
ALSE's
VHDL Design Rules & Coding Style

© 2005 ALSE - all rights reserved

Introduction

These rules and coding style are the result of twelve years of HDL design and teaching
experience, tens of complex ASIC & FPGA projects, and hundreds of thousands of lines of code.

I wanted to keep this list small and simple, yet covering as much as possible. I think that 95% of
the errors that can be found in existing code could be avoided by just following these rules.
However, it is probably useful to remind at this stage that :

• Following the rules is not sufficient per se : a good understanding of VHDL and Digital design
is still required to create high quality and reliable hardware !

• The other way around is also true : some of these rules can be bent and a correct working
design achieved (though I wouldn't recommend this without a strong VHDL expertise and
design experience).

• The Naming Conventions proposed here are not absolute rules. You may decide to adopt other
naming conventions, but it is not acceptable to not have any naming convention enforced !

In summary, this document is only proposing a number of recommendations that, if followed, will
considerably reduce the design risks.

If you do not agree with some rules, or want to suggest adding others, please fell free to contact
me : Bert Cuzeau. Technical Manager ALSE - info@alse-fr.com.

Conventions
RTL : Register Transfer Level (almost equivalent to « synthesizable »).
BEH : Behavioral code almost equivalent to « synthesizable »).
SIM : Test benches, test code and ressources for simulation and verification in general.

Design Data Organization

O_1) Source Files Naming Convention :
Extension = .vhd
Name : same as section (entity, configuration, package) with prefix or suffixes e.g. :
« xxx_TB » for test bench, « xxx_CF » for configuration, « xxx_PK » for package...

O_2) Only one design unit entity per file (with the exception of configurations which may
be grouped in one file).

O_3) In general, avoid splitting Entity and Architecture in different files.

O_4) If one entity has several architectures, there must exist only a unique entity section.
Multiple architectures are possible in the same file, be sure to put the one used for
synthesis in the last position (bottom of file), so the use of a configuration will not be
compulsory for synthesis.

O_5) VHDL Configurations : are very useful and recommended for simulation (case of multiple
architectures), but we suggest to avoid them for synthesis if possible. See above.

O_6) RTL : A module (entity) should not contain several different and independent
functionalities.

O_7) Use Scripts (command line or Tcl preferably) for synthesis and simulation tasks.

© 2005 ALSE – http://www.alse-fr.com -- all rights reserved -- 1

http://www.ALSE-FR.com

Cosmetic Rules

P_1) Every design file must be properly documented in a standardized header including at
least : actual file name, Title & purpose, Author, Creation Date, Version, simple
Description, Specific issues, Speed and Area estimates if applicable, tools names and
versions used, HDL standard followed, Revisions & ECOs.

P_2) The files must not include any « hard tab » (HT) but only soft spaces, and must be
properly aligned and indented. In case of mess, use Emacs VHDL mode's beautifier !

P_3) Total line length should be less than 132 characters.

P_4) Only one single executable statement per line.
This rule is important for simulation and debug.

P_5) The VHDL code must include significant and value-adding comments, in English.
Every process or continuous assignment should be preceded by a comment
summarizing its purpose.

P_6) It should be easy to match the requirements and the HDL code, both ways.

P_7) The comments and header information must be kept accurate and up-to-date
throughout code changes and design iterations.

P_8) There should be no piece of code commented out.
Inactive or wrong code should be deleted. If needed, an older version of the architecture
can be kept as a reference, for comparison or non-regression purpose.

Naming Rules

N_1) Adopt (System)Verilog-friendly Identifiers, OS-friendly names for design units,
always restrict yourself to using plain 7-bits Ascii (avoid accents) and adopt meaningful
names (in English).

N_2) Avoid too short names (like « i », « n »...) except for very short scope since they tend
to be difficult to locate with a text editor.

N_3) Use Short identifiers when the scope is local, and Longer more explicit (English)
identifiers for greater scope or global items.

N_4) Use the « _t » suffix for types and sub_types, like :
subtype Byte_t is std_logic_vector (7 downto 0);

N_5) Use Upper and Lower cases for improved readability e.g. LocalReadEnable.

N_6) Avoid using 1 (one), l (lower case L), I (uppercase i) O (uppercase Oh) and 0
(zero) in situations which may be visually ambiguous.

N_7) Use meaningful and conventional names for architecture kinds like : "RTL",
"Behavioral", "Structural","Test", in the appropriate context.

N_8) Adopt a unique notation for active low signals (like nCS or CS_n for example, but
not both).

N_9) Define internal signals with a derived name when you need to read back output
Signals (for example OutBus_i for OutBus).

N_10) Use instance names derived from the entity names. For example :
Fir16x8_i Fir16x8 port map (etc...

N_11) Do not use too long names for identifiers, especially for entities.
Try a maximum of 8 characters, and at least no more than 16, identical with the file
name.

N_12) Name Clocks : CLKxxx, Resets : RSTxxx...

N_13) Do not use extended identifiers.

