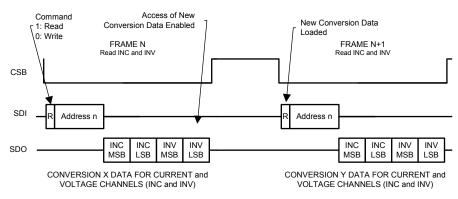
### **Power Supply Decoupling**

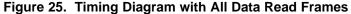
In order to decouple the LMP92064 from AC noise on the power supply, it is recommended to use a 0.1  $\mu$ F bypass capacitor between the VDD and GND pins. This capacitor should be placed as close as possible to the supply pins. In some cases an additional 10  $\mu$ F bypass capacitor may further reduce the supply noise. In addition the VDIG power pin should also be decoupled to DGND with a 0.1  $\mu$ F bypass capacitor. Do not forget that these capacitors must be rated for the full supply voltage (2x the maximum voltage is recommended for the capacitor working voltage rating).



#### **ADC Operation**

The LMP92064 includes two 12-bit ADCs that are continuously running in the background. The device is configured, and data is read, using a four-wire SPI interface: CSB, SCLK, SDO and SDI. The device outputs its data on SDO, and the data for both channels is synchronized such that all data read would be from the same instant in time. New conversion data for both channels will only be made available after all registers are read in descending sequential order (addresses 0x0203-0x0200). All registers must be read otherwise new conversion data will not be available. Three different output data formats are available as detailed in Figure 23, Figure 24 and Figure 25.



Figure 23. Timing Diagram with Byte Read Frames



CONVERSION X DATA FOR VOLTAGE CHANNEL (INV)







The register address to read can automatically decrement if the CSB line is kept low longer. For example, to read all the conversion data, keep the CSB line low for 48 SPI clock cycles (16 clocks for command/address, 8 clocks for MSB of current channel, 8 clocks for LSB of current channel, 8 clocks for MSB of voltage channel and 8 clocks for LSB of voltage channel). The read command should start from address 0x0203.

Copyright © 2013, Texas Instruments Incorporated



#### **Device Power-Up Sequence**

The sources providing power to the analog and digital supply pins of the LMP92064, VDD and VDIG, must ramp up at the same time to have a proper power-on reset (POR) event. The easiest way to achieve it is to tie VDD and VDIG to the same power source using a star configuration.

#### Reference

The LMP92064 includes an internal 2.048V band-gap reference for the ADCs, which eliminates the need of an external reference and reduces component count and board space. The REFC pin is provided to allow bypassing this internal reference for low noise operation. A 1  $\mu$ F ceramic decoupling capacitor is required between the REFC and REFG pins of the converter. The capacitor should be placed as close as possible to the pins of the device.

#### Reset

There are two methods to reset the LMP92064. A soft reset is done by setting bit7=1 in the CONFIG\_A register. In a soft reset, the SPI state machine and the contents of registers 0x0000 and 0x0001 are unnafected.

A hardware reset is done by connecting the RESET pin of the LMP92064 to VDIG. If the pin is driven by a switch or a GPIO, it is recommended to add an external RC filter to prevent reset glitches.

#### **Applications Diagram**

A typical application of the LMP92064 is shown in Figure 26. The LMP92064 is monitoring the voltage drop across  $R_{SENSE}$  and the voltage across R1. The voltage across  $R_{SENSE}$  can be used to calculate the circuitry load current. The voltage across R1 can be used to calculate the -48V supply voltage. To prevent aliasing errors external analog differential filters are shown for each channel.

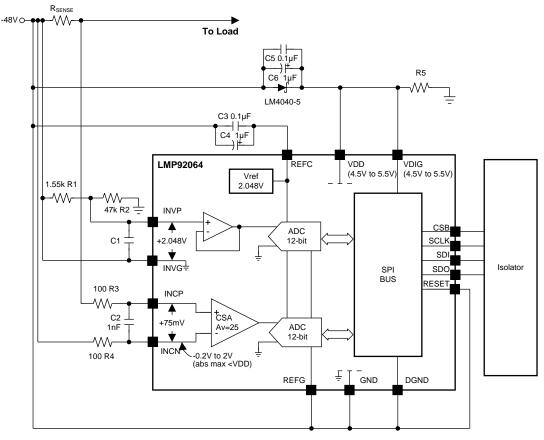



Figure 26. Typical Applications Circuit



- 1. If written to, Reserved bits must be written to 0 unless otherwise indicated.
- 2. Read back value of Reserved bits and registers is unspecified and should be discarded.
- 3. Recommended values must be programmed and forbidden values must not be programmed where they are indicated in order to avoid unexpected results.
- 4. If written to, registers indicated as Reserved must have the indicated default value as shown in the register map. Any other value can cause unexpected results.

