APPLICATION NOTE

Two-stage wideband HF linear amplifier for 400 W PEP using BLW96 and BLW50F

AN98030

Two-stage wideband HF linear amplifier for
 Application note 400 W PEP using BLW96 and BLW50F AN98030

CONTENTS

1 PART 1
SINGLE-STAGE WIDEBAND (1.6-30 MHz) LINEAR AMPLIFIER FOR 400 W PEP USING TWO BLW96 TRANSISTORS
PART 2
A SINGLE-STAGE WIDEBAND (1.6-30 MHz) LINEAR AMPLIFIER FOR 25 W PEP USING BLW50F TRANSISTORS IN
3
PART 3
A TWO-STAGE WIDEBAND H.F. LINEAR AMPLIFIER FOR 400 W PEP USING TWO BLW96 AND BLW50F TRANSISTORS

Two-stage wideband HF linear amplifier for 400 W PEP using BLW96 and BLW50F

SUMMARY

This report is in three parts, each numbered separately.
Part 1 shows that a wideband power amplifier module providing up to 400 W PEP from 1.6 to 30 MHz can be made using two BLW96 transistors. Operating from a 50 V supply, the IMD at 400 W PEP over the band is better than -26 dB when loaded with a 50Ω wideband load.
Part 2 describes a suitable drive amplifier using two BLW50F transistors in class A (at the same supply voltage (50 V). The IMD of the drive amplifier is better than -40 dB into a 50Ω load.

Part 3 describes a complete design in which the driver and main amplifiers are combined using direct inter-stage impedance transformation.

1 PART 1
 SINGLE-STAGE WIDEBAND (1.6-30 MHz) LINEAR AMPLIFIER FOR 400 W PEP USING TWO BLW96 TRANSISTORS

1 INTRODUCTION

The design of this amplifier was to exploit the performance of the BLW96 in a wideband circuit to provide up to 400 W PEP from 1.6 to 30 MHz .

2 CIRCUIT DESCRIPTION

Figure 1 shows the circuit diagram; Fig.2a shows the circuit board layout, and Figs 2 b and 3 show the component lay-out.
It will be noted that baluns are used in input and output circuits. This improves the balance of the collector currents over the frequency range, offsetting any capacitive unbalance in the impedance matching transformers.

Cross neutralisation has been found to be detrimental with these devices, the practical application of neutralisation results in excessive phase changes and results in higher intermodulation distortion over parts of the band.
The input matching network which was designed with aid of a computer program is primarily intended to provide a constant overall gain with frequency and reasonably constant load impedance to a driver circuit.

In practice, a capacitive centre tap $\left(\mathrm{C}_{4}\right.$ and $\left.\mathrm{C}_{5}\right)$ at the secondary of the input impedance matching transformer T_{1} is desirable, which is earthed via a 2.2Ω resistor.
It is preferable in realising C_{4} and C_{5}, to employ three capacitors of 470,470 and 390 pF in parallel for both, leaving the centre connection such that alternative connections of R_{1} can be selected, as shown in Fig.1. This technique allows the best compromise to be found for the intermodulation distortion peaks which typically occur between 14 and 20 MHz , and which can be undesirably high at spot frequencies. A separate, temperature compensated, bias control circuit is necessary to give adjustable constant class-AB bias condition in the BLW96 transistors. The bias circuit diagram is shown in Fig. 1.

3 DESIGN DETAILS

To obtain the best performance from the amplifier over the complete range $1.6-30 \mathrm{MHz}$, the quality of the matching transformers used is very important as accurate impedance transformation and low losses are essential. Low losses can be achieved by using toroids of 4C6 material. To obtain accurate matching it is essential to make transformers with very low leakage reactance at 30 MHz combined with sufficient primary inductance at 1.6 MHz (Refs 1 and 2).

3.1 The output transformer

The load impedance required by the transistors is 9.6Ω, collector to collector. A transformer is required to match to the 50Ω load. To handle the expected power of 400 W , the transformer must be wound using two 4 C 6 cores each of $36 \times 23 \times 15 \mathrm{~mm}$. The best results were obtained using two separate transformers, each on one core, and connecting primary and secondary windings in parallel to give an acceptable value of leakage reactance at 30 MHz .
The complete transformer, wound as detailed in the parts list had a secondary reactance (50Ω winding) of 200Ω at $1.6 \mathrm{MHz}(20 \mu \mathrm{H})$ and a leakage reactance of 50Ω at $\mathrm{f}=30 \mathrm{MHz}(265 \mathrm{nH})$.

