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Combined Differential and Common-Mode 
Scattering Parameters: Theory and Simulation 

David E. Bockelman, Member, IEEE, and William R. Eisenstadt, Senior Member, IEEE 

Abstract-A theory for combined differential and common- 
mode normalized power waves is developed in terms of even and 
odd mode impedances and propagation constants for a microwave 
coupled line system. These are related to even and odd-mode 
terminal currents and voltages. Generalized s-parameters of a 
two-port are developed for waves propagating in several cou- 
pled modes. The two-port s-parameters form a 4-by-4 matrix 
containing differential-mode, common-mode, and cross-mode s- 
parameters. A special case of the theory allows the use of 
uncoupled transmission lines to measure the coupled-mode waves. 
Simulations verify the concept of these mixed-mode s-parameters, 
and demonstrate conversion from mode to mode for asymmetric 
microwave structures. 

I. INTRODUCTION 
HERE is an emerging need to measure RF and microwave T differential circuits. Differential circuits have been impor- 

tant in communications systems for more than 50 years. Recent 
technological advances have pushed analog differential circuit 
performance limits into RF and low microwave frequencies. 

Typically, differential circuits are designed and analyzed 
with traditional analog techniques, which employ lumped 
element assumptions. Examples of such analog differential 
circuit design and analysis are found in the texts by Gray 
and Meyer [ l ]  and Middlebrook [2]. FW and microwave 
differential circuits contain distributed circuit elements, and 
require distributed circuit analysis and testing. Furthermore, 
traditional methods of testing differential circuits have required 
the application and measurement of voltages and currents, 
which is difficult at RF and microwave frequencies. Scattering 
parameters (s-parameters) have been developed for charac- 
terization and analysis at these frequencies [3], but have 
been applied primarily to single-ended circuits. A modifica- 
tion of existing s-parameter techniques is needed to measure 
differential-mode and common-mode circuit performance at 
microwave frequencies. 

Currently, it is possible to measure common-mode s- 
parameters on wafer with standard ground-signal-ground 
probes to more than 100 GHz [4]. However, a differential 
circuit requires a balanced probe to launch differential signals. 
A balanced probe provided by Cascade Microtech [5] allows 
some characterization of differential signals with addition of 
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180 degree splitterkombiners. However, these probes attenu- 
ate the common-mode signal, so that it is neglected, although 
typically non-zero. Testing with separate differential probes 
and common-mode probes will allow for more complete s- 
parameter characterization of differential circuits, but until this 
work, there has been little examination of this subject. 

A severe limitation in differential-modekommon-mode cir- 
cuit characterization is a lack of applicable power wave and 
s-parameter theory. There is no reported way (known to the 
authors) to describe s-parameters based on mixed differential- 
modekommon-mode propagation. Previous work most closely 
related to this work has been specific to descriptions of coupled 
transmission lines [6]-[ 141 and shielded balanced transmission 
lines. Work by the National Bureau of Standards on balanced 
transmission lines uses s-parameters to describe differential- 
mode propagation, but neglects common-mode propagation 
and any mode conversions [15]. In the literature, the cou- 
pled transmission work has been most commonly applied 
to directional couplers [ 161-[ 191 with Cohn and Levy [20] 
providing a historical perspective on the role of coupled 
transmission lines in directional coupler development. Past 
work on coupled transmission lines has largely focused on 
voltage/current relationships and Z, Y, and ABCD-parameter 
descriptions of TEM circuits. One notable exception to the 
Z/Y/ABCD-parameter approach is work by Krage and Haddad 
[21] which employs traditional normalized power waves to 
describe coupler behavior. However, all of the referenced work 
deals with specific TEM structures, and is not suitable for 
characterization of a generic differential circuit. The present 
paper provides the theory behind the mixed propagation mode 
based s-parameters suitable for general microwave differen- 
tial circuit characterization, and demonstrates its utility with 
simulations on Hewlett-Packard’s Microwave Design System 
(MDS) [22]. 

