Metric Pitch BGA & Micro BGA Routing Solutions

The following presentation provides Via fanout and trace routing solutions for various metric pitch Ball Grid Array Packages

DESIGNERS DOUNCI

ESIGNERS COUNC

METRIC BGA FEATURE SIZES

- The starting point to solve the metric pitch BGA dilemma is a basic understanding of the metric feature sizes for –
 - BGA ball sizes
 - BGA land pattern pad construction
 - BGA Via anatomy
 - Trace / Space
 - Trace and via routing grid
 - HDI hole size / annular ring

DESIGNERS COUNCIL

BGA BALL & PAD SIZES

Table 14-5 Land Approximation (mm) for Collapsible Solder Balls

Nominal Ball Diameter	Reduction	Land Pattern Density Level	Nominal Land Diameter	Land Variation
0.75	25%	А	0.55	0.60 - 0.50
0.65	25%	А	0.50	0.55 - 0.45
0.60	25%	A	0.45	0.50 - 0.40
0.55	25%	A	0.40	0.45 - 0.35
0.50	20%	В	0.40	0.45 - 0.35
0.45	20%	В	0.35	0.40 - 0.30
0.40	20%	В	0.30	0.35 - 0.25
0.35	20%	В	0.30	0.35 - 0.25
0.30	20%	В	0.25	0.25 - 0.20
0.25	20%	В	0.20	0.20 - 0.17
0.20	15%	С	0.17	0.20 - 0.14
0.17	15%	С	0.15	0.18 - 0.12
0.15	15%	С	0.13	0.15 - 0.10

Note: The IPC-7351A LP Calculator Uses this chart for calculations

BGA 3-TIER BALL SIZE

Table 3-18 Ball Grid Array Components (Unit: mm)

Lead Part	Minimum (Least) Density Level C	Median (Nominal) Density Level B	Maximum (Most) Density Level A	
Periphery Collapsing Ball	15% reduction below nominal ball diameter	20% reduction below nominal ball diameter	25% reduction below nominal ball diameter	
Periphery Noncollapsing Ball or Column	5% increase above the nominal ball or column diameter	10% increase above the nominal ball or column diameter	15% increase above the nominal ball or column diameter	
Round-off factor	id-off factor Round off to the nearest two place decimal, i.e., 1.00, 1.05, 1.10, 1.15			
Courtyard excess	0.50	1.00	2.00	
Ball Grid Array (BGA) Construction and land pattern development are described in 14.1 & 14.4				
Column Grid Array (CGA) Construction and land pattern development are described in 14.1.3 & 14.4				

ANATOMY OF THE METRIC VIA

The base value round-off for metric via features are in 0.05 mm increments. This includes – ☞ Pad Size **Hole Size** Solder Mask Size Plane Clearance (Anti-pad) Size Plane Thermal Relief Size or None

METRIC BGA VIA SIZES FOR DOGBONE VIA FANOUT

BGA Pin Pitch	VIA Name	Pad Size	Hole Size	Plane Clearance	Solder Mask	Thermal ID	Thermal OD	Thermal Spoke Width
1.50mm	VIA60-25-80	0.60	0.25	0.80	0.00	0.55	0.80	0.25 or None
1.50mm	VIA55-25-75	0.55	0.25	0.75	0.00	0.55	0.75	0.25 or None
1.27mm	VIA63-30-85	0.635	0.30	0.85	0.00	0.65	0.85	0.25 or None
1.00mm	VIA55-25-75	0.55	0.25	0.75	0.00	0.55	0.75	0.25 or None
1.00mm	VIA50-25-70	0.50	0.25	0.70	0.00	0.55	0.70	0.25 or None
0.80mm	VIA45-20-65	0.45	0.20	0.65	0.00	0.50	0.65	0.20 or None
0.75mm	VIA40-20-65	0.40	0.20	0.65	0.00	0.50	0.65	0.20 or None

Show via calculator

METRIC TRACE/SPACE SIZES

- Metric trace widths are in 0.025 mm (1 mil) increments
- Common metric BGA trace widths
 - ☞0.075 mm (3 mils)
 - ☞0.1 mm (4 mils)
 - ☞0.125 mm (5 mils)
 - ☞0.15 mm (6 mils)
 - ∞0.2 mm (8 mils)

