
This document is originally distributed by AVRfreaks.net, and may be distributed, reproduced, and modified
without restrictions. Updates and additional design notes can be found at: www.AVRfreaks.net

DESIGN NOTE
AUTHOR:
KEYWORDS: #043STRINGS, STACK POINTER

KELLY SMALL
A String Display Routine

Introduction A lot of embedded projects use routines to send data to displays or UARTs for serial
communication. Here is an approach for sending null terminated strings from Flashrom
to a UART or a display routine, using assembly code.

Overview There are several ways to send a string of data to a display (or UART). A real brute force
approach would be something like the following:

 ldi r16,’H’

 rcall DisplayChar

 ldi r16,’e’

 rcall DisplayChar

 ldi r16,’l’

 rcall DisplayChar

 ldi r16,’l’

 rcall DisplayChar

 ldi r16,’o’

 rcall DisplayChar

Not very code efficient or easy to read. A better approach would be to store the whole
string in one location, point to it, and call a routine to send it to the display.

 ldi zl,low(Message1) ;point the Z register to a null

 ldi zh,hi(Message1) ;terminated string in memory

 rcall DisplayString ;display the string

 {somewhere else in your code}

Message1:

 .db "Hello",0

This approach is a lot cleaner and you can tell at a glance what the string is that’s going
to be displayed. The only thing I don’t like about this approach is your message strings
could be several pages away from the code that references them, forcing you to search
through the code to find the message string, or the location in the code where that mes-
sage is referenced.
1www.AVRfreaks.net Design Note #043 – Date: 02/03

The final approach used here is to call the display routine, with the string defined in
memory, right after the call as follows:

 rcall DisplayRom

 .db "Hello",0

Now you can see the string that will displayed, right at the code location that will display
it. Of course at first glance one would wonder how you can define a string right in the
middle of your executable code, and how does the subroutine know where the string is
stored without setting up a pointer before the subroutine call is made. The answer
involves some clever use of the Stack Pointer.

Once the call to the subroutine is made, the contents of the Stack Pointer points to the
next location after the call instruction, which is the beginning of the string we want to dis-
play. By popping the stack into a register pair, we now have a pointer to the string. By
using the Z-register, you can make use of the LPM (or ELPM) instruction to fetch the
string one character at a time. As you loop through the routine fetching characters, the
Z-register increments to point to each character until the end of the string is reached. At
this point the Z-register actually points to the next instruction after the string, not the
Stack Pointer, so the Z-register is pushed back on the stack so the RET instruction will
return to the first instruction after the string.

The following examples assume you have a routine called DisplayChar that will take the
contents of R16 and send it to your display hardware.

;**

; DisplayRom - Send a null terminated message to a *

; display routine. This version optimized *

; for the ATmega128 *

; Uses R16 *

;**

DisplayRom:

 pop zh

 pop zl ;move Stack Pointer to Z-register

 lsl zl ;shift Z-register over for

 rol zh ;LPM operations

DR1: elpm r16,z+ ;get a character from rom

 cpi r16,0 ;test for end of string

 breq Rdone ;jump when end of string

 rcall DisplayChar ;send the data

 rjmp DR1

Rdone:

 lsr zh ;restore the Stack by pointing

 ror zl ;Z just past the rom-based string

 push zl ;then push it on the Stack so

 push zh ;the return operation places it

 ret ;in the Program Counter
www.AVRfreaks.net2 Design Note #043 – Date: 02/03

;**

; DisplayRom - Send a null terminated message to a *

; display routine. This version works with *

; micros that don't support enhanced LPM *

; instructions. *

; Uses R0 and R16 *

;**

DisplayRom:

 pop zh

 pop zl ;move Stack Pointer to Z-register

 lsl zl ;shift Z-register over for

 rol zh ;LPM operations

DR1: lpm ;byte character from rom

 adiw zl,1 ;inc Z-register

 mov r16,r0

 cpi r16,0 ;test for end of string

 breq Rdone ;jmp when end of string

 rcall DisplayChar ;display data

 rjmp DR1

Rdone: lsr zh ;restore the Stack by pointing

 ror zl ;Z just past the rom-based string

 push zl ;then push it on the Stack so

 push zh ;the return operation places it

 ret ;in the Program Counter
www.AVRfreaks.net 3Design Note #043 – Date: 02/03

	Introduction
	Overview