3.2 The input transformer

The design impedance of the gain correction network is 5.55Ω, so a transformer is required to match the input network to a 50Ω drive source.

The required drive input power assuming a minimum gain of 13 dB is about 20 W which requires two 4 C 6 toroids $14 \times 9 \times 5 \mathrm{~mm}$. Again, the best results were obtained by the parallel connection of two transformers each using a separate core.

Two-stage wideband HF linear amplifier for 400 W PEP using BLW96 and BLW50F

Application note

AN98030

The complete transformer, wound as detailed in the parts list, had a primary reactance (50Ω winding) of 220Ω at $1.6 \mathrm{MHz}(22 \mu \mathrm{H})$ and a leakage reactance of 50Ω at $30 \mathrm{MHz}(265 \mathrm{nH})$.

3.3 The bias unit

The circuit uses a BD433 as the temperature sensor and a BD203 emitter follower. The unit can supply a maximum bias current of 800 mA , dependent on the value of resistor in the collector of the BD203. The bias unit should be thermally connected to the amplifier by mounting on the heatsink close to the BLW96s. The collector load resistor (three 17 W wire-wound resistors in parallel) can be mounted separately on stand-off insulators at any convenient part of the heatsink.

3.4 The centre tapped choke

The collector DC supply to each BLW96 is fed via a centre-tapped coil arrangement which consists of a ferrite aerial rod (4A10 grade or equivalent) and has an inductance of $4.6 \mu \mathrm{H}$ which forms part of the total collector load.

4 PERFORMANCE OF THE AMPLIFIER

4.1 General

The measured performance of the amplifier i.e. intermodulation distortion, gain and input VSWR is given in Figs 4 to 7 . A water-cooled heatsink was used for all measurements, and a wideband 50Ω load was used in conjunction with a thermal power measurement system. The PEP was assumed to be twice the RMS power indicated, ignoring the harmonic content of the output signal.

4.2 Harmonic output

The amplifier was driven with C.W. signals at specific frequencies to 400,300 and 200 W . The driving signal had a harmonic content lower than -45 dB . Harmonic component measurements are shown in Table 1.

Two-stage wideband HF linear amplifier for 400 W PEP using BLW96 and BLW50F

Application note AN98030

Table 1 Harmomonic output v. frequency

LOAD POWER (W)	TEST FREQUENCY (MHz)	HARMONIC CONTENT (dB)								
		f_{2}	f_{3}	f_{4}	f_{5}	f_{6}	f_{7}	f_{8}	f_{9}	f_{10}
400	1.6	-31	-20	-37	-34	-39	-44	-43	-46	-52
	3.5	-36	-21	-45	-34	-63	-40	-48	-49	-47
	7	-38	-17	-47	-29	-45	-34	-64	-64	
	10	-45	-15	-45	-29	-50				
	14	-39	-16	-45	-46					
	20	-48	-24	-50	-44					
	28	-44	-41							
300	1.6	-31	-21	-39	-33	-40	-47	-43	-46	-52
	3.5	-36	-23	-45	-32	-65	-42	-48	-52	-49
	7	-40	-22	-52	-30	-48	-38	-65	-64	
	10	-48	-16	-45	-29	-50				
	14	-42	-18	-48	-47					
	20	-42	-25	-50	-46					
	28	-45	-42							
200	1.6	-32	-22	-40	-33	-42	-49	-44	-47	-55
	3.5	-35	-24	-46	-33	-65	-43	-50	-53	-50
	7	-40	-23	-62	-30	-59	-39	-65	-64	
	10	-50	-19	-45	-30	-50				
	14	-44	-19	-47	-47					
	20	-38	-27	-49	-47					
	28	-44	-42							

4.3 Collector efficiency

The collector efficiency varies over the band, and as the output matching was designed for 400 W , reduced efficiency is apparent at reduced levels of output. Typical efficiencies are:

Two-tone signals between 1.6 and $\mathbf{3 0} \mathbf{~ M H z}$

PEP LOAD (W)	BEST COLLECTOR EFFICIENCY $(\%)$	WORST COLLECTOR EFFICIENCY (\%)
400	50	37.7
300	44	32

Taking the worst case and assuming equal sharing and zero circuit losses, each transistor would dissipate 170 W.