© 2005 ALSE – http://www.alse-fr.com -- all rights reserved -- 2

Coding Rules

C_1) Adopt VHDL 93 / 2001 standard (VHDL '87 was messy and is definitely obsolete).

C_2) RTL : Use exclusively IEEE libraries : std_logic_1164 & numeric_std.
Do NOT use Synopsys' : std_logic_arith, std_logic_(un)signed, numeric_bit,
and other horrendous and proprietary libraries...
Math_real should be avoided if possible in RTL code (but becomes more and more
acceptable over the years).

C_3) BEH & SIM : use also textio (ieee) and std_logic_textio (synopsys).
Math_real is also possible and useful, recommended in test benches.

C_4) Using specific non-standard packages and libraries should be limited to a strict
minimum and with great care since this weakens the project's integrity, safety,
portability and reusability.

C_5) RTL + BEH : define only one single port per line + a comment for every port.

C_6) RTL : Use exclusively std_logic (and std_logic_vector) types in ports.
Avoid all other types like : (un)signed, integers, booleans, reals, multidimensional
arrays, records, enumerations... This rule can not be bent on the top level !
(all types are indeed okay for BEH, SIM)

C_7) Unconstrained arrays can be used in ports (very elegant style), but this can cause
trouble for unitary synthesis (always), and synthesis (not all synthesizers, at the time of
writing, do support unconstrained array in ports).

C_8) Default values can be used for input ports.

C_9) RTL : records are possible and sometimes recommended for inter-entity connectivity,
but should be avoided in top level ports.

C_10) Vectors directions :

1. Use descending (downto) if the vector represents a number (or when in doubt...).

2. Use ascending (to) for the first dimension of a memory array, for example :
array (0 to 15) of std_logic_vector (7 downto 0)

3. Ascending is also okay for a numbered collection of items, like LED array etc...
LEDS : std_logic_vector (1 to 8);

C_11) RTL : Avoid hard values and numeric constants, use attributes on objects or explicitly
declared constants instead.
Y <= (X(7) xor Sign) & X(6 downto 0);
Y <= (X(X'high) xor Sign) & X(X'high-1 downto 0);
X <= X + 5;
constant X_incr : positive := 5; -- X varies by steps of 5 units
X <= X + X_incr;

C_12) RTL : Sequential Logic with asynchronous reset = :

-- <<< Explain here what this process does >>>
process (Clk, Rst) -- ONLY Clk & async Rst in the sensitivity list !
begin
 if Rst='1' then
 -- <<< all regs initialized here ! >>>
 elsif rising_edge (Clk) then
 if Enable then -- Clock enable
 -- <<< Your code here >>>
 end if; -- do NOT insert code here !
 end if; -- nor here !
end process;

C_13) RTL : In the process above, every signal assigned inside "rising_edge" must be
initialized in "if Rst".

C_14) RTL : Inside "if Rst", only constant values can be assigned (no asynchronous load).
Furthermore, registers powering up at '0' are usually preferable.

C_15) RTL : use "rising_edge" exclusively (it's time to give up clock'event and clk='1').

© 2005 ALSE – http://www.alse-fr.com -- all rights reserved -- 3

C_16) RTL : "wait" is forbidden.

C_17) RTL : Avoid using attributes on types, prefer the attributes on objects (signals or
variables).

C_18) RTL : Do not use "BUFFER" mode in ports.
Use « out » mode and internal signals with proper naming convention (see N9) and
suitable type. If different type, convert in the continuous assignement.

C_19) RTL : Do not use "INOUT" mode except at the very top level.
Define the tri-state drivers only at the top-level of the hierarchy, thus avoiding to rely on
"tri-states bubble-up". Remember that internal tri-states are strictly forbidden (in most
FPGA architectures) or non portable if allowed in the technology.

C_20) RTL : the tri-state and bi-directional Input/Outputs must be coded in the top level as :
ExtBus <= BusOut when Oen='1' else (others=>'Z');
BusIn <= ExtBus;

C_21) Input ports can be left unconnected (open) at instanciation provided they are
assigned default values at declaration.

C_22) It is possible, maybe recommended to use direct instanciation which gets rid of the
component declaration, but the instance can then no longer be configured.

C_23) Instanciation must use named Port Maps. Ordered port maps should not be allowed.
Generic maps can be ordered if the number of generics does not exceed two (2).

C_24) Do not leave ports unconnected by omission : use "open".

C_25) RTL : Avoid recursive code !
This can work with some tools, and it will likely improve over the years, but it's taking
chances with tools and it may not be very easy to understand.

C_26) RTL : Global signals and shared variables are not allowed.
If needed for simulation purpose, exclude them by synthesis pragmas (but see below)

C_27) RTL : beware of proprietary pragmas . If absolutely required, be sure to document
their use and put a note in the header.

C_28) RTL : inside an entity's synthesizable architecture, the authorized types are :
std_logic, std_logic_vector, signed, unsigned..
The use of integer range and boolean requires care and caution since these scalar
types are implicitly initialized at creation and do not support 'X' et 'U'. Their correct
(hardware) initialization must be verified by some other means.
Note that Enumerated types have the same behavior and must be treated with even
greater care (encoding issues).