This paper is organized as follows: In Section I1 the Mixed- 
mode two-port circuit is presented, and the definition of 
the coupled line transmission system is given. Mixed-mode 
power waves and mixed-mode s-parameters are developed 
in Section 111. Section IV discusses special considerations 
necessary for mixed-mode measurement systems. Section V 
presents the ideal mixed-mode two-port measurement system 
and simulations using MDS. Finally, conclusions are presented 
in the last Section VI. 

rr. MIXED-MODE TWO-PORT CIRCUIT 

The concept of a microwave differential circuit is examined 
in this section. In a practical RF/microwave implementation, 
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1 -1. 
Fig. 1 .  Schematic of differential s-parameter measurement. 

such a differential circuit is based on pairs of coupled transmis- 
sion lines. A schematic of a typical two-port RF/microwave 
differential system is shown in Fig. 1. Essential features of 
the microwave differential circuit in Fig. 1 are the coupled pair 
transmission line input and output. It is conceptually beneficial 
to define a signal that propagates between the lines of the 
coupled-pair (as opposed to propagating between one line 
and ground). Such signals are known as differential signals, 
and can be described by a difference of voltage (AVl # 
0,AVz # 0) and current flow between the individual lines 
in a pair. By such a definition, the signal is not referenced 
to a ground potential, but rather the signal on one line of the 
coupled pair is referenced to the other. Further, this differential 
signal should propagate in a TEM, or quasi-TEM, fashion 
with a well-defined characteristic impedance and propagation 
constant. Coupled line pairs, as in Fig. 1, allow propagating 
differential signals (the quantities of interest) to exist. The 
differential circuit discussion in this paper will be limited to 
the two-port case, but the generalized theory for n-port circuits 
can be readily derived from this work. 

Most practical implementations of Fig. 1 will incorporate a 
ground plane, or some other global reference conductor, either 
intentionally or unintentionally. This ground plane allows 
another mode of propagation to exist, namely common-mode 
propagation. Conceptually, the common-mode wave applies 
equal signals with respect to ground at each of the individual 
lines in a coupled pair, such that the differential voltage 
is zero (Le. AV, = AV2 = 0). The ability of the mi- 
crowave differential circuit to propagate both common-mode 
and differential-mode signals requires any complete theoretical 
treatment to include characterization of all simultaneously 
propagating modes. For convenience, the simultaneous prop- 
agation of two or more modes (namely, differential-mode, 
and common-mode) on a coupled transmission line will be 
referred to in this paper as mixed-mode propagation, from 
which mixed-mode s-parameters will be defined. 

111. MIXED-MODE POWER WAVES AND S-PARAMETERS 

To begin the presentation of mixed-mode s-parameters, 
a general asymmetric coupled transmission line pair over a 
ground plane will be analyzed. This analysis yields multiple 
propagating modes all referenced to ground. These modes 
will be used to express the desired differential signal between 
the lines of the coupled-pair, as well as the common signal 

Line B 
Line A 

/ 

n = L  
Port 2 

w 
Fig. 2. Schematic of asymmetric coupled-pair transmission lines. 

referenced to ground. Fig. 2 is a diagram of such a coupled- 
pair transmission line, with all pertinent voltages and currents 
denoted. Also shown in Fig. 2 is a representation of a ter- 
mination for the coupled-pair line. Later, this paper will use 
these lines as reference lines at the input and output of an 
arbitrary DUT. Subject to the simplifying assumptions, the 
mathematical results of this paper are applicable to any pair 
of conductors with a nearby ground conductor. 

Referring again to Fig. 2, the behavior of the coupled-line 
pair can be described by [6] 

= Z l i l  + zmiz dvi 
dx 

_ _  

where z1 and z2 are self-impedances per unit length, y1 and 
y2 are admittances per unit length, and z ,  and y, are mutual 
impedance and admittance per unit length, respectively. Also, 
a harmonic time dependance (i.e. eJWt )  is assumed. 

