
XAPP694 (v1.0) May 26, 2004 www.xilinx.com 1
1-800-255-7778

© 2004 Xilinx, Inc. All rights reserved. All Xilinx trademarks, registered trademarks, patents, and further disclaimers are as listed at http://www.xilinx.com/legal.htm. All other
trademarks and registered trademarks are the property of their respective owners. All specifications are subject to change without notice.

NOTICE OF DISCLAIMER: Xilinx is providing this design, code, or information "as is." By providing the design, code, or information as one possible implementation of this feature,
application, or standard, Xilinx makes no representation that this implementation is free from any claims of infringement. You are responsible for obtaining any rights you may
require for your implementation. Xilinx expressly disclaims any warranty whatsoever with respect to the adequacy of the implementation, including but not limited to any warranties
or representations that this implementation is free from claims of infringement and any implied warranties of merchantability or fitness for a particular purpose.

Summary This application note describes how to retrieve user-defined data from Xilinx configuration
PROMs (XC18V00 and Platform Flash devices) after the same PROM has configured the
FPGA. The method to add user-defined data to the configuration PROM file is also discussed.
The reference design described in this application note may be used in any of the following
Xilinx FPGA architectures: Spartan™-II, Spartan-IIE, Spartan-3, Virtex™, Virtex-E, Virtex-II™,
and Virtex-II Pro™.

Introduction After an FPGA has been configured, it is often necessary to retrieve user-defined data that is
used by the FPGA during operation. The user-defined data needs to be retrieved from an
external storage device and a control circuit is required to interface to the storage device. This
implies additional time for logic design and board level engineering, not to mention extra board
real estate requirements and a higher FPGA pin count.

Xilinx configuration PROMs are generally used to store an FPGA design, which is downloaded
to the FPGA upon system power-up. In most cases, this is the PROM’s only function, and its
capacity is usually not fully used by the FPGA design. This leaves the unused portion of the
PROM as wasted space.

The design in this application note describes how user-defined data can be stored and
retrieved from Xilinx configuration PROMs using existing connections and only one user I/O.
This reduces the FPGA pin count, component count, board space, and overall system cost.
The user-defined data can be an Ethernet MAC ID, bitstream revision code, coefficients,
processor code, ASCII data to be displayed, encryption codes, and so on. A Perl script has
been created that automatically modifies existing configuration PROM files with user-defined
data. The script supports Intel Object (.mcs) and HEX (.hex) file formats, with optional bit
swapping.

Considerations
for PROM
and FPGA
Connections

Figure 1 clearly shows the minimum connections necessary to create a suitable interface
between the PROM and the FPGA. The interface allows the FPGA to retrieve data from the
PROM before and after it has been configured. This is the simplest implementation for reading
user-defined data from a configuration PROM. However, other implementations do exist and
are discussed later in this application note. For an in-depth description of the logic
implementation for Figure 1, see “Macro Implementation,” page 4.

The connections in Figure 1 are required for the following reasons:

• In any master configuration mode, the configuration clock CCLK generated by the FPGA
will stop toggling after the FPGA has been successfully configured, preventing the
PROM’s address counter from advancing beyond the FPGA design stored in the PROM.

• When the CE pin on the PROM goes High, the PROM’s address counter is held reset at
zero. If the CE pin of the PROM is held High, the address counter of the PROM cannot be
advanced. In this state, any data retrieved from the PROM will be the actual FPGA design
and not user-defined data. This is explained in Table 1.

Application Note: Spartan-II, Spartan-3, Virtex, and Virtex-II FPGA Families

XAPP694 (v1.0) May 26, 2004

Reading User Data from Configuration
PROMs
Author: Stephan Neuhold

R

http://www.xilinx.com
http:www.xilinx.com/legal.htm
http://www.xilinx.com/legal.htm
http://www.xilinx.com/legal.htm

2 www.xilinx.com XAPP694 (v1.0) May 26, 2004
1-800-255-7778

Considerations for PROM and FPGA Connections
R

• When the INIT pin goes Low, indicating either that a CRC error occurred during
configuration or that INIT has become user I/O initialized to a Low state after configuration,
the address counter of the PROM will be held reset to zero. If the OE/RESET pin of the
PROM is held Low, the address counter of the PROM cannot be advanced. In this state,
any data retrieved from the PROM will be the actual FPGA design and not user-defined
data.

The above considerations have several solutions:

• The CE pin can be connected to ground via a pull-down resistor. This will always enable
the PROM. An alternative is to connect the CE pin to a user I/O pin on the FPGA. This
allows the user to enable or disable the PROM and reduce power consumption.