| REGISTER NAME | REGISTER DESCRIPTION                     | ADDRESS          | ACCESS | DEFAULT      |
|---------------|------------------------------------------|------------------|--------|--------------|
| CONFIG_A      | Interface Configuration A                | 0x0000           | R/W    | 0x18         |
| CONFIG_B      | Interface Configuration B                | 0x0001           | R/W    | 0x00         |
| Reserved      | Reserved                                 | 0x0002           | R/W    | 0x00         |
| CHIP_TYPE     | Chip Type                                | 0x0003           | RO     | 0x07         |
| CHIP_ID       | Chip ID                                  | 0x0004<br>0x0005 | RO     | 0x00<br>0x04 |
| CHIP_REV      | Chip Revision                            | 0x0006           | RO     | 0x01         |
| MFR_ID        | Manufacturer ID                          | 0x000C<br>0x000D | RO     | 0x51<br>0x04 |
| REG_UPDATE    | Register Update                          | 0x000F           | R/W    | 0x00         |
| CONFIG_REG    | LMP92064 Specific Configuration Register | 0x0100           | R/W    | 0x00         |
| STATUS        | Status Register                          | 0x0103           | RO     | N/A          |
| DATA_VOUT     | Voltage Channel Output Data              | 0x0200<br>0x0201 | RO     | N/A          |
| DATA_COUT     | Current Channel Output Data              | 0x0202<br>0x0203 | RO     | N/A          |

#### Table 4. Register Map

|       |      |       | Tabl                                       | e 5. CONFIG     | A: Interfac   | e Configurat  | tion A        |                | www.ti.coi |
|-------|------|-------|--------------------------------------------|-----------------|---------------|---------------|---------------|----------------|------------|
| ADI   | DR   | BIT 7 | BIT 6                                      | BIT 5           | BIT 4         | BIT 3         | BIT 2         | BIT 1          | BIT 0      |
| 0x00  | 000  | RESET | DDIR                                       | ADDRDIR         | SDDIR         |               |               |                |            |
| [7]   | RESE | ET    | Soft rese                                  | et (self-cleari | ng)           |               |               |                | R/W        |
|       |      |       | 0: Norma                                   | al (default)    |               |               |               |                |            |
|       |      |       | 1: Reset                                   |                 |               |               |               |                |            |
|       |      |       | Note: Co<br>are unaff                      | ntents of regis | ster 0x0000   | and 0x0001 a  | and SPI state | e machine      |            |
| [6]   | DDIR |       | Data dire                                  | ection          |               |               |               |                | RO         |
|       |      |       | 0: Data is                                 | s transmitted   | MSB first (de | efault)       |               |                |            |
| [5]   | ADD  | RDIR  | Multiple                                   | -read auto-ac   | ldress direc  | tion          |               |                | RO         |
|       |      |       | 0: Addres                                  | ss auto-decre   | ments (defau  | ult)          |               |                |            |
|       |      |       | Note: Ad                                   | dress 0x0000    | will wrap to  | 0x7FFF        |               |                |            |
| [4]   | SSDI | R     | Serial da                                  | ata direction   |               |               |               |                | RO         |
|       |      |       | 1: Unidire                                 | ectional; SDI i | s used for w  | rite and SDC  | ) is used for | read (default) |            |
| [3:0] |      |       | <b>Bits [3:0</b><br>[3] = [4]<br>[2] = [5] | ] should alwa   | ays mirror [ˈ | 7:4] as follo | ws:           |                | R/W        |

# [0] = [7]

[1] = [6]

