
GAL-ASM-Starterkit

taskit GmbH
Seelenbinderstr. 33

12555 Berlin (Germany)
Telefon +49(0)30 / 611295-0

Fax +49(0)30 / 611295-10

Die Rechte der beili egenden OPAL Jr.(tm) Software liegen bei der National Semiconductor
Corporation.
Die taskit Rechnertechnik GmbH vertreibt die OPAL Jr(tm) Software unter Zustimmung der
National Semiconductor Corporation.

2

INTRODUCTION TO OPAL Jr.(tm) SOFTWARE

THE PROGRAM DISK

OPAL software consists of three executable programs (EQN2JED,
JED2EQN, PAL2GAL), and a device library file (DEVICE.LIB).
All of these files need to be present for the programs to operate. In
addition, example "input" files are included on the program disk.
A "README" file contains last minute information not included
in this manual. By creating your own input files (using any word
processor in the text mode) the OPAL software package can be
used as part of a complete PLD design development system.

INSTALLING OPAL Software

The OPAL software is ready to run immediately on floppy disk
based IBM PC/XT/AT or compatible systems. This software is
not copy protected so it is a good idea to make a copy of the
OPAL disk and store the original in a safe location. The copy can
then become your working disk and you can make another copy of
the original if the working disk becomes damaged. For single
floppy based systems, the on-disk manual can be removed to
provide extra room for file storage. OPAL software can be copied
onto a hard disk to speed the execution of the programs and make
it easier to organize your PLD projects into different directories.
Copy all files onto your hard disk.

Steps to install:
1. Make a new directory on your hard disk, if necessary.
2. Change directory to source of OPAL software.
3. Type: copy *.* <drive>:<directory> and hit <RETURN>.

3

WELCOME TO NATIONAL'S OPAL

The ultimate goal of any PLD software package is to create a
JEDEC map (of the PLD fuse states) that can be downloaded to a
device programmer. OPAL software is designed to make JEDEC
maps easy to create. This is accomplished by combining a
common language syntax for Boolean equations with the
capabilit y of generating pin lists automatically. A single input file
containing the boolean equations for one device can be assembled
into a device with a different architecture and pin-out by simply
specifying the new device and instructing the software to generate
the pin list for the new device. This is all done on the command
line without affecting the original input file. Another important
feature is the extensive commenting capabilit y provided by
OPAL. Design comments can be freely mixed within the OPAL
input file and a block of comments can be inserted into the
JEDEC file. Refer to the examples provided for details on using
comments.

After successfully assembling an input file, OPAL provides a
detailed listing of all the pins used in the device. This information
is presented on the screen as well as stored in a document file. The
information presented describes the type of inputs and outputs, the
pin assigned to each, and includes a DIP (or optional PCC)
package drawing.

4

THE OPAL PROGRAMS

The assembler "EQN2JED" will generate a JEDEC file (with a
DOS extension ".JED") suitable for downloading to a device
programmer. The JEDEC file created contains the PLD fuse
information and conforms to JEDEC Standard No. 3A.

The disassembler "JED2EQN" will generate an assembler input
file (with an extension ".EQN") that can be subsequently modified
with a word processor and reassembled into a JEDEC "map" file.
The assembler input file created contains the boolean equations
that represent the function in the JEDEC map. JED2EQN can also
be used to provide a "template" input file for a particular device
based on an existing JEDEC map.

The translator "PAL2GAL" will generate a JEDEC file (with an
extension ".GJD") for a GAL device which is pin compatible with
the PAL device. This function is referred to as "software cross
programming" and is similar to the "hardware cross
programming" that many programmers support directly. Any test
vectors in the PAL file can be transferred to the GAL file as well.

EXAMPLE APPLICATIONS OF OPAL SOFTWARE

OPAL is designed to assemble boolean equations files into
JEDEC map files. However, many applications exist which take
advantage of the features of the software beyond its primary
function. For example, with OPAL you can.

5

DOCUMENT A DESIGN CHANGE:

You can remove a PLD from an existing board and download the
master fuse data onto a floppy disk using the programmer of your
choice (assuming the security fuse isn't used). Just be sure to
select the JEDEC file format when downloading the fuse data.
Then you can use the disassembler to create a boolean equation
file which can be safely stored away in case the master device gets
damaged or lost. The following command ill ustrates this for a
16V8.