The solution to the set of (1) as published by Tripathi [6] 
i s  given as 

w1 = AlepYcx + A2eYCx + A3eCYnZ + A4eYTx 
212 = AIR,e-YCx + A2RceYcx + A3Rae-Ynx + A4R,eeirrx 

where AI,  and A3 represent the phasor coefficients for the 
forward (positive x) propagating c and 7r-modes, respectively, 
and A2, and A4 represent the phasor coefficients for the 
reverse (negative x) propagating c and 7r-modes, respectively. 
The characteristic impedance of the c-modes are represented 
by ZCl and Z,, for lines A and B, respectively, and the 
characteristic impedance of the 7r-modes are represented by 
Z,, and Za2 for lines A and B, respectively. Additionally, 
R, = u2/w1 for y = fy,, R, = w2/v1 for y = fy,, and 
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Each voltage/current pair at each node represent a single 
propagating signal referenced to the ground potential. These 
signals will be called nodal waves. 

A practical simplification in the development of mixed- 
mode s-parameter theory is to assume symmetric coupled pairs 
(i.e., lines A and B have equal width) as reference trans- 
mission lines. This assumption allows simple mathematical 
formulations of mixed-mode s-parameters. Furthermore, this 
assumption is not overly limiting, since reference lines may 
be made arbitrarily short. For symmetrical lines, in (2) R, = 
1 and R, = -1, and the c and the r-modes become the 
even and odd modes, respectively, as first used by Cohn [ 131. 
For notational purposes, we shall use the substitutions c + e 
and 7r -+ o for even-mode and odd-mode, respectively. With 
these substitutions, the mode characteristic impedances and 
propagation constants become 

Expressing (2) in the symmetric case 

As before, these voltage/current pairs are nodal waves at each 
terminal that are referenced to ground. 

It is important, now, to define the differential and common- 
mode voltages and currents to develop a self-consistent set 
of mixed-mode s-parameters. Define the differential-mode 
voltage at a point, z, to be the difference of between voltages 
on node 1 and node 2 

This standard definition establishes a signal that is no longer 
referenced to ground. In a differential circuit, one would expect 
equal current magnitudes to enter the positive input terminal as 
leaves the negative input terminal. Therefore, the differential- 
mode current is defined as one-half the difference between 
currents entering nodes 1 and 2 

Definitions in (6) and (7) are self-consistent with the differ- 
ential power delivered to a differential load. These definitions 
differ from previously published definitions by Zysman and 
Johnson [ 101 due to change in references. The common-mode 
voltage in a differential circuit is typically the average voltage 
at a port. Hence, common-mode voltage is one half the sum 
of the voltages on nodes 1 and 2 

The common-mode current at a port is simply the total current 
flowing into the port. Therefore, define the common-mode 
current as the sum of the currents entering nodes 1 and 2 

Note: The return current for the common-mode signal flows 
through the ground plane. Again, these definitions differ from 
definitions from Zysman and Johnson [lo] due to change in 
references. 

Expressing these differential and common-mode values (6) 
through (9) in terms of the line voltages and currents ( 5 )  

Recall that A1 and A2 are the forward and reverse phasor 
coefficient for the even-mode propagation, and A3 and A4 are 
the forward and reverse phasor coefficient for the odd-mode 
propagation. If a short hand notation is introduced, a better 
understanding of these definitions can be had. Let 

Then (5) becomes 

u1 = w,p""(z) + ve"""z) + uOp0"z) + v0"""z) 

212 = u,p""(z) + v,""g(z) - wOp""(z) - v0"""z) 
21 = i~""(z) - + i Y ( z )  - iy-"z) 
i z  = i y y z )  - ZFg(z) - i;""(z) + iy-"z) (12) 

and ( 10) becomes 

'U,,(z) = v,p""(z) + v,"eP(z) 
v,P""(z) - ve"""z) 

Ze 
icm(z)  = 2 ( i y ( z )  - i?P(z)) = 2 . (13) 

Note that, in general, 2, # 2,. 
Characteristic impedances of each mode can be defined 

as the ratio of the voltage to current of the appropriate 
modes at any point, z, along the line. These impedances can 
be expressed in terms of the even and odd-mode (ground 
referenced) characteristic impedances 
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These relations between the evedodd mode characteristic 
impedances and the differentialkommon mode characteristic 
impedances are consistent with the matched load terminations 
discussed in the literature (71, [8]. 