# Table 6. CONFIG\_B: Interface Configuration B

| AD    | DR   | BIT 7  | BIT 6       | BIT 5          | BIT 4          | BIT 3        | BIT 2 | BIT 1 | BIT 0    |
|-------|------|--------|-------------|----------------|----------------|--------------|-------|-------|----------|
| 0x0   | 001  | STREAM | Reserved    | BUFREG_RD      | Rese           | erved        | Rese  | erved | Reserved |
| [7]   | STRE | EAM    | Stream      |                |                |              |       |       | RO       |
|       |      |        | 0: Stream   | ing is on (del | fault)         |              |       |       |          |
| [6]   | Rese | rved   | Reserved    | l              |                |              |       |       | RO       |
|       |      |        | 0 (default) | )              |                |              |       |       |          |
| [5]   | BUFF | REG_RD | Active/bu   | Iffered regis  | ter read-bac   | k            |       |       | R/W      |
|       |      |        | 0: Read b   | ack from acti  | ive register ( | default)     |       |       |          |
|       |      |        | 1: Read b   | ack from buf   | fered registe  | r            |       |       |          |
|       |      |        | Note: Onl   | y double-buff  | ered register  | affected: 0x | 0100  |       |          |
| [4:3] | Rese | rved   | Reserved    | l              |                |              |       |       | RO       |
|       |      |        | 00 (defau   | lt)            |                |              |       |       |          |
| [2:1] | Rese | rved   | Reserved    | I              |                |              |       |       | RO       |
|       |      |        | 00 (defau   | lt)            |                |              |       |       |          |
| [0]   | Rese | rved   | Reserved    | I              |                |              |       |       | RO       |
|       |      |        | 0 (default) | )              |                |              |       |       |          |