0.4 mm PITCH BGA THROUGH-HOLE / 1 mm PCB

Via-in-Pad Technology

BGA Ball Size: 0.25 (10) BGA Land Dia: 0.25 (10) Hole Size: 0.125 (5) Thermal Relief Required Plane Clearance: 0.35 (14) Solder Mask: 1:1 scale

Trace/Space Data

Trace Width: 0.05 (2) Trace/Trace Space: 0.05 Trace/Via Space: 0.05 (2) Trace/BGA Land: 0.05 (2) Routing Grid: 0.05 (2) Part Place Grid: 0.5 (20)

0.4 mm PITCH BGA MICRO VIA TECHNOLOGY

0.4 mm PITCH BGA

Solder Mask Maximum Offset

afety distance to allow fo coverage of line edge

PCB LAYER CONSTRUCTION

PCB LAYER CROSS SECTION

Core _. Drill Bit

EPOXY FILLED MICRO VIAS

Avoid using epoxy filling for micro vias

PLATED FILLED MICRO VIAS

Electroplated Copper via filling Mechanism

Carrier

- Bottom-up filling behavior is attributed to the action of organic additives(must be controlled to prescribed limits)
- Suppressor rapidly forms current inhibiting film on Cu surface. Film has little geometric dependence due to high suppressor solution concentration
- Accelerated bottom-up fill behavior is due to a local accumulation of brightener species at the feature base
- As surface area is reduced during deposition, the concentration of brightener species increases, resulting in a nonequilibrium surface concentration. This local concentration of brightener accelerates the plating rate relative to the surface.

Planar Microvia

Stacked Microvia

ELECTRONIC MATERIALS Source: ROHM

╸╽╽╽╽╽╻╸ ╸╸╴

ADVANCED ROUTING TECHNIQUE FOR 0.4 mm BGA

0.4 mm BGA routing option

0.25 mm pad with 0.05 mm snowman for drill AR

LDI Solder Mask = 0.1 mm solder dam

ADVANCED ROUTING TECHNIQUE FOR 0.4 mm BGA

0.4 mm BGA routing option

Route outside row & 50% of channels per layer

DESIGNERS BOUNCIL

11 X 12 0.4 mm PITCH BGA \bigcirc \bigcirc

IPC

0.5 mm PITCH BGA

Via-in-Pad Technology

BGA Ball Size: 0.30 (12) BGA Land Dia: 0.275 (11) Hole Size: 0.15 (6) Thermal Relief Required Plane Clearance: 0.425 Solder Mask: 1:1 scale

Trace/Space Data

Trace Width: 0.075 (3) Trace/Trace Space: 0.075 Trace/Via Space: 0.075 (3) Trace/BGA Land: 0.075 (3) Routing Grid: 0.05 (2) Part Place Grid: 0.5 (20)

0.5 mm PITCH BGA WITH NON-COLLAPSING BALLS

Via-in-Pad Technology

BGA Ball Size: 0.15 (6) BGA Land Dia: 0.275 (11) Hole Size: 0.15 (6) Plane Clearance: 0.425 (17) Solder Mask: 1:1 scale

Trace/Space Data

Trace Width: 0.075 (3) Trace/Trace Space: 0.075 Trace/Via Space: 0.075 (3) Trace/BGA Land: 0.75 (3) Routing Grid: 0.05 (2)

BGA Component 0.15 mm BGA Ball 0.1 mm Paste Mask Solder Mask 1 mm PCB Thickness 0.15 mm Via-in-Land

0.65 mm PITCH BGA

Via-in-Pad Technology

BGA Ball Size: 0.4 (16) BGA Land Dia: 0.4 (16) Hole Size: 0.15 (6) Plane Clearance: 0.5 (20) Solder Mask: 1:1 scale

Trace/Space Data

Trace Width: 0.1 (4) Trace/Trace Space: 0.1 (4) Trace/Via Space: 0.1 (4) Trace/BGA Land: 0.75 (3) Routing Grid: 0.05 (2) Part Place Grid: 1 (40)

0.65 mm PITCH BGA

Via-in-Pad Technology

BGA Ball Size: 0.4 (16) BGA Land Dia: 0.425 (17) Hole Size: 0.2 (8) Plane Clearance: 0.575 Solder Mask: 1:1 scale

Trace/Space Data

Trace Width: 0.075 (3) Trace/Trace Space: 0.075 Trace/Via Space: 0.075 (3) Routing Grid: 0.05 (2) Via Grid: 0.65 (26) Part Place Grid: 1 (40)

DESIGNERS COUNCIL

FILLED AND CAPPED VIA

Filled and Capped Via (Type VII Via) - A Type V via with a secondary metallized coating covering the via. The metallization is on both sides.