Now that voltages, currents, and characteristic impedances 
have been defined for both differential and common modes, the 
normalized power waves can be developed. By the definition 
for a generalized power wave at the nth port [23], 1241 

where a,  is the normalized wave propagating in the forward 
(positive x) direction, b, is the normalized wave propagating 
in the reverse (negative z) direction, and 2, is the charac- 
teristic impedance of the port. With the above definitions, the 
differential normalized waves become, at port 1 

Similarly, define the common-mode normalized waves, at port 
1. as 

Analogous definitions at port 2 can easily be found by setting 
2 = 1. 

Imposing the condition of low-loss transmission lines on 
the coupled-pair of Fig. 2, the characteristic impedances are 
approximately purely real [24]. Under this restriction, Zdm M 

Re{Zdm} 3 Rdm and Z,, = Re{Zcm} 5 Rcm, With this 
assumption, the normalized wave equations at port 1 can be 
simplified 

1 
bcm, = ~ [ (x) - i c m ( z ) R c m ] J z = ~ .  (20) 2& 

With the normalized power waves defined, the development 
of mixed-mode s-parameters is straight forward. The definition 
of generalized s-parameters [23], [24] is 

Physical 

common-mode 
ports 

Fig. 3. Conceptual diagram of mixed-mode two-port. 

where the bold letters denote an n-dimensional column vector 
or an n-by-n matrix. Given a coupled-line two-port like Fig. 2, 
or any arbitrary mixed-mode two-port, the generalized mixed- 
mode s-parameters can be given as 

where the subscripts 1 and 2 denote ports 1 and 2, respectively. 
Here, [SI can be described by 

The following names are used: Call [Sdd]  the differential s- 
parameters, [S,,] the common-mode s-parameters, and [Sdc] 
and [S,d] the mode-conversion or cross-mode s-parameters. 
In particular, [Sdc] describes the conversion of common-mode 
waves into differential-mode waves, and [ S , d ]  describes the 
conversion of differential-mode waves into common-mode 
waves. These four partitions are analogues to four transfer 
gains (A,,, A d d ,  Acd,  Ad,) introduced by Middlebrook [2]. 

These mixed-mode two-port s-parameters can be shown 
graphically (see Fig. 3) as a traditional four-port. It must be 
remembered, however, that the ports are conceptual tools only, 
and not physically separate ports. 

Iv. CONSIDERATIONS FOR A PRACTICAL 
MIXED-MODE MEASUREMENT SYSTEM 

The most straightforward means of implementing a mixed- 
mode s-parameter measurement system is to directly ap- 
ply differential and common-mode waves while measuring 
the resulting differential and common-mode waves. IJnfor- 
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tunately, the generation and measurement of these modes 
of propagation is not easily achievable with standard vector 
network analyzers (VNA). However, under certain condi- 
tions, one can relate the total nodal waves (each representing 
two modes of propagation) to the desired differential and 
common-mode waves. These nodal waves are readily gen- 
erated and measured with standard VNAs, and with con- 
sideration, the differential and common-mode waves, and 
hence the mixed-mode s-parameters, can be calculated. There- 
fore, the relationships between the normalized mixed-mode 
waves ( a d m l ,  bdml,  acml, bcml, etc.) and the nodal waves 
( a l ,  b l ,  a2, b2 ,  etc.) will be derived, and the necessary con- 
ditions for these relationships to exist will be found. 

If one is to make a general purpose RF measurement port, 
the values of characteristic port impedances must be chosen. 
It is useful to require the even and odd-mode characteristic 
impedances of the measurement system to be equal, thus 
reducing the number of different valued matched terminations 
required. In contrast, it is difficult to fabricate lumped termi- 
nation standards for coupled lines where Z, does not equal 
Z,. If the characteristic impedances of the lines are defined 
to be equal (say, 50 O),  then a further simplification of the 
above expressions can be accomplished with the substitution 
Z ,  = Z,  = Zo where in the low-loss case 20 z Re(Z0) 
RO . 