www.ti.com



# LMP92064

| www.ti.com                                                                      |                         |                                                                        |                                                                              |                                                                      |                                                                    |                |       |                            |
|---------------------------------------------------------------------------------|-------------------------|------------------------------------------------------------------------|------------------------------------------------------------------------------|----------------------------------------------------------------------|--------------------------------------------------------------------|----------------|-------|----------------------------|
|                                                                                 |                         |                                                                        | Table 7. C                                                                   | HIP_TYPE:                                                            | Chip Type                                                          |                |       |                            |
| ADDR                                                                            | BIT 7                   | BIT 6                                                                  | BIT 5                                                                        | BIT 4                                                                | BIT 3                                                              | BIT 2          | BIT 1 | BIT 0                      |
| 0x0003                                                                          |                         |                                                                        |                                                                              | CHIP                                                                 | _TYPE                                                              |                |       |                            |
| [7:0] CHIF                                                                      | P_TYPE                  | Chip type                                                              |                                                                              |                                                                      |                                                                    |                |       | RC                         |
|                                                                                 |                         | 0x07: Prec                                                             | cision ADC                                                                   |                                                                      |                                                                    |                |       |                            |
|                                                                                 |                         |                                                                        |                                                                              |                                                                      |                                                                    |                |       |                            |
|                                                                                 | I                       |                                                                        | Table 8                                                                      | B. CHIP_ID:                                                          | Chip ID                                                            |                | T     | T.                         |
| ADDR                                                                            | BIT 7                   | BIT 6                                                                  | BIT 5                                                                        | BIT 4                                                                | BIT 3                                                              | BIT 2          | BIT 1 | BIT 0                      |
| 0x0004                                                                          |                         |                                                                        |                                                                              | CHIP_                                                                | ID_LSB                                                             |                |       |                            |
| [7:0] CHI                                                                       | P_ID_LSB                | Chip ID LS                                                             | В                                                                            |                                                                      |                                                                    |                |       | RC                         |
|                                                                                 |                         | 0x00 (Manu                                                             | ufacturer defi                                                               | ined)                                                                |                                                                    |                |       |                            |
|                                                                                 |                         |                                                                        |                                                                              | -                                                                    |                                                                    |                |       |                            |
| ADDR                                                                            | BIT 7                   | BIT 6                                                                  | BIT 5                                                                        | BIT 4                                                                | BIT 3                                                              | BIT 2          | BIT 1 | BIT 0                      |
|                                                                                 |                         |                                                                        |                                                                              |                                                                      | ID_MSB                                                             |                |       |                            |
| 0x0005                                                                          |                         |                                                                        |                                                                              | Unir_                                                                | 18_1116B                                                           |                |       |                            |