JED2EQN oldpld.jed -d GAL16V8 -o oldpld.eqn

NOTE: Use of the -o option is optional i f the JEDEC file and
Input file have the same name.

CHANGE AN EXISTING PLD PINOUT:

Follow the previous example to create OLDPLD.EQN and then
use a word processor to change the order of the pinlist in the input
file created by JED2EQN. After editing OLDPLD.EQN use the
following command to make a new JEDEC map.

EQN2JED oldpld -o newpld.jed

NOTE: Here the -o option can be used to create a new JEDEC
map without writing over the original PLD file. The ".jed"
extension is not necessary because OPAL will use it by default.

CREATE A FUNCTIONAL EQUIVALENT OF A PAL
DESIGN:

Follow the first example; create OLDPLD.EQN and then use the
assembler to create a JEDEC map for a different part. The
following command can be used to convert a slower PAL to a
high speed ECL device with a different pinout.

6

EQN2JED oldpld -d GAL16V8A -f -o fastpld.jed

NOTE: The -f option is used to automatically generate a pinlist
without having to worry about such things as power pin
placement.

CREATE A CMOS PIN COMPATIBLE VERSION OF A TTL
DESIGN:

Again, follow the first example to obtain a JEDEC map (or pull a
map from your files) for the TTL PAL. The following command
can be used to convert the design (in this case for a 16R4) into a
CMOS GAL device.

PAL2GAL oldpld -d pal16r4 -v

NOTE: The inclusion of the -v option will i nhibit the transfer of
any test vectors present in the PAL JEDEC map. If you don't
include the -v option, any existing vectors will automatically be
transferred over.

7

SECTION A. BOOLEAN EQUATION SYNTAX

A.1 INTRODUCTION

A.2 BASIC SYNTAX

A.3 IDENTIFIERS
A.3.1 Reserved Identifiers

A.4 COMMENTS

A.5 DECLARATION SECTION

A.6 DIRECTIVES
A.6.1 @define

A.7 BOOLEAN EQUATIONS SECTION
A.7.2 EQUATIONS keyword
A.7.1 Basic equation syntax
A.7.3 Boolean equation types

A.7.3.1 Combinatorial equations
A.7.3.2 Registered equations
A.7.3.3 Functional equations

 A.7.3.4 Global equations
A.7.4 User Electronic Signature (UES)
A.7.5 Signal Polarity

A.8 EXAMPLES

8

SECTION B.
THE OPAL PROGRAM DESCRIPTIONS AND OPTIONS

B.1 EQN2JED
The Boolean equation based PLD assembler

B.2 JED2EQN
The JEDEC map based PLD disassembler

B.3 PAL2GAL
The JEDEC map based TTL to CMOS conversion utility

SECTION C.
OPAL DEVICE SUPPORT LISTING

SECTION D.
GENERIC TEST VECTOR FORMAT

SECTION E.
DIFFERENCES BETWEEN OPAL AND PLAN (ver 3.1x)

9

A.1 INTRODUCTION

This section defines the language syntax used to create a logic
description using Boolean equations.

The source file basically consists of a declaration section followed
by the Boolean equations section.

The source file is translated by EQN2JED into a JEDEC file.

A.2 BASIC SYNTAX

Each line in a source file must conform with the following syntax
rules and restrictions:

1. A line may be up to 131 characters long.

2. Lines are ended by a line feed character (hex 0A), by a vertical
tab (hex 0B), or by a form feed (hex 0C).

3. Keywords and identifiers must be separated from each other by
at least one space. Exceptions to this rule are in expressions where
identifiers are separated by operators or in lists of identifiers
separated by commas.

4. Spaces cannot be imbedded in the middle of keywords,
operators or identifiers.

5. Keywords (words defined as part of the language and have
specific uses) are not case-sensitive and can be typed in either
uppercase or lowercase.

6. Identifiers (user-supplied names and labels) are case-sensitive.
The identifier pin1 is not the same as the identifier PIN1.

10

A.3 IDENTIFIERS

Identifiers are names that identify devices, device pins or nodes
and input or output signals. The rules and restrictions for
identifiers are the same, regardless of what the identifier
describes.