By choosing equal even and odd-mode characteristic imped- 
ances, one is selecting a special case of coupled transmission 
line behavior, as described in (1). Enforcing equal even 
and odd-mode Characteristic impedances is equivalent to the 
conditions of uncoupled transmission lines. As has been shown 
in the literature [7 ] ,  the condition Z, = 2, results in the 
mutual impedances and admittances being zero ( 2 ,  = 0, 
ym = 0). Under these conditions, the describing differential 
equations of the transmission line system (1) clearly become 
uncoupled, resulting in two independent transmission line 
solutions. Although very specific, this is a valid solution to (l), 
and all results up to this point are also valid under the special 
case of equal even and odd-mode characteristic impedances. 
Therefore, we choose the reference lines of the mixed-mode 
s-parameters to be uncoupled transmission lines. The key to 
this choice is that these uncoupled reference lines can be 
easily interfaced with a coupled line system, as discussed 
below. 

To interpret the meaning of uncoupled reference trans- 
mission lines, consider a system of transmission lines: one 
coupled pair, and one uncoupled pair connected in series 
with the coupled pair. If even and odd (or c and T) modes 
are both propagating (forward and reverse) on the coupled 
pair, then it can be shown that the waves propagating on 
each of the uncoupled transmission lines are linear com- 
binations of the waves propagating on the coupled system 
(see Appendix). Furthermore, the differential and common- 
mode normalized waves of the coupled pair system can be 
reconstructed from the normalized waves at a point on the 
uncoupled line pairs (see Appendix). This point of recon- 
struction is arbitrary, and one may choose the point to be 
the interface between the coupled system and the uncoupled 
reference lines. 

h g = O "  
Mag=l V 

DUT 

--+ t 

4 

Mag=l V 
Fig. 4. Conceptual diagram of mixed-mode two-port measurement system. 

Substituting Z, = Z, = ZO M Ro, the normalized nodal 
waves of the coupled lines at the interface are 

where ai and bi are the normalized forward and reverse 
propagating nodal waves at node z, respectively, and i E { 1, 
2, 3, 4). These equations are applicable only in the case of 
low-loss lines, with equal even and odd mode characteristic 
impedance. By combining (12), (19), (20) and (24), it can be 
shown that the differential and common-mode waves a port 
1 are 

Similarly, for port 2 

Equations (25) and (26) represent important relationships 
from which mixed-mode s-parameters can be determined with 
a practical measurement system. To understand the utility of 
the above relationships, consider Fig. 4, which is a conceptual 
model for a mixed-mode measurement system. By adjusting 
the phase difference, 0,  between the two sources to 0' or 
180' one can determine the common-mode or differential- 
mode forward s-parameters, respectively. Conceptually, the 
measured quantities are the voltages and currents. These values 
can be related to the normalized nodal waves, a1 , bl , u2, ba, 
etc., through the generalized definitions given in (24). From 
these nodal waves, the differential and common-mode normal- 
ized waves, and, hence, the mixed-mode s-parameters, can 
be calculated. Physically, the various ratios of nodal waves, 
a1 , bl , a2, b z ,  etc., are measured, and from theses ratios the 
mixed-mode s-parameters are found. 

The physical implementation of a mixed-mode s-parameter 
measurement system can be achieved with a modification 
of a standard VNA. The differential stimulus of a coupled 
two-port requires the input waves at the reference plane 
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[ Space=100pm i I 

I - + z, v, '  ' v, z, 

Lenath=l inch 

'0.0011-141" 0.972L9.53" 
0.972L9.53" 0.001L-141" 

0 0 
0 0 

Y 

h=25 mil Ang=O" 
Mag=l V I e,=9.6 -2-1 ' Vl Width==] 

1 0 0 
0 0 

0.3411-60.4" 0.915L-26.4" 
0.9151-263.4" 0.341L-60.4" 

to be 180" apart. One possible way this can be achieved 
through a single signal source is with the use of a 180°-3-dB- 
hybrid splitterkombiner. The construction of the differential 
reflected and transmitted waves can be also completed through 
a 180" splitterkombiner. The common-mode stimulus of a 
coupled two-port requires the input waves at the reference 
plane to be 0" apart. This can also be achieved through 
a single signal source with the use of a 0"-3-dB-hybrid 
splitterkombiner, with the construction of the common-mode 
reflected and transmitted waves also completed through a 0" 
splitterkombiner. 