• The OE/RESET pin should be connected to INIT, since this allows the FPGA to reinitiate a
configuration if a CRC error occurs during configuration. The INIT pin becomes user I/O
after configuration and so can be configured to output a logic High to keep the PROM
outputs enabled.

• With the OE/RESET pin held High and the CE pin held Low, the PROM’s address counter
is able to advance beyond the FPGA configuration data.

• In master configuration modes the clock signal to the PROM can be generated by one of
the user I/O and connected in parallel with the CCLK pin. This is a necessity, since the
clock needs to be controlled by the FPGA.

Figure 1: PROM and FPGA Connections with Additional Control Signal

Table 1: Truth Table for PROM Control Inputs

Control Inputs
Internal Address(1)

Outputs

OE/RESET CE DATA

High Low
If address ≤ TC: increment Active

If address > TC: do not change High-Z

Low Low Held reset High-Z

High High Held reset High-Z

Low High Held reset High-Z

Notes:
1. TC = Terminal Count of address counter. Address = address count.

XILINX FPGA

CCLK

INIT / USERIO

PROG

DIN/D0

USERIO

TCK

TMS

TDI

M0

M1

M2

TDO

VCC

TCK

TMS

TDI

TDO

XILINX
CONFIGURATION
PROM

TCK

TMS

TDI

CLK

OE/RESET

CE

CF

DIN/D0

TDO

x694_01_033104

http://www.xilinx.com

Considerations for PROM and FPGA Connections

XAPP694 (v1.0) May 26, 2004 www.xilinx.com 3
1-800-255-7778

R

The configuration clock CCLK stops toggling after the STARTUP phase of the FPGA has
completed provided the -persist option in BitGen is set to off (default). After CCLK stops
toggling, the pin is 3-stated with a weak pull-up resistor connected to VCCO. However,
depending on configuration options set during bitstream generation the number of CCLK cycles
after the STARTUP phase is uncertain. This makes it difficult to know exactly at what address
the PROM’s address counter has stopped, which means that user-defined data stored directly
after the FPGA configuration may not be retrieved reliably. Figure 2 shows this concept
graphically.

This problem can be overcome by employing a mechanism similar to the configuration logic
inside the FPGA. After power-up, the FPGA starts receiving data from the PROM. The FPGA,
however, does not load any data received from the PROM until it has received a
synchronization word. For Xilinx FPGAs based on the Virtex architecture, the synchronization
word is AA995566h. This same idea can be used in the FPGA after configuration to look for
user-defined data.

Note: For more information regarding FPGA configuration, see XAPP501, "Configuration
Quickstart Guidelines," and XAPP138, "Virtex FPGA Series Configuration and Readback." For
information regarding configuration of Virtex-II and Virtex-II Pro devices, see the "Configuration"
chapters of the Virtex-II Platform FPGA User Guide and Virtex-II Pro Platform FPGA User Guide.

After the FPGA has been configured, it sends out clock pulses on the user I/O connected to the
CLK pin of the PROM. With every rising edge of the clock, the PROM's address counter is
incremented by one, and the data at that address is presented on the data pins of the PROM.

A Perl script exists that adds synchronization patterns and user-defined data to configuration
PROM files. For a detailed description on how to use the script, see “Adding User Data to the
PROM,” page 7. For now, an example of how to use the script is given. All files used in the
example, including the script, can be found in the \Perl_Script directory of the reference
design archive. See “Design Resources,” page 11.

The PROM file containing the FPGA configuration is named prom_file.mcs and the file
containing the synchronization patterns and user-defined data is named user_data.txt.
The command line that invokes the script to add the contents of user_data.txt to
prom_file.mcs is:

Xilperl pc.pl -f mcs -swap off -uf user_data.txt -pf prom_file.mcs

Figure 2: PROM Memory Map Showing Address Counter Uncertainty

User Data Block 1

Sync Pattern

User Data Block 0

Sync Pattern

Area of Uncertainty

FPGA
Configuration

XXXXh

PROM counter
after configuration

PROM counter at start
of configuration = 0000h

x694_02_033104

http://www.xilinx.com/bvdocs/appnotes/xapp138.pdf
http://www.xilinx.com/bvdocs/appnotes/xapp138.pdf
http://www.xilinx.com/bvdocs/userguides/ug012.pdf
http://www.xilinx.com
http://www.xilinx.com/bvdocs/userguides/ug002.pdf

4 www.xilinx.com XAPP694 (v1.0) May 26, 2004
1-800-255-7778

Macro Implementation
R

The script produces a PROM file named new_prom_file.mcs. All files can be examined in
a text editor. The user_data.txt file has four separate blocks of user-defined data, each
defined by a separate synchronization pattern. The synchronization pattern in this example is
8F9FAFBFh and the user-defined data that follows is ASCII encoded data. When converted,
the ASCII code represents:

XAPP 694 DATA BLOCK x

where x represents the current data block.