|                                                                                 | P_ID_MSB                | Chip ID MS                                                             | SB                                                                           |                                                                      | 10_1100                                                            |                |       | RC                         |
| 0x0005<br>[7:0] CHII                                                            | P_ID_MSB                | •                                                                      |                                                                              |                                                                      |                                                                    |                |       | RC                         |
|                                                                                 | P_ID_MSB                | •                                                                      | SB<br>ufacturer defi                                                         |                                                                      | <u></u>                                                            |                |       | RC                         |
|                                                                                 | P_ID_MSB                | 0x04 (Manu                                                             | ufacturer defi                                                               | ined)                                                                | nip Revision                                                       |                |       | RC                         |
|                                                                                 | P_ID_MSB<br>BIT 7       | 0x04 (Manu                                                             | ufacturer defi                                                               | ined)                                                                |                                                                    | BIT 2          | BIT 1 | RC<br>Bit 0                |
| [7:0] CHII                                                                      |                         | 0x04 (Manu                                                             | ufacturer defi<br>Table 9. CH                                                | ined)<br>IIP_REV: CI<br>BIT 4                                        | nip Revision                                                       | BIT 2          | BIT 1 |                            |
| [7:0] CHII<br>ADDR<br>0x0006                                                    | BIT 7                   | 0x04 (Manu                                                             | ufacturer defi<br>Table 9. CH                                                | ined)<br>IIP_REV: CI<br>BIT 4                                        | nip Revision<br>BIT 3                                              | BIT 2          | BIT 1 |                            |
| [7:0] CHII                                                                      | BIT 7                   | Ox04 (Manu<br>BIT 6<br>Chip REV                                        | ufacturer defi<br>Table 9. CH                                                | ined)<br>IIP_REV: CI<br>BIT 4                                        | nip Revision<br>BIT 3                                              | BIT 2          | BIT 1 | BIT 0                      |
| [7:0] CHII<br>ADDR<br>0x0006                                                    | BIT 7                   | 0x04 (Manu<br>BIT 6                                                    | ufacturer defi<br>Table 9. CH                                                | ined)<br>IIP_REV: CI<br>BIT 4                                        | nip Revision<br>BIT 3                                              | BIT 2          | BIT 1 | BIT 0                      |
| [7:0] CHII<br>ADDR<br>0x0006                                                    | BIT 7                   | 0x04 (Manu<br>віт є<br>Chip REV<br>0x01                                | ufacturer defi<br>Table 9. CH<br>BIT 5                                       | ined)<br>IIP_REV: CI<br>BIT 4<br>CHIF                                | nip Revision<br>BIT 3                                              | BIT 2          | BIT 1 | BIT 0                      |
| [7:0] CHII<br>ADDR<br>0x0006                                                    | BIT 7                   | 0x04 (Manu<br>віт є<br>Chip REV<br>0x01                                | ufacturer defi<br>Table 9. CH<br>BIT 5                                       | ined)<br>IIP_REV: CI<br>BIT 4<br>CHIF                                | hip Revision<br>BIT 3<br>P_REV                                     | BIT 2<br>BIT 2 | BIT 1 | BIT 0                      |
| [7:0] CHII<br>ADDR<br>0x0006<br>[7:0] CHII                                      | BIT 7                   | 0x04 (Manu<br>BIT 6<br>Chip REV<br>0x01                                | ufacturer defi<br>Table 9. CH<br>BIT 5<br>Table 10. M                        | IIP_REV: CI<br>BIT 4<br>CHIF<br>FR_ID: Mar<br>BIT 4                  | hip Revision<br>ВІТ 3<br>P_REV                                     |                |       | BIT 0<br>RC                |
| ADDR<br>0x0006<br>[7:0] CHIF<br>ADDR<br>0x000C                                  | BIT 7<br>P_REV<br>BIT 7 | 0x04 (Manu<br>BIT 6<br>Chip REV<br>0x01                                | ufacturer defi<br>Table 9. CH<br>BIT 5<br>Table 10. M<br>BIT 5               | IIP_REV: CI<br>BIT 4<br>CHIF<br>FR_ID: Mar<br>BIT 4                  | hip Revision<br>BIT 3<br>P_REV<br>bufacturer ID<br>BIT 3           |                |       | BIT 0<br>RC                |
| [7:0] CHII<br>ADDR<br>0x0006<br>[7:0] CHII<br>[7:0] CHII<br>ADDR<br>0x000C      | BIT 7                   | 0x04 (Manu<br>BIT 6<br>Chip REV<br>0x01<br>BIT 6<br>Manufactur         | ufacturer defi<br>Table 9. CH<br>BIT 5<br>Table 10. M<br>BIT 5               | IIP_REV: CI<br>BIT 4<br>CHIF<br>FR_ID: Mar<br>BIT 4                  | hip Revision<br>BIT 3<br>P_REV<br>bufacturer ID<br>BIT 3           |                |       | BIT 0<br>RC<br>BIT 0       |
| ADDR<br>0x0006<br>[7:0] CHIF<br>ADDR<br>0x000C                                  | BIT 7<br>P_REV<br>BIT 7 | 0x04 (Manu<br>BIT 6<br>Chip REV<br>0x01<br>BIT 6                       | ufacturer defi<br>Table 9. CH<br>BIT 5<br>Table 10. M<br>BIT 5               | IIP_REV: CI<br>BIT 4<br>CHIF<br>FR_ID: Mar<br>BIT 4                  | hip Revision<br>BIT 3<br>P_REV<br>bufacturer ID<br>BIT 3           |                |       | BIT 0<br>RC<br>BIT 0       |
| [7:0] CHII<br>ADDR<br>0x0006<br>[7:0] CHII<br>[7:0] CHII<br>ADDR<br>0x000C      | BIT 7<br>P_REV<br>BIT 7 | 0x04 (Manu<br>BIT 6<br>Chip REV<br>0x01<br>BIT 6<br>Manufactur         | ufacturer defi<br>Table 9. CH<br>BIT 5<br>Table 10. M<br>BIT 5               | IIP_REV: CI<br>BIT 4<br>CHIF<br>FR_ID: Mar<br>BIT 4                  | hip Revision<br>BIT 3<br>P_REV<br>bufacturer ID<br>BIT 3           |                |       | BIT 0<br>RC<br>BIT 0       |
| [7:0] CHII<br>ADDR<br>0x0006<br>[7:0] CHII<br>[7:0] CHII<br>0x000C<br>[7:0] MFR | BIT 7<br>P_REV<br>BIT 7 | 0x04 (Manu<br>BIT 6<br>Chip REV<br>0x01<br>BIT 6<br>Manufactur<br>0x51 | ufacturer defi<br>Table 9. CH<br>BIT 5<br>Table 10. M<br>BIT 5<br>rer ID LSB | ined)<br>IIP_REV: CI<br>BIT 4<br>CHIF<br>FR_ID: Mar<br>BIT 4<br>MFR_ | hip Revision<br>BIT 3<br>P_REV<br>Dufacturer ID<br>BIT 3<br>ID_LSB | BIT 2          | BIT 1 | BIT 0<br>RC<br>BIT 0<br>RC |

