Temperaturmessung mit Sensortyp KTY81-100 über 10Bit ADC des AVRs

- 1) Spannungsteiler
- 2) Bestimmung R1
- 3) PTC Temperatur und Widersatnd
- 4) ADC des AVRs
- 5) Erstellen der Vergleichstabelle
- 6) Programmablauf
- 7) Genauigkeit

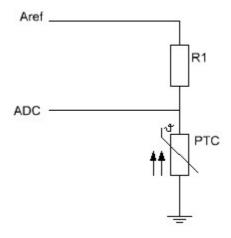


Abbildung 1: Schaltplan

1) Spannung am ADC berechnet sich folgendermaßen:

$$U_{ADC} = U_{Aref} * \frac{R_{PTC}}{R_{PTC} + R_1}$$

2) Insgesamt sollte durch den PTC nicht mehr als 1 mA fließen. U_{Aref} ,ist beim AVR 2,56 V.

$$R = \frac{U}{I} \Rightarrow R_{min} = R_1 + R_{PTC} = 2560 \, Ohm$$

Bei -30 Grad Celsius besitzt der KTY81-100 einen minimalen Widerstand von 609 Ohm.

$$R_1 = 2560 \text{Ohm} - 609 Ohm = 1951 \text{Ohm}$$
 $R_1 = 2 kOhm$

3) Der Widerstand im Bezug zur Temperatur wird durch folgenden Term beschrieben:

$$R_{ktv} = R_{25} * (1 + (dT * a) + (dT^2 * b))$$

R₂₅ ist der Widerstand bei 25°C (z.B. 1 kOhm)

dT ,ist Differenz zwischen der momentanen Temperatur und 25°C (bei 40°C wäre dT = 15K)

a ,ist die Konstante 0,00788 K⁻¹

b ,ist die Konstante 0,00001937 K⁻²

4) Der 10bit ADC der AVRs wertet in 1023 Stufen die Spannung zwischen GND und 2,56 V aus. Die Auflösung ist wie folgt zu berechnen:

$$\frac{A_{ref}}{2^{10}-1}$$
=0,002502444 V

5) U_{ADC} gewinnt man aus den Formeln die in Punkt 1,2 und 3 beschrieben werden. Die Auflösung des ADC aus Punkt 4 wird ebenfalls benötigt. Daraus kann der Wert des ADC im Bezug auf die Temperatur berechnet werden:

$$\frac{U_{ADC}}{0,002502444\,V} = Wert_{ADC}$$

Temperatur	Wert _{ADC}		$Wert_{ADC} - 242$
-3	0,5	243	1
	29,5	244	2
-2	28,5	246	2 4
	27,5	248	6
	26,5	250	8 9
	25,5	251	9
	24,5	253	11
	23,5	255	13
	22,5	257	15
	21,5	258	16
-2	0,5	260	18
	9,5	262	20
	8,5	263	21
	7,5	265	23
-1	6,5	267	25
	5,5	269	27
-1	4,5	271	29
-1	3,5	272	30
	2,5	274	32
-1	1,5	276	34
-1	0,5	278	36
-	.9,5	279	37
-	-8,5	281	39
-	.7,5	283	41
-	-6,5 -5,5	285	43
-	5,5	286	44
-	4,5	288	46
-	3,5	290	48
<u>-</u>	2,5	292	50

1.5	294	50
-1,5		52
-0,5 0,5	295	53
0,5	297	55
1,5	299	57
2,5	301	59
3,5	302	60
3,5 4,5	304	62
5,5	306	64
6.5	308	66
6,5 7,5	310	68
8,5	311	69
0.5	313	71
9,5	215	72
10,5	315	73
11,5	317	75
12,5	319	77
13,5	320	78
14,5	322	80
15,5	324	82
16,5	326	84
17,5	328	86
18,5	329	87
19,5	331	89
20.5	333	91
20,5	333	91
21,5	335	93
22,5	337	95
23,5	338	96
24,5	340	98
25,5	342	100
26,5	344	102
27,5	345	103
28,5	347	105
29,5	349	107
30,5	351	109
31,5	353	111
22.5	354	112
32,5		
33,5	356	114
34,5	358	116
35,5	360	118
36,5	362	120
37,5	363	121
38,5	365	123
39,5	367	125
40,5	369	127
41,5	370	128
42,5	370	130
12,5	372	132
43,5		
44,5	376	134
45,5	378	136
46,5	379	137
47,5	381	139
48,5	383	141
49,5	385	143

50.5	206	1.4.4
50,5	386	144
51,5	388	146
52,5	390	148
53,5	392	150
54,5	393	151
55,5	395	153
56,5	397	155
57,5	399	157
58,5	400	158
59,5	402	160
60.5	404	162
60,5		
61,5	406	164
62,5	407	165
63,5	409	167
64,5	411	169
65,5	412	170
66,5	414	172
67,5	416	174
68,5	418	176
69,5	419	177
70,5	421	179
	423	181
71,5		
72,5	424	182
73,5	426	184
74,5	428	186
75,5	429	187
76,5	431	189
77,5	433	191
78,5	435	193
79,5	436	194
80,5	438	196
81,5	440	198
82,5	441	199
	443	201
83,5		
84,5	445	203
85,5	446	204
86,5	448	206
87,5	450	208
88,5	451	209
89,5	453	211
90,5	455	213
91,5	456	214
92,5	458	216
93,5	459	217
94,5	461	219
	463	219
95,5		
96,5	464	222
97,5	466	224
98,5	468	226
99,5	469	227
100,5	471	229
101,5	472	230

102,5	474	232
103,5	476	234
104,5	477	235
105,5	479	237
106,5	480	238
107,5	482	240
108,5	484	242
109,5	485	243
110,5	487	245
111,5	488	246
112,5	490	248
113,5	491	249
114,5	493	251
115,5	495	253
116,5	496	254

6) Wert(n) entspricht Array aus Tabelle (3.Spalte), beginnend mit Index = 1.

```
n = 1
Do

If (Wert(n) + 242) >= Wert\_ADC then

Temperatur = n - 31

ExitDo

End If

n = n + 1
```

7)Am Spannungswandler ändert sich die Spannung um ca. 0,0043 Volt / Grad.

=> Auflösung reicht aus bis auf ca. 0,5 Grad. Die Toleranz ist im Rahmen, da der KTY81-100 selbst eine Toleranz von +/- 2 Grad aufweist. Die Messung wird also nicht genauer als +/- 2Grad. Toleranzen siehe auch Datenblatt!

Zusätzlich kommt noch die Toleranz von R_1 hinzu etwa 0,3 Grad, unbedingt Präzisionswiderstand verwenden (+/- 0,1 %) .