The rules governing identifiers are:

1. Identifiers may contain uppercase and lowercase alphabets,
digits and underscores (_).

2. Identifiers may be up to 31 characters long.

3. Spaces cannot be used in an identifier. Use underscores to
provide separation between words.

4. Identifiers are case-sensitive. Uppercase letters and lowercase
letters are not the same.

A.3.1 Reserved Identifiers

Keywords are reserved identifiers and cannot be used to name
devices, pins, nodes, signals or special functions. When a keyword
is used, it refers only to the function of that keyword. If a keyword
is used in the wrong context, an error is flagged by EQN2JED.

Reserved identifiers are.

CHIP EQUATIONS TRST RSTF SETF CLKF HOLD UES LCHI
LCHO REGI

11

A.4 COMMENTS

Comments help to make a source file easy to understand and
explain what is not readily apparent from the source code itself.
Comments have no effect on the meaning of the code.

A comment begins with a semicolon (;) and ends with the end-of-
line character. The text of the comment follows the semicolon.
Comments may be inserted freely anywhere in the source file.

Comments cannot be imbedded within keywords. chip example
pal16r6 ; chip name is example and device type is pal16r6

A.5 DECLARATION SECTION

The syntax for the declaration section is as follows:

<documentation> CHIP <chip name> <device type> <pin list>
1. The <documentation> is any text before the CHIP keyword
which is not a comment. This will be copied to the comment
section of the JEDEC file.

2. CHIP is the only keyword required in the declaration section. It
denotes the end of the documentation and the start of the pin list
information.

3. The <chip name> is a name for the design. It is an identifier as
defined in section A.3.

4. The <device type> is the part number of the supported PAL or
GAL device manufactured by National Semiconductor.

5. The <pin list> is a list of signal names assigned to the device
pins.

12

The signal names are identifiers that follow the rules as defined in
section A.3. Negative polarity signals are preceded by a slash (/).
The signal names are listed in the order expected for the dual-in-
line (DIP) package.

If a device contains buried macrocells that feed back into the
AND array, the internal signal names must be defined after the
external signal names. An example of such a device is the
GAL6001.

13

A.6 DIRECTIVES

A.6.1 @define

The syntax for using the @define directive is as follows:

@define <label> "<sub-expression>"

1. The @define directive allows for the substitution of common
sub-expressions in the Boolean equations. The @define performs
string substitution of <sub-expression> for every <label>
encountered in the Boolean equations section or in a following
@define statement.

2. @define statements must come after the declaration section and
before the EQUATIONS keyword.

3. A <label> in a @define statement is an identifier. It cannot be a
keyword nor can it be a signal name already declared in the
declaration section.

4. A <sub-expression> must follow the equations syntax as
defined in Section A.7. The definition of <sub-expression> begins
with a double-quote (") and ends when another double-quote (") is
encountered. This means a @define statement can be on more
than one line.

5. @define statements can be nested within each other as long as
they have been defined in an earlier @define statement.

6. See Section A.8.2 for use of the @define statement.

14

A.7 BOOLEAN EQUATIONS

A.7.1 EQUATIONS keyword

EQUATIONS is the keyword that starts off the Boolean equations
section. One or more Boolean equations defining the logic design
follows the EQUATIONS keyword.

A.7.2 Basic equations syntax

A Boolean equation has the following general syntax:

<signal name> <assignment operator> <logic expression>

1. The <signal name> is an identifier that has been declared in the
<pinlist> of the declaration section (See section A.5). The logic
expression will produce a single result when evaluated, which is
assigned to the <signal name>.

2. The <assignment operator> assigns the result of <logic
expression> to the <signal name>.

There are two assignment operators; clocked and unclocked.
Clocked assignment occurs at the next clock pulse from the clock
associated with the output. Unclocked or immediate assignment
occurs without any delay as soon as the equation is evaluated.

The assignment operators are listed below:

Operator Description
= Unclocked assignment (combinatorial outputs)
:= Clocked assignment (registered outputs)

3. The <logic expression> is a combination of both identifiers and
logical operators that produce one single result when evaluated.

15

The <logic expression> must be described using the sum-of-
products form of logic notation.

A rich set of operators has been provided to handle a wide variety
of equation styles.