#### 18 Submit Documentation Feedback

SNOSCX0 -JUNE 2013

| Table 11 | RFG  | UPDATE: | Register | Undate |
|----------|------|---------|----------|--------|
|          | ILC_ |         | Negister | opuale |

|                         |      |       |                                     |                | _••••          | tegietei epe    | late    |    |                   |  |  |  |
|-------------------------|------|-------|-------------------------------------|----------------|----------------|-----------------|---------|----|-------------------|--|--|--|
| AD                      | DR   | BIT 7 | BIT 6 BIT 5 BIT 4 BIT 3 BIT 2 BIT 1 |                |                |                 |         |    |                   |  |  |  |
| 0x0                     | 00F  |       |                                     |                |                |                 |         |    | BUFREG_<br>UPDATE |  |  |  |
| [7:1] Reserved Reserved |      |       |                                     |                |                |                 |         | RO |                   |  |  |  |
|                         |      |       | 0 (default)                         |                |                |                 |         |    |                   |  |  |  |
| [0]                     | BUFF | REG_  | Buffered r                          | egister upd    | ate (self clea | aring)          |         |    | R/W               |  |  |  |
|                         | UPD/ | ATE   | 0: No action (default)              |                |                |                 |         |    |                   |  |  |  |
|                         |      |       | 1: Transfer                         | · buffered reg | gister conten  | ts to active re | egister |    |                   |  |  |  |
|                         |      |       | Note: Regi                          | ster 0x0100    | is buffered.   |                 |         |    |                   |  |  |  |
|                         |      |       |                                     |                |                |                 |         |    |                   |  |  |  |

#### Table 12. CONFIG\_REG: LMP92064 Specific Configuration Register

| ADDR                              | BIT 7 | BIT 6         BIT 5         BIT 4         BIT 3         BIT 2         BIT 1 |                 |                                |   |  |  |  |  |  |  |  |
|-----------------------------------|-------|-----------------------------------------------------------------------------|-----------------|--------------------------------|---|--|--|--|--|--|--|--|
| 0x0100                            |       | Reserved                                                                    |                 |                                |   |  |  |  |  |  |  |  |
| [7:0] Rese                        | erved | Reserved for future use 0x00 (default)                                      |                 |                                |   |  |  |  |  |  |  |  |
|                                   |       |                                                                             | et to 1 to tran | ouble-buffere<br>sfer the cont | - |  |  |  |  |  |  |  |
| Table 13. STATUS: Status Register |       |                                                                             |                 |                                |   |  |  |  |  |  |  |  |