This technique is used for Via-in-pad technology for 0.65mm and 0.5mm BGA pitch devices.

Solder mask is 1:1 scale on the BGA side of PCB and Tented on the opposite side to protect the routed trace.

0.8 mm PITCH BGA

OO OOI OOI

BGA Data

BGA Ball Dia: 0.5 (20) BGA Land Size: 0.45 (17)

Via Data

Pad Size: 0.5 (20) Hole Size: 0.25 (10) Anti-Pad: 0.7 (28)

Trace/Space Data

Trace Width: 0.1 (4) Trace/Trace Space: 0.1 Trace/Via Space: 0.125 Routing Grid: 0.1 (4) Via Grid: 0.2 (8) Part Place Grid: 1 (40)

DESIGNERS COUNCIL

0.8 mm PITCH BGA

O O O O O II

BGA Data

BGA Ball Dia: 0.5 (20) BGA Land Size: 0.45 (17)

Via Data

Pad Size: 0.45 (18) Hole Size: 0.2 (8) Anti-Pad: 0.65 (26)

Trace/Space Data

Trace Width: 0.125 (5) Trace/Trace Space: 0.125 Trace/Via Space: 0.1 (4) Routing Grid: 0.05 (2) Via Grid: 0.2 (8) Part Place Grid: 1 (40)

IPC

DESIGNERS (COUNCIL

1 mm PITCH BGA

<u>Via Data</u>

Pad Size: 0.50 (20) Hole Size: 0.25 (10) Plane Clearance: 0.70

BGA Land Size: 0.5 (20)

Trace/Space Data

Trace Width: 0.1 (4) Trace/Trace Space: 0.1 Trace/Via Space: 0.1 Routing Grid: 0.1 (4) Via Grid: 0.5 (20) Part Place Grid: 0.5 (20)

DESIGNERS (COUNCIL

1 mm PITCH BGA

<u>alalaliilolololo</u> QIQIQI 0

<u>Via Data</u> Pad Size: 0.55 (22) Hole Size: 0.25 (10) Anti-Pad: 0.75 (30)

BGA Land Size: 0.5 (20)

Trace/Space Data

Trace Width: 0.125 (5) Trace/Trace Space: 0.125 Trace/Via Space: 0.16 (6) Routing Grid: 0.05 (2) Via Grid: 0.5 (20) Part Place Grid: 0.5 (20)

1 mm PITCH BGA

Via Data <u>o To To To Ti</u> Pad Size: 0.375 (15) **O**O O O

Hole Size: 0.175 (7) Plane Clearance: 0.625 BGA Land Size: 0.5 (20) Trace/Space Data Trace Width: 0.125 (5) Trace/Trace Space: 0.125 Trace/Via Space: 0.125 Routing Grid: 0.05 (2) Via Grid: 0.5 (20) Part Place Grid: 0.5 (20)

DESIGNERS COUNCIL

1 mm PITCH BGA

<u>alalallipipipip</u> QIQIQIAIIDIDID ololol

Via Data

Pad Size: 0.55 (22) Hole Size: 0.25 (10) Plane Clearance: 0.75

BGA Land Size: 0.5 (20)

Trace/Space Data

Trace Width: 0.15 (6) Trace/Trace Space: 0.15 Trace/Via Space: 0.15 Routing Grid: 0.05 (2) Via Grid: 0.5 (20) Part Place Grid: 0.5 (20)

DESIGNERS COUNCIL

1 mm PITCH BGA

O O O O O **o**oo

Via Data

Land: 0.50 (20) Hole: 0.25 (10) Plane Clearance: 0.70

BGA Land Size: 0.5 (20)