Other choices of synchronization patterns and user-defined data can be implemented. For a
more detailed description, see “Adding User Data to the PROM,” page 7, and “Other
Implementations,” page 10.

Macro
Implementation

Figure 3 shows the macro used to read user-defined data from the PROM after the FPGA has
been configured. A description of the input and output signals and their function can be found
in Table 2.

Figure 3: PROM Reader Macro

Table 2: PROM Reader Macro Signal Descriptions and Functions

Signal
I/O

Direction
Description

clock Input All signals are registered on the rising of this signal.

reset Input
This signal resets all logic to the initial state. This signal is
asynchronous and active Low.

din/d0 Input Data from the PROM is presented on this signal.

read Input
This signal is used to instruct the macro to retrieve the next
8 bits of data from the PROM. This signal is active Low.

next_sync Input
This signal is used to instruct the macro to search and find the
next synchronization pattern in the PROM. This signal is
active Low.

dout[7:0] Output
This is the data bus on which actual user-defined data is
presented. Valid user-defined data is indicated by the
data_ready signal going Low for one clock cycle.

Shift Register
and

Comparator

Control
State

Machine

Clock
Management

dout[7:0]

data_ready

sync

cclk

reset_prom

clock

din/d0

reset

read

next_sync

data

sync_found

cclk_on

din_read_enable

x694_03_033104

http://www.xilinx.com

Macro Implementation

XAPP694 (v1.0) May 26, 2004 www.xilinx.com 5
1-800-255-7778

R

A description of each block of the macro and the functionality that it provides follows.

Clock Management

This block generates clock enables at appropriate clock edges so that data from the PROM is
captured correctly by the FPGA. It also generates a signal that mimics the CCLK signal
provided during configuration.

With every rising edge of CCLK, new data is presented at the data pins of the PROM. On the
falling edge of CCLK, a clock enable signal allows the data to be captured by the Shift Register
and Comparator block on the rising edge of the system clock. This ensures that an adequate
setup and hold time exists for the input registers of the FPGA.

The CCLK signal is generated by enabling a register that provides a signal equivalent to the
system clock divided down to 10 Mhz. The enable signal to the register is provided by a rotating
logic High through an SRL16. The length of the SRL16 is determined by the system clock
frequency, which the user enters via a parameter. Using this method to "divide" the system
clock is advantageous, since it does not require the use of DLLs or DCMs and still keeps the
circuit synchronous.

Figure 4 shows the timing relationship between the data and CCLK.

Shift Register and Comparator

This block captures data from the PROM one bit at a time. Whenever a data bit is clocked into
the FPGA, the data is compared to a synchronization pattern to determine the start position of

data_ready Output
This signal indicates that valid data is present on the dout[7:0]
pins. This signal is active Low.

sync Output
This signal indicates that a synchronization pattern has been
detected in the data retrieved from the PROM. The signal is
active Low.

reset_prom Output
This signal outputs a Low whenever the macro is reset. This
signal can be connected to either the CE or OE/RESET pin of
the PROM to reset the PROM’s addess counter.

cclk Output
This signal mimics the CCLK signal from the FPGA during
configuration.

Table 2: PROM Reader Macro Signal Descriptions and Functions (Continued)

Signal
I/O

Direction
Description

Figure 4: Clock Management Block Timing

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37

TCAC

DATA0 DATA1 DATA DATA6 DATA7 DATA8

x694_04_033104TCAC = CCLK-to-data delay of PROM

clock

cclk_on

cclk

din_read_enable

din

http://www.xilinx.com

6 www.xilinx.com XAPP694 (v1.0) May 26, 2004
1-800-255-7778

Macro Implementation
R

user-defined data. The length of the synchronization pattern, as well as the pattern itself, can
be user-defined. The pattern can also be changed during the operation of the FPGA. This
allows the user to define and search for multiple sets of user-defined data, a capability that
makes this circuit very flexible.

Upon finding the synchronization pattern, a sync pulse is generated to indicate that
synchronization has been achieved. The sync pulse is valid for as long as the synchronization
pattern remains valid.