The calibration of such a system can be achieved through 
the extension of VNA calibration theory. Detailed calibration 
discussion is beyond the scope of this paper, but will be the 
subject of future work. It is interesting to note, however, 
that any successful calibration algorithm must correct both 
magnitude and phase imbalances in the splitterkombiners and 
signal paths, since any such imbalances will represent errors in 
the generation and reconstruction of the mixed-mode waves. 
Also, any calibration will be greatly assisted by requiring one 
standard for both 2, and Z,, which is accomplished when 
2, = Z,, as assumed in this section. 

All mixed-mode normalized waves and s-parameters have 
been discussed with respect to a transmission pair line as a 
reference. Conceptually, this reference line must be attached 
to every port of a DUT. However, there is no restriction on 
the length of these reference lines. Therefore, the reference 
lines can be of zero length, and the definitions of all mixed- 
mode quantities will still apply, with one provision. Namely, 
the generator source impedance and the load impedances must 
match the characteristic impedance of the reference lines. The 
use of zero length reference lines is a useful interpretation of 
the general normalized wave definition of (24) from which the 
mixed-mode s-parameters are defined. 

It it interesting to note that an alternative requirement can 
be found through which the nodal and mixed-mode waves 

can be related. One could require the differential-mode and 
common-mode characteristic impedances to be equal (i.e. 
Zd, = Z,, = 20). The relationships (25) and (26) will 
change, however. This alternate requirement may have value in 
some cases, but the original requirement (2, = 2, = 20) best 
relates mixed-mode s-parameters to standard s-parameters. 

V. IDEAL MIXED-MODE MEASUREMENT 
SYSTEM AND SIMULATIONS 

Equations (25) and (26) form the basis of an ideal mixed- 
mode s-parameter measurement system. These equations can 
be implemented into a microwave simulator, and can provide 
a quick and simple method of illustrating the usefulness of 
mixed-mode s-parameters. 

The circuit in Fig. 4 was implemented into Hewlett- 
Packard's MDS. The phase difference, 0,  between the 
two sources was set to 0" for the common-mode and 
common-to-differential-mode forward s-parameters. For the 
forward differential-mode and differential-to-common-mode 
s-parameters, the phase difference was set to 180". In each 
case, the nodal waves were calculated from (25), (26), and 
(24),  and the s-parameters were calculated with the appropriate 
ratios. The reverse s-parameters were calculated by driving 
port 2 of the DUT with 50 R loads at port 1. 

The first example of mixed-mode s-parameters uses a DUT 
that is pair of coupled microstrip transmission lines, with 
symmetric (i.e. equal width) top conductors. This symmetric 
coupled-pair, and the accompanying circuitry, is shown in 
Fig. 5. Each runner width is 100 pm with an edge-to-edge 
spacing of 100 pm. The substrate is 25-mil-thick alumina with 
a relative permittivity of 9.6 with a loss tangent of 0.001, and 
the metal conductivity is that of copper, -5.8 x lo7 S/m. 
A one inch section of this line was simulated in MDS as 
described above, and the mixed-mode s-parameters at 5 GHz 
are shown in (27) at the bottom of this page. 

As expected, each partitioned sub-matrix demonstrates the 
properties of a reciprocal, passive and (port) symmetric DUT. 
The differential s-parameters, Sdd,  show the coupled pair 
possesses an odd-mode characteristic impedance of 50 R (100- 
R-differential impedance), and has low-loss propagation in the 
differential mode. The common-mode s-parameters, S,,, show 
the coupled pair posses an even-mode characteristic impedance 
other than 50 R. Actually, the even-mode impedance of the 
pair is 140 R (70-0 common-mode impedance). Note the 
cross-mode s-parameters are zero for the symmetric coupled 
pair indicating no conversion between propagation modes. 

The second example is similar to the first, except the coupled 
microstrip transmission lines are asymmetric (i.e. unequal 
widths). This asymmetric coupled-pair, and the accompanying 
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0.0031 -175" 0.956L1.819' 
0.9561 1.819" 0.003L -175" 
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Length=I inch 
h g = O "  h=25 mil Mag=l V 

v3 2 

0.005L -177" 0.031180.7" 
0.031L80.7" 0.005L - 177" 
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0.844L-40.2" 0.5021-48.0" 

Width=l7Opn v4 9 
c 

Port1 Port2 14 
Mag=l V 

Fig. 6. 
transmission line. 