Trace/Space Data

Trace Width: 0.2 (8) Trace/Trace Space: 0.2 Trace/Via Space: 0.15 Routing Grid: 0.1 (4) Via Grid: 0.5 (20) Part Place Grid: 0.5 (20)

VIA-IN-PAD EXAMPLE

39 x 39 1.0 mm BGA

IPC

DESIGNERS COUNCIL

1.27 mm PITCH BGA

 <u>Via Data</u>

Land: 0.635 (25) Hole: 0.30 (12) Plane Clearance: 0.85 BGA Land Size: 0.6 (24) Trace/Space Data **Trace Width: 0.127 (5) Trace/Trace Space:**.127 Trace/Via Space: 0.127 **Routing Grid: 0.127 (5)** Via Grid: 0.635 (25) Part Place Grid 1: 1.27 Part Place Grid 2: 0.635

METRIC BGA SNAP GRIDS

Part Placement, Via Fanout and Routing grids should be evenly divisible into 1 mm

	Metric Working Grids	Metric Non-Working Grids		
	1	0.9		
	0.5	0.8		
/	0.25	0.7		
	0.2	0.6		
	0.125	0.4		
	0.1	0.3		
	0.05	0.15		

DESIGNERS (BOUNCI

PLACEMENT & VIA FANOUT

- When placing components on a PCB Design, always have your Via Display Grid turned on.
- When you place the parts, place the part pins evenly in-between your Via Display Grid to optimize the via fanout lengths and maximize your available routing channels.
- You may have to use various placement grids to accomplish this, but you will enhance the routing phase of the PCB Design layout.

OPTIMAL VIA PADSTACKS

- * 0.1 Trace Width / 0.1 Route Grid
 - Land Size: 0.5 Hole Size: 0.25 Plane Clearance: 0.7 – Avoid Trace Overlap
- * 0.125 Trace Width / 0.05 Route Grid Land Size: 0.65
 - Hole Size: 0.3 Plane Clearance: 0.8 – Avoid Trace Overlap
- * 0.15 Trace Width / 0.05 Route Grid
 - Land Size: 0.55 Hole Size: 0.25 Plane Clearance: 0.75 – Avoid Trace Overlap

MAXIMIZE ROUTING CHANNELS

- Design your PCB like you are planning a housing development
- First establish where all the freeways are going to go – Buss Routes and Main Arteries
- Then establish the local road map Trace Routes that don't have to bend
- Then build the houses along each side of the local roads Via Sites

VIA-IN-PAD AND IMPACT ON RELIABIITY

Via-in-Pad (through-hole via, capped on bottom of the board) for BGA Lands cause voids in the BGA solder joints, which may impact reliability.

Current data indicates that, for the standard 25 - 35 mm package body with 0.75 mm balls, there is no reliability risk from voids. Accelerated aging tests have been performed and the failure rate was statistically equivalent to standard dog bone designs. It appears that void consistency is more important than void size with respect to joint reliability.

ESIGNERS COUNCI

CROSS SECTION OF 0.75mm BALL WITH VIA-IN-PAD STRUCTURE

AFTER PRINTING PASTE, AND BGA PLACEMENT

DURING REFLOW SOLDERING

POST REFLOW SOLDERING

SOLDER MASK VS. METAL DEFINED LAND DESIGN

- Two basic types of solder lands used for BGA packages
 - Non-solder mask defined (NSMD)
 - Solder mask defined (SMD)
- NSMD lands are copper defined solder mask clearance around land
- SMD lands have solder mask overlapping the copper land

ESIGNERS COUNC

SOLDER LANDS FOR BGA COMPONENTS Non-Solder Mask Solder Mask **Defined Land Defined Land Copper Pad Copper Pad** Solder mask away from pad Solder maskon pad Via covered with solder mask for interconnection DESIGNERS DOUNCIL

EFFECT OF HAVING SOLDER MASK RELIEF AROUND THE BGA LANDS OF THE BOARD

Solder Mask Relief Around Land

~0 mm

Top view of land illustrating increase of effective land diameter due to trace connections

0.15 mm

Cross-sectional view of land with solder ball joint illustrating the solder wetting down the edge of the land when there is solder mask relief away from the land edge

DESIGNERS DOUNCIL