Figure 5 shows the timing relationship of the sync signal and the data.

The Shift Register and Comparator block continues to check for a synchronization pattern,
even when synchronization has already been achieved. If synchronization has been achieved
and the user-defined data also happens to match the synchronization pattern, a sync pulse will
still be generated. Therefore, only the data_ready signal qualifies actual user-defined data. The
data_ready pulse is described in the Control State Machine section.

Control State Machine

This block provides control for all other modules in the macro. It determines how many data bits
to retrieve from the PROM after synchronization, when to search for the next synchronization
pattern, when to retrieve the next byte of user-defined data, and when to reset the PROM’s
address counter. Figure 6 shows the different states implemented in the state machine.

Figure 5: Shift Register and Comparator Block Timing

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37

x694_05_041204

clock

sync_found

din SYNC n-4 SYNC n-3 SYNC n-2 SYNC n-1 SYNC n DATA0 DATA1 DATA3 DATA4

Figure 6: Control State Machine Diagram

State: Look4Sync
In this state, the design looks
for a synchronization pattern.

State: GetData
In this state, the design retrieves
user-defined data from the PROM.

State: PresentData
This state presents retrieved
user-defined data on the dout
output of the macro.

State: Wait4Active
In this state, the design waits
for user input. User input can be
to retrieve data or look for the
next synchronization pattern.

Reset

x694_06_033104

S1

S2S3

S4

http://www.xilinx.com

Adding User Data to the PROM

XAPP694 (v1.0) May 26, 2004 www.xilinx.com 7
1-800-255-7778

R

Figure 7 shows the timing relationship of the data_ready pulse, together with data on din/dout
and the sync pulse.

Adding User
Data to the
PROM

In order to read user-defined data from the configuration PROM, a method must exist that
allows the designer to easily add user-defined data to the PROM file. A Perl script that will add
user-defined data to existing PROM files for Intel Object and Hex file formats can be found in
the \Perl_Script directory of the reference design for this application note. The Perl script
does not support Motorola EXORmacs and TEKTRONIX TEK formats. In order to provide an
explanation of what the script does and how it works, some details concerning PROM file
formats are discussed in the next three sections:

• Bit swapping

• Records, byte counts and checksums

• PROM size

Bit Swapping

Every byte of data retrieved from the configuration PROM is presented in a bit-swapped
fashion: that is, the MSb of every byte is read first, and the LSb is read last. It is important to
bear this in mind, as it has an effect on how data is presented and used inside the FPGA. An
example of bit swapping is shown in Figure 8, which illustrates that the way data is presented in
the PROM file differs from the way it is presented inside the FPGA. (The values chosen in the
example are arbitrary.)

Figure 7: Control State Machine Block Timing

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35

x694_07_033104

clock

sync

dout

data_ready

din SYNC n-2 SYNC n-1 SYNC n DATA0

DATA[7:0] DATA[7:0]

DATA1 DATA6 DATA7 DATA8

Figure 8: bit Swapping of PROM Data

08 67 F3 5A ...

0000 1000

0001 0000

0110 0111

1110 0110

1111 0011

1100 1111

0101 1010

0101 1010

10 E6 BF 5A

PROM Data (hex)

Binary

Bit-swapped
This is how the data

reads in the FPGA

Hex
x694_08_033104

http://www.xilinx.com

8 www.xilinx.com XAPP694 (v1.0) May 26, 2004
1-800-255-7778

Adding User Data to the PROM
R

Although other PROM file formats exists, the Perl script discussed in this application note
supports only the Intel Object and Hex file formats, so only these formats are discussed here.

Bit swapping is a feature of the Intel Object (.mcs) and Hex PROM file formats. The Xilinx
iMPACT configuration tool supports both formats. The Hex file format can have bit swapping
enabled or disabled. The bit swapping is important to note when adding user-defined data to
the configuration PROM file, since it influences the way that data is read by the FPGA,
particularly the synchronization pattern. The bit swapping can be dealt with in two ways:

1. The user-defined data can be added to the configuration PROM file without any bit
swapping. The data can then be bit-swapped inside the FPGA, if necessary, after it is read.

2. The user-defined data can be added to the configuration PROM file with every byte having
been bit-swapped already. There is no need to bit-swap the data inside the FPGA after it is
read.

Either of the above mentioned methods is suitable, and although the first option mentions
swapping the bits inside the FPGA, this option does not add logic resources to realize the
interface. The reference design in this application note implements the first option.