| AD    | DR   | BIT 7 | BIT 6      | BIT 5        | BIT 4         | BIT 3 | BIT 2 | BIT 1 | BIT 0  |  |  |  |
|-------|------|-------|------------|--------------|---------------|-------|-------|-------|--------|--|--|--|
| 0x0   | 103  | 0     | 0          | 0            | 0             | 0     | 0     | 0     | STATUS |  |  |  |
| [7:1] | Unus | ed    | Unused     | Unused       |               |       |       |       |        |  |  |  |
|       |      |       | Always rea | ad 7'b0      |               |       |       |       |        |  |  |  |
| [0]   | STAT | US    | Status     |              |               |       |       |       | RO     |  |  |  |
|       |      |       | 0: Device  | is not ready | for conversic | n     |       |       |        |  |  |  |
|       |      |       |            |              |               |       |       |       |        |  |  |  |

1: Device is ready for conversion



www.ti.com

DATA\_MSB

# SNOSCX0 -JUNE 2013

LMP92064

|                                                                   |       | Table 14                    | . DATA_VOI    | JT: Voltage       | Channel Ou | tput Data |         |       |  |  |
|-------------------------------------------------------------------|-------|-----------------------------|---------------|-------------------|------------|-----------|---------|-------|--|--|
| ADDR                                                              | BIT 7 | BIT 6                       | BIT 5         | BIT 4             | BIT 3      | BIT 2     | BIT 1   | BIT 0 |  |  |
| 0x0200                                                            |       |                             |               | VOUT_D            | ATA_LSB    | 1         |         |       |  |  |
| [7:0] VOUT_ Voltage output data least significant byte            |       |                             |               |                   |            |           |         |       |  |  |
| DAT                                                               | A_LSB |                             |               |                   |            |           |         |       |  |  |
| ADDR                                                              | BIT 7 | BIT 6                       | BIT 5         | BIT 4             | BIT 3      | BIT 2     | BIT 1   | BIT 0 |  |  |
| 0x0201                                                            | 0     | 0                           | 0             | 0                 |            | VOUT_D    | ATA_MSB |       |  |  |
| [7:4] Unus                                                        | ed    | Unused                      |               |                   |            |           |         | RO    |  |  |
|                                                                   |       | 0000 (def                   | ault)         |                   |            |           |         |       |  |  |
| [3:0] VOUT_ Voltage output data most significant byte<br>DATA_MSB |       |                             |               |                   |            |           |         |       |  |  |
|                                                                   |       | Table 15                    | . DATA_COU    | JT: Current       | Channel Ou | tput Data |         |       |  |  |
| ADDR                                                              | BIT 7 | BIT 6                       | BIT 5         | BIT 4             | BIT 3      | BIT 2     | BIT 1   | BIT 0 |  |  |
| 0x0202                                                            |       |                             |               | COUT_D            | ATA_LSB    |           |         |       |  |  |
| [7:0] COU                                                         | T_    | Current or                  | utput data le | ast signification | ant byte   |           |         | RO    |  |  |
| DAT                                                               | A_LSB |                             |               |                   |            |           |         |       |  |  |
| ADDR                                                              | BIT 7 | BIT 6                       | BIT 5         | BIT 4             | BIT 3      | BIT 2     | BIT 1   | BIT 0 |  |  |
| 0x0203                                                            | 0     | 0 0 0 COUT_DATA_MSB         |               |                   |            |           |         |       |  |  |
| [7:4] Unus                                                        | sed   | <b>Unused</b><br>0000 (defa | ult)          |                   |            |           |         | RO    |  |  |
| [3:0] COUT_ Current output data most significant byte             |       |                             |               |                   |            |           |         |       |  |  |



www.ti.com

19

Submit Documentation Feedback



26-Aug-2013

# PACKAGING INFORMATION

| Orderable Device | Status | Package Type | Package | Pins | Package | Eco Plan                   | Lead/Ball Finish | MSL Peak Temp       | Op Temp (°C) | Device Marking | Samples |
|------------------|--------|--------------|---------|------|---------|----------------------------|------------------|---------------------|--------------|----------------|---------|
|                  | (1)    |              | Drawing |      | Qty     | (2)                        |                  | (3)                 |              | (4/5)          |         |
| LMP92064SD/NOPB  | ACTIVE | WSON         | NHR     | 16   | 1000    | Green (RoHS<br>& no Sb/Br) | CU SN            | Level-3-260C-168 HR | -40 to 105   | L92064         | Samples |
| LMP92064SDE/NOPB | ACTIVE | WSON         | NHR     | 16   | 250     | Green (RoHS<br>& no Sb/Br) | CU SN            | Level-3-260C-168 HR | -40 to 105   | L92064         | Samples |
| LMP92064SDX/NOPB | ACTIVE | WSON         | NHR     | 16   | 4500    | Green (RoHS<br>& no Sb/Br) | CU SN            | Level-3-260C-168 HR | -40 to 105   | L92064         | Samples |

<sup>(1)</sup> The marketing status values are defined as follows:

**ACTIVE:** Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

**OBSOLETE:** TI has discontinued the production of the device.

<sup>(2)</sup> Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability information and additional product content details.