The operators are summarized in the table below:

 Operator Example Operation Precedence
/ /signal invert 4

 ! !signal invert 4
* A * B and 3
& A & B and 3
| A | B or 2
+ A + B or 2
^ A ^ B xor 1
$ A $ B xor 1

:+: A:+:B xor 1

Expressions are evaluated according to the particular operators
involved. Some operators take precedence over others, and their
operation will be performed first. The order of evaluation is from
those operators with the highest precedence to the lowest.

When operators of the same precedence exist in the same
expression, they are performed in the order found from left to
right in that expression.

16

A.7.3 Boolean equation type

Boolean equations can be classified into four types:

1. Combinatorial equations.
2. Registered equations.
3. Functional equations.
4. Global equations.

A.7.3.1 Combinatorial equations

Combinatorial equations have the following syntax:

<signal name> = <logic expression>

Combinatorial equations are identified by the unclocked
assignment operator.

A.7.3.2 Registered equations

Registered equations have the following syntax:

<signal name> := <logic expression>

The clock to the register in most cases is a special clock pin (for
example, on the PAL16R8 device, pin 1 is the clock pin). On the
PAL20RA10 device, the clock is generated by a special product
term. This special product term is described by a CLKF functional
equation. (See section A.7.3.3)

17

A.7.3.3 Functional equations

Functional equations have the following syntax:

<signal name>.<function> = <logic expression>

On some devices, there are product terms that can be used to
control a certain function. The left side of the equation has a
signal name followed by the function. The signal name is
separated from the function by a dot (.). Below is a list of all the
available functions:

Function Description
--
TRST Programmable TRISTATE function
SETF Programmable SET function
RSTF Programmable RESET function
CLKF Programmable CLOCK function
HOLD Programmable ENABLE function

TRST is the most commonly used function. It is required in
devices that have tristate outputs controlled by a product term.

Example: O1.TRST = P1

A SETF functional equation sets the registered outputs to logic 1
when the logic expression is high.

A RSTF functional equation resets the registered outputs to logic
0 when the logic expression is high.

A CLKF functional equation is used in devices with a
programmable clock function for registered outputs.

18

A HOLD functional equation is used in devices with DE-type
registers. Currently, the GAL6001 is the only device with DE-type
registers.

A.7.3.4 Global equations

Global equations have the following syntax:

.<function> = <logic expression>

Global equations are very similar to functional equations except
that there is no signal name associated with the function. The
function names used are the same as those defined in section
A.7.3.3.

There is a second type of global equation which is not an equation
in the true sense. It is used for defining the default input type of a
list of signals.

The syntax is as follows:

.<function> = <signal name>,<signal name>,.

The LCHI and REGI functions are these type of equations. Both
the LCHI and REGI function defines latched inputs and registered
inputs, respectively, for configurable inputs. If no LCHI and
REGI equations are found, then the default is asynchronous
inputs. Currently, only the GAL6001 has configurable inputs.

19

A.7.4 User Electronic Signature

A User Electronic Signature (UES) can be defined for devices
whose names begin with "GAL". Examples of such devices are
the GAL16V8 and GAL20V8. The UES is useful for providing
part numbers or other design information directly into the GAL
device.

The syntax for defining a UES is as follows:

@UES <signature data>

It follows the pin list and precedes the EQUATIONS keyword. If
<signature data> contains only the characters '0'-'9', 'a'-'f' or 'A'-'F';
it is interpreted as a hexadecimal string. Otherwise, the <signature
data> is interpreted as an ASCII string. A hexadecimal string uses
4 UES bits for each character while an ASCII string uses 8 UES
bits for each character. Therefore we can have twice the number
of characters in a UES for a hexadecimal string as compared to an
ASCII string.

Example:

@UES 01234abCDEF ; Hex characters only.
 ; Interpreted as a hexadecimal string.

@UES CMLEE ; Contains characters greater than 'F' or 'f'.
 ; Interpreted as an ASCII string.

NOTE: The UES data is interpreted as a word with the most
significant character on the left and the least significant on the
right. The bit pattern translated from the data is inserted into the
JEDEC map with the lowest fuse number corresponding to the
least significant data bit.

20

A.7.5 Signal Polarity

Signals can be defined to have negative (active-low) or positive
(active-high) polarity.