C_29) RTL : forbidden types = integer, bit, std_ulogic, real, time, ...

C_30) RTL : do not declare user-defined types except for enumerations !
If necessary, declare subtypes which retain compatibility with the original type.

C_31) RTL : avoid using VHDL 93 rotate and shift operators. Prefer slices & concatenations.

C_32) A graphical (schematics) top-level, automatically translated in structural VHDL can
be a good idea. But always keep the VHDL the master document.

C_33) RTL : Use as few variables as possible in synthesizable code, and never when you
may use signals instead. Use variables for their specific behavior (factoring, intermediate
results, re-using the FlipFlops inputs etc..).

C_34) BEH & SIM : Use as many variables as possible in Test Benches and Behavioral
Models !

C_35) RTL : Never create latches, combinational feedback or asynchronous sequential
logic, whether intended or unintended !

© 2005 ALSE – http://www.alse-fr.com -- all rights reserved -- 4

C_36) RTL : It is not allowed to initialize signals at their declaration.
It is not allowed to initialize variables at their declaration in processes.
It is acceptable to initialize variables at their declaration inside functions.

C_37) RTL : Definitely avoid using procedures in RTL code.
Using functions in RTL is possible. Prefer functions declared in the architecture (local)
rather than in packages (too far) or in the process (too local).

C_38) BEH & SIM : Definitely use procedures as much as possible.

C_39) RTL : Preferably code combinational logic inside sequential processes.

C_40) RTL : Avoid combinational processes if possible (see above).
In case : Sensitivity Lists must be complete and accurate (no missing, no extra).

C_41) BEH & SIM : Do not use processes with sensitivity list.

C_42) BEH & SIM : Inside the processes, make sure there is a wait or equivalent in every
branch !

C_43) RTL : Ressource sharing. Document (with appropriate comments) the intended
operators that synthesis is expected to share. In case of doubt, remove the operator(s)
and factor it (them) out « by hand » (like in continuous assignments).

C_44) RTL : Use as few proprietary (vendor-specific) macro-functions as possible and
properly isolate / document them. When possible, inference may be preferable, but this
depends on many design- vendors- and tools-specific factors.

C_45) RTL : One single clock domain per entity (except on top level and clock domain-
resynchronization- crossing entities indeed !).

C_46) RTL : All asynchronous input signals should be re-synchronized, preferably at the
top-level. Do not insert logic between the I/O and the input Flip-Flop !
Synchronous I/Os must be handled specifically (constraints etc...).

C_47) RTL : All the Entity's outputs should be registered.
Combinational outputs can also create combinational feedbacks through the hierarchy.

C_48) RTL : At the top level, combinational outputs should not be allowed.
In general, all the device's outputs should be direct Flip-Flop outputs.
Avoid relying on « not gate push back ».

C_49) RTL, BEH, SIM : Avoid active-low signals inside the design.
The internal logic should be active-high.

C_50) RTL : Finite State Machines Coding Style.
Please contact ALSE (info@alse-fr.com) for our recommendations and Application Note.

C_51) RTL : Isolate unavoidable technology-specific code (internal tri-states, memory
inference / instanciation, primitives instanciations like PLLs, etc...

C_52) RTL : Complex entities or technology-specific instances must have a behavioral
model, for simulation (or faster simulation).

C_53) RTL, SIM, BEH :
Place documented assertions (VHDL, OVL, or PSL) where appropriate.
Refer to ABV methodology.

C_54) SIM : At the end of the simulation, the simulator should stop due to event starvation,
to avoid useless simulation runs (beyond stimulus range).
The clock must therefore be stopped (also).

© 2005 ALSE – http://www.alse-fr.com -- all rights reserved -- 5

Design Flow

F_1) Use Scripts (command line or Tcl preferably) for synthesis and simulation tasks.
Use GUIs when investigating, or other early phases.
A finalized design should never rely on any GUI.

F_2) Test Benches must be self-checking and regressionnable.
They should not use not-portable run-time « simulator » commands (like force,
unforce, etc...).

F_3) Test benches, auxiliary files (vectors, expected results, memory contents, behavioral
models, etc...) should be versioned, properly documented and archived.

F_4) Every step involved in producing the final object (usually the bitstream) must be
automated through documented, versioned and archived scripts.
The steps must be documented since the scripts are tool-specific and version-specific.

F_5) Every entity must be white-box tested (unitary) with (at least) one Test bench.

F_6) Every entity must be unitary synthesized (simple entities may violate this rule).

F_7) The design must be simulatable at the post-layout timing level.

F_8) The exact Type and Version (including Services Pack info) of all the Tools used must
be properly documented. On some key projects, it may be desirable to maintain the
availability of all the tools used throughout the life of the product.

-=oOo=-

Note : these rules are intended to delegates who followed our VHDL Training Courses where all
the proper concepts are taught and the rules explained.
If you are interested by these Training Courses, please contact us at info@alse-fr.com our
Doulos UK at http://www.doulos.com

© 2005 ALSE – http://www.alse-fr.com -- all rights reserved -- 6