As already mentioned, the Hex file format can have bit swapping enabled or disabled. When
using the Perl script, the user can specify whether the user-defined data is to be added in a
bit-swapped fashion or not by using the -swap option. If the -swap option is on, then all bytes
of the user-defined data are bit-swapped before they are added to the existing Hex file. If the
-swap option is off, then the user-defined data is simply appended to the existing Hex file.
When using Intel Object format PROM files, the -swap option must be specified, although the
option has no effect.

Records, Byte Counts and Checksums

When adding user-defined data to an existing configuration PROM file, there are a number of
data fields that need to be added in order for the file to be successfully downloaded into a
PROM. Since the Perl script only supports the Intel Object and Hex file formats, only these are
discussed here. The Hex file formats do not require any additional data fields to be added.
However, the Intel Object file format requires a Start Character, Byte Count, Address, Record
Type, and Checksum fields, in addition to the actual data. The Perl script automatically
calculates these fields and inserts them into the existing PROM file. In order for the script to
calculate these values correctly, the user-defined data must be presented 16 bytes per line.
Table 3 through Table 5 show the record types used by the iMPACT configuration software.

00 = Data Record
01 = End of File Record (signals the end of the file)
04 = Extended Linear Address Record (provides the offset to determine the absolute

destination address)

The checksum is the two's complement of the binary summation of the preceding bytes in the
record (including the byte count, address, and any data bytes), in hexadecimal notation.

The extended linear address record (Type 04) defines bits 16 to 31 of the 32-bit linear base
address. This address will be added to subsequent data record addresses to provide the
absolute address.

Table 3: Input Data Type 00

: BC AAAA 00 hhhh….h CC

Start
Character

Byte Count Hex Address Record Type
hh = 1 Data

Byte
Checksum

2 Characters 4 Characters 2 Characters
2 up to 32
Characters

2 Characters

http://www.xilinx.com

Reference Design Implementation

XAPP694 (v1.0) May 26, 2004 www.xilinx.com 9
1-800-255-7778

R

PROM Size

Care must be taken not to add too much user-defined data to the PROM, since this will cause
the configuration tools to reject the PROM file. To select a PROM that can store both the FPGA
configuration and the user-defined data, simply add the number of bits used for the FPGA
configuration to the number of user-defined data bits and synchronization patterns. The
number of bits used for the FPGA configuration can be found by consulting the appropriate
FPGAs data sheet.

Note: A detailed description of how to use the Perl script can be found in the readme.txt file in the
\Perl_Script directory of the reference design.

Reference
Design
Implementation

The reference design described in this application note can be implemented on the Xilinx
Virtex-II High Speed Demo Board. A block diagram of the design is shown in Figure 9.

The user-defined data retrieved from the PROM is displayed on an LCD display. The LCD driver
is implemented using PicoBlaze™.

Table 4: Input Data Type 01

: 00 0000 01 FF

Start Character Byte Count Hex Address Record Type Checksum

2 Characters 4 Characters 2 Characters 2 Characters

Table 5: Input Data Type 04

: 02 0000 04 hhhh….h CC

Start
Character

Byte Count Hex Address Record Type 2 Byte Offset Checksum

2 Characters 4 Characters 2 Characters
2 up to 32
Characters

2 Characters

Figure 9: Reference Design for Virtex-II High Speed Demo Board

Debouncer LCD_data
LCD_RW

dout
data_ready

LCD_RS
LCD_E

Debouncer

PROM
Reader

LCD Driver
(PicoBlaze)

LCD
Display

read

clock
reset

next_sync

reset_display

cclk
reset_prom

sync

FPGA
x694_09_033104

http://www.xilinx.com

10 www.xilinx.com XAPP694 (v1.0) May 26, 2004
1-800-255-7778

Other Implementations
R

Other
Implementations

Until now, this application note has dealt with reading user-defined data from a configuration
PROM in a serial fashion. What happens when the PROM is connected in SelectMAP™ mode?
What if different synchronization patterns need to be used, and how does the designer keep
track of which data block is currently being read?

These questions are dealt with in the following sections.

Parallel Implementation

The reference design described in this application note can be used for several
implementations. A macro that allows the FPGA to read user-defined data from the
configuration PROM in SelectMAP mode—that is, 8 bits at a time—is also available. A
connection diagram for this implementation can be seen in Figure 10. The functionality of the
parallel macro is the same as that of the serial macro, except that additional manipulation
needs to be done in the Shift Register and Comparator block.