Two factors determine the polarity of a signal:

1. The signal in the pin list (defined in declaration section).

2. The occurrence of the same signal in a Boolean equation.

The following table defines the relative polarity of a signal S:

Boolean Equations
S /S

|----------------------------|
S | Positive Negative |
Pin List | |
/S | Negative Positive |

|----------------------------|

To get a positive signal define "S" in the pin list and "S" in the
boolean equations OR "/S" in the pin list and "/S" in the boolean
equations.

To get a negative signal define "/S" in the pin list and "S" in the
boolean equations OR "S" in the pin list and "/S" in the boolean
equations.

NOTE: The output polarity of some devices are fixed and will not
accept certain combinations of signal polarities. For example, the
PAL16L8 has fixed negative polarity outputs and will not accept
positive polarity signals.

21

A.8 EXAMPLES

The examples included on the program disk demonstrate all
possible uses of the boolean equations syntax defined in the
preceding sections, except for example 10. Ample comments
embedded in the examples will explain any particular syntax used.

A.8.1 Example 1 : GAL16V8

A.8.2 Example 2 : GAL16V8

A.8.3 Example 3 : PAL20X8

A.8.4 Example 4 : PAL20RA10

A.8.5 Example 5 : GAL6001

A.8.6 Example 6 : GAL6001

A.8.7 Example 7 : GAL6001

A.8.8 Example 8 : GAL6001

A.8.9 Example 9 : GAL6001

A.8.10 Example 10 : PAL16R4 JEDEC fusemap.

22

SECTION B.1: EQN2JED
Boolean equations to JEDEC file assembler

SYNOPSIS

EQN2JED [Flags] [-o outfile] [-d device] [-v vecfile] eqnfile

where eqnfile is the equations file. Default extension is ".inp".

example: EQN2JED -f -s -oNewFile -dG16V8 OldFile

DESCRIPTION

EQN2JED is a Boolean equations to JEDEC file assembler for
programmable logic devices (PLDs).

The JEDEC file contains all the necessary design details which
can be downloaded to a device programmer for programming the
target PLD. The JEDEC file is fully compatible with JEDEC
standard 3A which is supported by most of the industry-standard
device programmers.

See Section A for a description of the Boolean equations syntax.

See Section C for a list of supported devices.

Flags: [-f] [-i] [-j] [-k] [-p] [-r] [-s]

-f Automatic pin list assignment. If a pin list is present in the
declaration section of the source file, it is ignored. The JEDEC
file created reflects the automatically developed pinlist. The
original input file is not overwritten but the pin list is
documented in the ".doc" file created by EQN2JED. In some
cases, the -f option fails to generate a solution. This does not

23

mean that a solution is not possible. In such cases, the
designer will have to verify the design will fit into the PLD
and then manually create a pinlist and compile the design
without using this option.

-i Interactive mode. Prompts for file names.
-j Select JEDEC PCC package for chip diagram in document

file. For ECL part, 24-pin Quad Cerpak is selected.
-k Select non-JEDEC PCC package for chip diagram in

document file. For ECL part, 24-pin Quad Cerpak is selected.
-p Select PLAN entry format. OPAL will accept files in the

PLAN format as defined by the output of the JED2BEQ
module included in PLAN (version 3.14 and 3.15). In general,
the PLAN syntax allows for ambiguous polarity definition and
is not case sensitive so some files created for PLAN will not
be accepted by OPAL.

-r Do not remove redundant product terms for PALs (not PLAs).
-s Shuts off diagnostic messages.

24

SECTION B.1: (cont.) EQN2JED
Boolean equations to JEDEC file assembler

Options:

-o outfile Specify the output JEDEC file name. If no "-o" option
is specified, the input file name is used with the extension
".jed".

-d device Override the device name in source file.
-v vecfile Specify the vector file name. The vector file must

conform to the JEDEC standard for defining vectors. The
vector file is appended to the JEDEC file. Each individual
vector is tested to ensure that vector characters are valid for
the pins they are assigned to. This feature ensures that vectors
are defined correctly, however, it does not perform any
simulation to ensure the vector has the correct output response
for the given inputs.