**TBD:** The Pb-Free/Green conversion plan has not been defined.

**Pb-Free (RoHS):** TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.

**Pb-Free (RoHS Exempt):** This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above.

Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)

<sup>(3)</sup> MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.

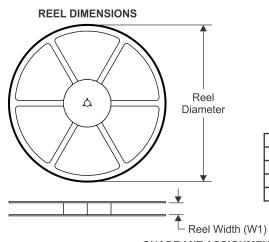
<sup>(4)</sup> There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.

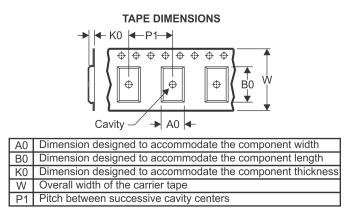
<sup>(5)</sup> Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device.

**Important Information and Disclaimer:**The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.



26-Aug-2013


In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.


# PACKAGE MATERIALS INFORMATION

www.ti.com

Texas Instruments

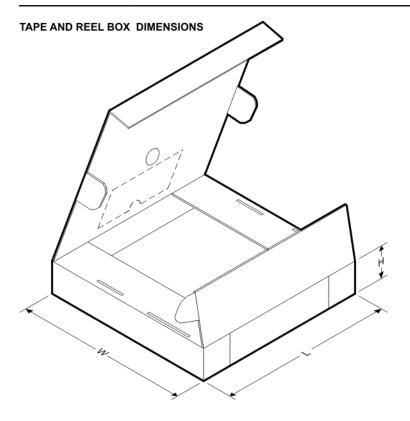
## TAPE AND REEL INFORMATION





# QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE



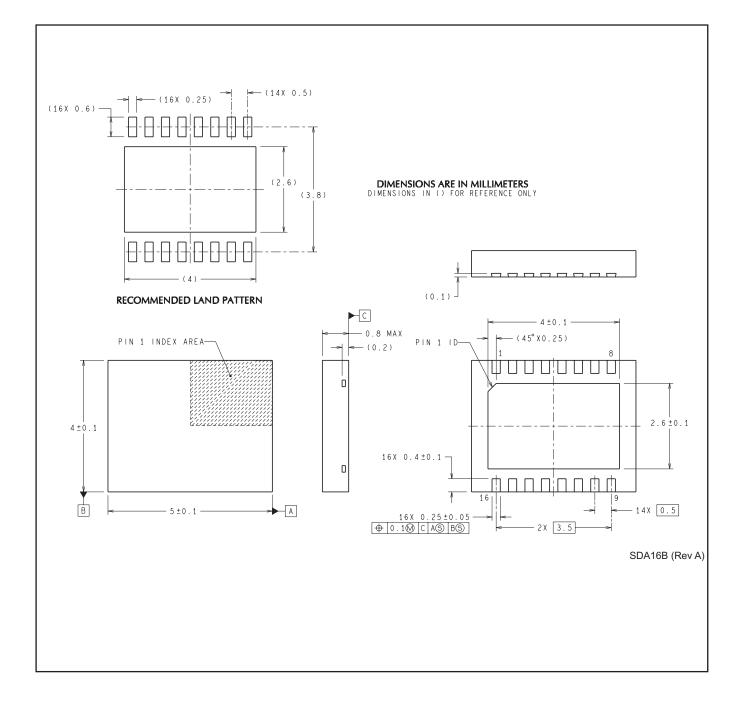

| *All dimensions are nominal | All dimensions are nominal |                    |    |      |                          |                          |            |            |            |            |           |                  |
|-----------------------------|----------------------------|--------------------|----|------|--------------------------|--------------------------|------------|------------|------------|------------|-----------|------------------|
| Device                      | Package<br>Type            | Package<br>Drawing |    | SPQ  | Reel<br>Diameter<br>(mm) | Reel<br>Width<br>W1 (mm) | A0<br>(mm) | B0<br>(mm) | K0<br>(mm) | P1<br>(mm) | W<br>(mm) | Pin1<br>Quadrant |
| LMP92064SD/NOPB             | WSON                       | NHR                | 16 | 1000 | 178.0                    | 12.4                     | 4.3        | 5.3        | 1.3        | 8.0        | 12.0      | Q1               |
| LMP92064SDE/NOPB            | WSON                       | NHR                | 16 | 250  | 178.0                    | 12.4                     | 4.3        | 5.3        | 1.3        | 8.0        | 12.0      | Q1               |
| LMP92064SDX/NOPB            | WSON                       | NHR                | 16 | 4500 | 330.0                    | 12.4                     | 4.3        | 5.3        | 1.3        | 8.0        | 12.0      | Q1               |

TEXAS INSTRUMENTS

www.ti.com

# PACKAGE MATERIALS INFORMATION

2-Nov-2013




\*All dimensions are nominal

| Device           | Package Type | Package Drawing | Pins | SPQ  | Length (mm) | Width (mm) | Height (mm) |
|------------------|--------------|-----------------|------|------|-------------|------------|-------------|
| LMP92064SD/NOPB  | WSON         | NHR             | 16   | 1000 | 213.0       | 191.0      | 55.0        |
| LMP92064SDE/NOPB | WSON         | NHR             | 16   | 250  | 213.0       | 191.0      | 55.0        |
| LMP92064SDX/NOPB | WSON         | NHR             | 16   | 4500 | 367.0       | 367.0      | 35.0        |

# **MECHANICAL DATA**

# NHR0016B



#### **IMPORTANT NOTICE**

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, enhancements, improvements and other changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All semiconductor products (also referred to herein as "components") are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in TI's terms and conditions of sale of semiconductor products. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily performed.

TI assumes no liability for applications assistance or the design of Buyers' products. Buyers are responsible for their products and applications using TI components. To minimize the risks associated with Buyers' products and applications, Buyers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI components or services are used. Information published by TI regarding third-party products or services does not constitute a license to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of significant portions of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Resale of TI components or services with statements different from or beyond the parameters stated by TI for that component or service voids all express and any implied warranties for the associated TI component or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements concerning its products, and any use of TI components in its applications, notwithstanding any applications-related information or support that may be provided by TI. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards which anticipate dangerous consequences of failures, monitor failures and their consequences, lessen the likelihood of failures that might cause harm and take appropriate remedial actions. Buyer will fully indemnify TI and its representatives against any damages arising out of the use of any TI components in safety-critical applications.

In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, TI's goal is to help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and requirements. Nonetheless, such components are subject to these terms.

No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties have executed a special agreement specifically governing such use.

Only those TI components which TI has specifically designated as military grade or "enhanced plastic" are designed and intended for use in military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components which have *not* been so designated is solely at the Buyer's risk, and that Buyer is solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI has specifically designated certain components as meeting ISO/TS16949 requirements, mainly for automotive use. In any case of use of non-designated products, TI will not be responsible for any failure to meet ISO/TS16949.

| Products                     |                          | Applications                  |                                   |
|------------------------------|--------------------------|-------------------------------|-----------------------------------|
| Audio                        | www.ti.com/audio         | Automotive and Transportation | www.ti.com/automotive             |
| Amplifiers                   | amplifier.ti.com         | Communications and Telecom    | www.ti.com/communications         |
| Data Converters              | dataconverter.ti.com     | Computers and Peripherals     | www.ti.com/computers              |
| DLP® Products                | www.dlp.com              | Consumer Electronics          | www.ti.com/consumer-apps          |
| DSP                          | dsp.ti.com               | Energy and Lighting           | www.ti.com/energy                 |
| Clocks and Timers            | www.ti.com/clocks        | Industrial                    | www.ti.com/industrial             |
| Interface                    | interface.ti.com         | Medical                       | www.ti.com/medical                |
| Logic                        | logic.ti.com             | Security                      | www.ti.com/security               |
| Power Mgmt                   | power.ti.com             | Space, Avionics and Defense   | www.ti.com/space-avionics-defense |
| Microcontrollers             | microcontroller.ti.com   | Video and Imaging             | www.ti.com/video                  |
| RFID                         | www.ti-rfid.com          |                               |                                   |
| OMAP Applications Processors | www.ti.com/omap          | TI E2E Community              | e2e.ti.com                        |
| Wireless Connectivity        | www.ti.com/wirelessconne | ectivity                      |                                   |

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2013, Texas Instruments Incorporated