The connections shown in Figure 10 are the same as in Figure 1, except that now an 8-bit
connection exists between the PROM and the FPGA.

Synchronization Patterns

The reference design automatically scales the Shift Register and Comparator blocks
depending on a "length" parameter. The parameter is entered in the HDL code, and the
compiler uses this parameter to scale the block. The "length" parameter is the exponent of 2
that determines the number of bits used in the synchronization pattern:

No. of bits in synchronization pattern = 2length

Therefore, if length = 5 then

No. of bits in synchronization pattern = 25 = 32 bits

Keeping this in mind, the designer can choose different lengths for the synchronization pattern.
Although the pattern may be specified as a certain length, any pattern shorter than the length
specified can be used during operation, since the bits not used will simply be tied to ground.

Multiple Data Blocks

Each block of user-defined data can be specified by using either the same synchronization
pattern or a different synchronization pattern for each block. This is shown in Figure 11.

Figure 10: PROM and FPGA Connections in SelectMAP Mode

XILINX FPGA

CCLK

INIT / USERIO

PROG

D[7:0]

USERIO

TCK

TMS

TDI

M0

M1

M2

TDO

VCC

TCK

TMS

TDI

TDO

XILINX
CONFIGURATION
PROM

TCK

TMS

TDI

CLK

OE/RESET

CE

CF

D[7:0]

TDO

x694_10_033104

Notes:
1 Mode pin connections may be different for different architectures.

(1)

http://www.xilinx.com

Conclusion

XAPP694 (v1.0) May 26, 2004 www.xilinx.com 11
1-800-255-7778

R

Both methods have advantages and disadvantages.

When using a synchronization pattern that remains constant, the user does not have to change
the pattern during operation. However, it is not always clear which data block is the current one.
A counter would need to be implemented in order to keep track of the data blocks.

By using different synchronization patterns for each data block, the blocks can be uniquely
identified and addressed. There is no need to keep track of which data block is currently being
used, since this is indicated by the pattern. The user, however, needs to change the pattern
depending on the data block that is required. This means that the synchronization patterns
need to be stored. The patterns may be hard-coded in the FPGA design or retrieved from pre-
initialized BlockRAMs. The patterns can also be stored as user-defined data in the PROM. The
first data block in the PROM contains all the synchronization words for all the other data blocks
stored in the PROM. This avoids having to hard-code the patterns in the FPGA design or
initialize BlockRAMs.

Conclusion The design described in this application shows an efficient and cost-effective approach to
retrieving user-defined data from Xilinx configuration PROMs using existing connections and
only one user I/O.

Design
Resources

The reference design described in this application note can be downloaded from
http://www.xilinx.com/bvdocs/appnotes/xapp694.zip.

Comments and
Feedback

Any comments and feedback about this application and note and the reference design are
encouraged and may be sent to stephan.neuhold@xilinx.com

Figure 11: Using Identical and Different Synchronization Patterns

User Data Block 1

User Data Block 2

Sync Pattern 8F9FAFBFh

User Data Block 0

Sync Pattern 8F9FAFBFh

Sync Pattern 8F9FAFBFh

Area of Uncertainty

Unused Space

FPGA
Configuration

XXXXh

0000h

XXXXh

0000h

x694_11_033104

Identical
Synchronization

Patterns

User Data Block 1

User Data Block 2

Sync Pattern F9F53A12h

User Data Block 0

Sync Pattern AA4499FFh

Sync Pattern 78CD34BBh

Area of Uncertainty

Unused Space

FPGA
Configuration

Different
Synchronization
Patterns

http://www.xilinx.com
http://www.xilinx.com/bvdocs/appnotes/xapp694.zip
mailto:stephan.neuhold@xilinx.com

12 www.xilinx.com XAPP694 (v1.0) May 26, 2004
1-800-255-7778

Revision History
R

Revision
History

The following table shows the revision history for this document.

Date Version Revision

05/26/04 1.0 Initial Xilinx release.

http://www.xilinx.com

	Reading User Data from Configuration PROMs
	Summary
	Introduction
	Considerations for PROM and�FPGA Connections
	Macro Implementation
	Clock Management
	Shift Register and Comparator
	Control State Machine

	Adding User Data to the PROM
	Bit Swapping
	Records, Byte Counts and Checksums
	PROM Size

	Reference Design Implementation
	Other Implementations
	Parallel Implementation
	Synchronization Patterns
	Multiple Data Blocks

	Conclusion
	Design Resources
	Comments and Feedback
	Revision History