NOTE: Enhanced support for the GAL16V8 and GAL20V8
devices is incorporated. In designs using all outputs as
combinatorial, feedback pins which cannot be assigned using PAL
emulation will cause the assembler to evaluate different GAL
modes to fit the design into the device. This function is automatic
and can be observed in operation by the presence of the
appropriate messages during assembly. Some programmers
restrict programming to direct PAL emulation. Such programmers
can be accommodated by recompiling the design and not using
outputs that feedback which (in strict PAL emulation) are not
capable of providing feedback.

25

SECTION B.2: JED2EQN
JEDEC-file to Boolean equations disassembler

SYNOPSIS

JED2EQN [Flags] [-o outfile] [-d device] jedfile where jedfile is
the JEDEC file to be disassembled. Default extension is ".jed".

example: JED2EQN -dPAL16L8 GATES

DESCRIPTION

JED2EQN will disassemble a JEDEC file into the corresponding
boolean equations. The equations conform to the syntax as
defined in the boolean equations syntax section.

The labels used in the boolean equations created by JED2EQN
contain the pin number preceded by the type of signal. Observing
the labels makes it easy to determine if the pin is used as a
dedicated input, combinatorial or registered output, and whether
or not the output is used as feedback into the device.

26

Flags: [-i] [-&] [-s]

-i Interactive mode. Prompts for file names.

-& Select alternate operator set. i.e., ! = NOT, & = AND, # = OR
and $ = XOR

-s Shuts off diagnostic messages.

Options:

-o eqnfile Specify the output Boolean equations file. If the -o
option is not specified, the jedfile name is used with the
extension of ".inp".

-d device Specify the device name. This will override the device
name that is in the JEDEC file. There is no standard defined
for placing the device name in the JEDEC file. Therefore, it is
recommended that the -d option be used to avoid potential
conflicts between the device name and any comments which
may exist in the JEDEC file. However, if the JEDEC file was
created by EQN2JED, then this option does not need to
specified.

27

SECTION B.3: PAL2GAL
PAL to GAL JEDEC file conversion utility

SYNOPSIS

PAL2GAL [Flags] [-u ues] [-o galfile] [-d device] palfile

where palfile is the PAL JEDEC file to be converted. Default
extension is ".jed".

example: PAL2GAL -d PAL16L8 gates

DESCRIPTION

PAL2GAL converts a PAL JEDEC file into a GAL JEDEC file.
PAL2GAL first checks to ensure that the PAL is replaceable by a
GAL before it proceeds to do the conversion.

PAL functions that are replaceable by a GAL16V8 are:

PAL10P8 PAL10H8 PAL10L8 PAL12P6
PAL14P4 PAL16P2 PAL16P8 PAL16RP8
PAL16RP6 PAL16RP4 PAL12H6 PAL12L6
PAL14H4 PAL14L4 PAL16H2 PAL16L2
PAL16H8 PAL16L8 PAL16R8 PAL16R6
PAL16R4

PAL functions that are replaceable by a GAL20V8 are:

PAL14P8 PAL16P6 PAL18P4 PAL20P2
PAL20P8 PAL20RP8 PAL20RP6 PAL20RP4
PAL14H8 PAL14L8 PAL16H6 PAL16L6
PAL18H4 PAL18L4 PAL20H2 PAL20L2
PAL20H8 PAL20L8 PAL20R8 PAL20R6
PAL20R4

28

Flags: [-i] [-s] [-v]

-i Interactive mode. Prompts for file names.
-s Shuts off diagnostic messages.
-v Do not include vectors in GAL Jedec file. If this option is not

used, then any vectors in the PAL JEDEC file are copied into
the GAL JEDEC file. The vectors must conform to the
JEDEC standard for defining vectors. The vector file is
appended to the GAL JEDEC file. Note that no check is done
to ensure the correctness of the vectors.

Options:

-u ues Specify the User Electronic Signature for the GAL.
-o galfile Specify the output GAL JEDEC file. If the -o option is

not specified, the PAL JEDEC filename is used with the
extension of ".gjd".

-d device Specify the PAL device name. Override the device
name in PAL JEDEC file (if any).