Schematic of mixed-mode simulation of asymmetric coupled-pair 

1 .o Freq (G%) 21.0' 
Fig. 8. 
for asymmetric coupled-pair line. 

Simulated magnitude in dB of Sddll and sccll versus frfxpXICy 

21.0y 
4 

' 1.0 Freq 
Fig. 7. 
for asymmetric coupled-pair line. 

Simulated magnitude in dB of S d d 2 1  and sCc21 versus frequency 

circuitry, is shown in Fig. 6. One top conductor width is 
100 pm, and the second is 170 pm, with an edge-to-edge 
spacing of 65 pm. Again, the substrate is 25-mil-thick alumina 
with a relative permittivity of 9.6 with a loss tangent of 0.001, 
and the metal conductivity is that of copper. A one inch section 
of this line was simulated in MDS at 5 GHz, and the mixed- 
mode s-parameters are shown in (28) at the bottom of the 
page. 

As in the first example, each partitioned sub-matrix demon- 
strates the properties of a reciprocal, passive and (port) sym- 
metric DUT. Also like the first example, the differential 
s-parameters show the coupled pair possesses an odd-mode 
characteristic impedance of nearly 50 R (actually 49 a), 
and has low-loss propagation in the differential mode. The 
common-mode s-parameters show the coupled pair has a 
greater degree of mismatch than the first example (the even- 
mode impedance is 152 R in this case). 

The most important difference between the two examples 
is seen in the cross-mode s-parameters. The data in (28) 

shows significant conversion between propagation modes, 
particularly in transmission parameters S d c 2 1  and S c d 2 1 .  Note 
these two sub-matrices are equal indicating equal conversion 
from differential to common-mode and from common to 
differential-mode. These non-zero s-parameters can be inter- 
preted conceptually in the following way. In the case of S c d 2 1 ,  

a pure differential mode wave is impinging on port 1 of the 
DUT. However, at port 2, both differential and common-mode 
waves exist. Some of the energy of the differential wave is 
converted to a common-mode propagation, and the total energy 
is preserved (except for losses in the metal and dielectric). 

This example circuit was simulated across frequency, and 
the magnitudes of selected mixed-mode s-parameters are plot- 
ted in Figs. 7-10. Fig. 7 shows both and Scc~l in dB 
from 1-21 GHz. The ripple pattern across frequency in the 
common-mode transmission ( S c c 2 1 )  indicates an impedance 
mismatch at the ports for common-mode propagation. At 
the higher frequencies of the plot, the finite conductivity 
of the conductors is evident as average loss increases. The 
differential-mode transmission ( S d d 2 1 )  shows smaller ripples 
(0.2-dB maximum), indicating smaller mismatch, and also 
shows lower average loss. However, the losses due to the 
reflections at the ports do not account for all of the ripple in the 
differential transmission. As can be seen in Fig. 8, the return 
loss for the differential mode is greater than 20 dB, which can 
account for approximately 0.04 dB of worst case loss (over 
ohmic losses). Mode conversion accounts for the remaining 
reduction in the differential-mode, and hence S d d Z l  is reduced. 
Here, differential energy is converted to both common-mode 
transmission Scd21  and common-mode reflection S c d l l .  Fig. 9 
shows the cross-mode transmission S c d 2 1  in dB, and Fig. 10 
shows the cross-mode reflection S c d l l  in dB. The minima in 
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1.0 Freq (GHz) 21 .o 
Fig. 9. 
ric coupled-pair line. 

Simulated magnitude in dB of ScdZl versus frequency for asymmet- 

1.0 Fres (GH4 21.0 
Fig. 10. 
metric coupled-pair line. 

Simulated magnitude in dB of Scdll versus frequency for asym- 

the differential-mode transmission Sdd21 correspond to a worst 
case point in the relative phases of SddZl, Scdll, and Scdll. In 
a low loss transmission line case, the insertion loss due to mode 
conversion and miss-match can be shown to be approximately 

LOSS (dB) M -1olOg[l - ((Sddll('+ I S ~ d 2 1 ( ~  + (Scdll12)]. 
(29) 

This is consistent with the increasing ripple in Sdd21 with 
increasing frequency since the mode conversion (S&l and 
Scdll) increases with frequency. 