29

SECTION C: SUPPORTED DEVICES

ECL PALS:
PAL1016C4 PAL1016P4 PAL1016P8 PAL1016PE8
PAL1016RD8 PAL1016RM4

TTL PALS:

PAL10H8 PAL10L8 PAL12H6 PAL12L10
PAL12L6 PAL14H4 PAL14L4 PAL14L8
PAL16C1 PAL16H2 PAL16L2 PAL16L6
PAL16L8 PAL16P8 PAL16R4 PAL16R6
PAL16R8 PAL16RA8 PAL16RP4 PAL16RP6
PAL16RP8 PAL18L4 PAL20C1 PAL20L10
PAL20L2 PAL20L8 PAL20P8 PAL20R4
PAL20R6 PAL20R8 PAL20RA10 PAL20RP4
PAL20RP6 PAL20RP8 PAL20X10 PAL20X4
PAL20X8

E2CMOS GALS:

GAL16V8 GAL20V8 GAL6001 GAL20RA10
GAL22V10

30

SECTION D: GENERIC TEST VECTOR FORMAT

OPAL does not create test vectors. It will allow vectors contained
in a separate file to be appended to the JEDEC map. These vectors
must comply with JEDEC Standard 3A. A vector file should
contain the 'QVn*' field (where n is the number of vectors). It
should also contain the 'Xn*' field (where n is '0' or '1') to dictate
which input value is to be applied to "don't cares" in test vectors.
Of course, it should contain vectors as well .

A vector consists of 'Vn' (where n is the vector number), followed
by a space, followed by the vector information, and ended with a
'*' . Each pin in a device should be specified in the vector
information. Hence a 24 pin device will have more vector
information then a 20 pin device. The first character is applied to
pin 1 of the device. The second character is applied to pin 2. The
third to pin 3 and so on. Pins associated with power or ground
should be specified as an 'N'. Inputs should be specified with a '0',
'1', or 'X'. Outputs should be specified with a 'L', 'H', or 'X'.

The following example vector file is for a 20 pin device. If the
assembler were called with the -v option specified then this
information would be included in the JEDEC map. The first
vector applies don't cares to pins 1-9 and 11-13 and 18-19.
Literally this means that a '0' will be applied to those pins that are
inputs and those pins that are outputs are not tested. After the
inputs have been applied and are stable, the outputs on pin 14-17
are tested for a logical "LOW". The second vector applies a '1' to
pin 4 and then applies a clock signal to pin 1. The clock strobe is
applied after all i nputs are stable and setup times have been met.
Following the clock, the outputs on pin 14-16 are checked for a
"LOW" and pin 17 is checked for a "H".

The third vector applies a '1' to pin 4 and then applies a clock
signal to pin 1. The clock strobe is applied after all i nputs are

31

stable and setup times have been met. Following the clock, the
outputs on pin 14,15,17 are checked for a "LOW" and pin 16 is
checked for a "H".

QV3* X0*
V001 XXXXXXXXXNXXX LLLL XXN*
V002 CXX1XXXXXNXXX LLL HXXN*
V003 CXX1XXXXXNXXX LLHLXXN*

It is important to understand that some programmers apply vectors
sequentially to a device. Feedback terms can affect the validity of
vectors causing them to fail depending on the position of the
signals in the vector. Pin 1 is applied before pin 2, which is
applied before pin 3, etc. Hence, if the order in which two signals
are changing is important, then separate vectors should be written.

V001 XXX 01XXXXNXXX LLLL XXN*
V002 XXX 10XXXXNXXX LLL HXXN*

Vector 2 could be replaced by vector 2 and vector 3 below to
ensure pin 5 transitions to a '0' before pin 4 transitions to a '1'.

V002 XXXX 1XXXXNXXXXXXXXXN *
V003 XXX 10XXXXNXXX LLL HXXN*

 Another important consideration is the outputs being tested for
the
first vector. Different devices may "power up" to different
conditions. If the first vector does not test the power up output
condition, then the vector will fail . Ensuing vectors are likely to
fail as well because the feedback from registered outputs in a state
machine will be different then expected due to the power up
conditions.

32

The characters used in test vectors correspond to the following
table.

X- Output not tested, input undefined (don't care)
0- Apply logic 0 to input pin
1- Apply logic 1 to input pin
L- Test for logic 0 at output pin
H- Test for logic 1 at output pin
C- Clock low-high-low
P- Preload registers
N- Power pins and outputs not tested
Z- Test for Hi-Z (High Impedance)