VI. CONCLUSION 

A theory for mixed-mode s-parameters is developed for 
characterization of microwave differential circuits. The theory 
is based on microwave coupled line systems, and is useful 
to describe general differential circuits, including coupled 
transmission lines. The theory is applied to develop the concept 
of an ideal mixed-mode s-parameter measurement system, 
and the restriction of equal even and odd-mode characteristic 
impedances is shown to result in useful relationships for 
such a system. A real mixed-mode measurement system can 
be implemented from the results of this theoretical work. 
However, a proper mathematical basis is needed in the future 

for characterization and calibration of these measurements. 
Finally, microwave simulations illustrate some of the utility 
of mixed-mode s-parameters. 

APPENDIX 
TRANSMISSION OF MODES FROM 
COUPLED TO UNCOUPLED LINES 

Consider a system where a pair of coupled transmission 
lines are connected in cascade with a pair of uncoupled 
transmission lines, as shown in Fig. A-1. The coupled pair 
will be considered to be a reference line as defined in Section 
111; hence, the coupled pair line is symmetric and low loss. 
The normalized waves at the outputs of the uncoupled lines 
will be investigated under the same assumptions, namely low 
loss and symmetry, which for the uncoupled case means the 
lines are identical. The voltages at a point z on the coupled 
pair lines are given by (12), rewritten hear to explicitly show 
the complex exponentials 

and the currents, also given by (12) are 

With the uncoupled transmission lines, the voltages and cur- 
rents at a point z are 

with i = 1 , 2  and Z u l  = Zu2 = Zu,yul = yu2 = yu.  At 
the interface between the coupled pair and the uncoupled pair, 
(z = 0,z' = d )  the voltages and currents of the two systems 
must conform to the boundary conditions 

Through the application of these boundary conditions and (A- 
l)-(A-3), the phasor coefficients on the uncoupled lines are 
found to be 
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Schematic of uncoupled pair in cascade with coupled pair-line. Fig. A-1. 

- 1 - - - VTg 1 +  - . (A-6) ( 3 ( 31 
The differential-mode voltage at the output of the uncoupled 
pair (z = - d )  can be defined by (6) as 

which can be found to be 

where 

Vl:: = - V,”z”” VTzf = - Vun;’. (A-9) 

The normalized forward differential-mode wave at the out- 
put of the coupled pair, defined generally by (16), can be 
shown as 

adm, = ___ VI:: (A-10) 
J K  

where Rdmu is the (approximately) purely real characteristic 
impedance of the differential-mode, defined between the un- 
coupled lines, and Rdm, = 2R, where R, is the characteristic 
impedance of the each of the uncoupled lines. From (A-5), 
(A-6), (A-9) and (A-lo), it is found that 

where adm and b d ,  is the differential-mode normalized for- 
ward and reverse waves of the coupled system at z = 0, 
and Rdm is the approximately real characteristic impedance 
of the differential-mode on the coupled-pair. Similarly, the 

remaining differential and common-mode normalized waves 
can be shown to be 

where bdm, acm, and b,, are the normalized waves of the 
coupled system at z = 0. Therefore, the differential and 
common-mode normalized waves at the output of the uncou- 
pled lines are equal to the corresponding coupled system waves 
with a phase-shift and a scaling factor due to the different 
characteristic impedances. To the resulting mixed-mode s- 
parameters, the phase-shift and the scaling factor represent 
an arbitrary reference plane shift and a re-normalization to 
the characteristic impedance of the uncoupled transmission 
lines, respectively. Because of this, the coupled pair reference 
line can be replaced with an uncoupled pair reference, and 
the resulting mixed-mode s-parameters are simply transposed 
to a different reference impedance by the uncoupled lines. 
Therefore, the mixed-mode s-parameters of an arbitrary n-port 
DUT can be measured with npairs of uncoupled transmission 
lines. 
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