Two-stage wideband HF linear amplifier for 400 W PEP using BLW96 and BLW50F

Application note
AN98030

C.W. signals between 1.6 and 30 MHz

$\left.\begin{array}{|c|c|c|}\hline \mathbf{P} \\ \text { LOAD } \\ \text { (W) }\end{array} \begin{array}{c}\text { BEST COLLECTOR } \\ \text { EFFICIENCY } \\ (\%)\end{array} \begin{array}{c}\text { WORST COLLECTOR } \\ \text { EFFICIENCY } \\ (\%)\end{array}\right]$

Taking the worst case and assuming equal sharing and zero circuit losses, each transistor would dissipate 220 W.
The published RF thermal resistance of the BLW96 is $0.65 \mathrm{~K} / \mathrm{W}$ (junction-heatsink) and the maximum permissible junction temperature is $200^{\circ} \mathrm{C}$. Therefore the maximum possible heatsink temperature for continuous C.W. operation is $200-(220 \times 0.65)=57^{\circ} \mathrm{C}$.

5 BIAS ADJUSTMENT

The zero signal collector currents should be adjusted by the bias potentiometer to $2 \times 100 \mathrm{~mA}$ when operating from a 50 V supply.

6 CONCLUSIONS

- A single stage amplifier using $2 \times$ BLW96s in class-AB can deliver up to 400 W PEP with intermodulation distortion better than -26 dB over the band $1.6-30 \mathrm{MHz}$.
- Measurements indicate that when used under C.W. conditions at the frequencies where the maximum collector dissipations occurs, the devices should be capable of operation with heatsink temperatures up to $57^{\circ} \mathrm{C}$.

7 REFERENCES

1. A.H. Hilbers, 'On The Design of HF Wideband Power Transformers.' CAB Report ECO6907.
2. A.H. Hilbers, 'Design of HF Wideband Transformers Part II.' CAB Report ECO7213.

(1) See note in Chapter 2.

Fig. 1 Circuit diagram of BLW96 power amplifier for $1.6-30 \mathrm{MHz}, 400 \mathrm{~W}$ PEP, see Table 2 for parts list.

Two-stage wideband HF linear amplifier for 400 W PEP using BLW96 and BLW50F

Application note AN98030

Table 2 Parts list for Fig. 1

Transistors and resistors			
$\begin{aligned} & \text { TR1 = TR2 } \\ & \text { TR3 } \\ & \text { TR4 } \\ & \text { R1 } \\ & \text { R2 }=\text { R3 } \\ & \text { R4 }=\text { R5 } \\ & \\ & \text { R6 } \\ & \text { R7 } \\ & \text { R8 } \\ & \text { R9 } \\ & \hline \end{aligned}$	BLW96 BD433 BD203 2.2Ω 18Ω $2 \times 12 \Omega$, in parallel $2 \times 15 \Omega$, in parallel $1.5 \mathrm{k} \Omega$ $3 \times 180 \Omega$, in parallel 3.3Ω adjustable 22Ω	CR 37, $\pm 5 \%$ PR 37, $\pm 5 \%$ EH 15, $\pm 5 \%$ TPW22 CR 37, $\pm 5 \%$	232221213228 232219131809 232219131209 232219131509 232219131502 230633003181 232201102338 232221213229
Capacitors			
$\begin{aligned} & \text { C1 } \\ & C 2 \\ & C 3 \\ & C 4=C 5 \\ & C 6=C 7 \\ & C 8 \\ & C 9=C 10 \\ & C 11=C 12 \\ & C 13=C 14 \\ & C 15 \\ & C 16=C 17 \\ & C 18=C 19 \\ & C 20=C 21 \\ & C 22 \end{aligned}$	10 nF 60 pF 330 pF , in parallel 300 pF , in parallel $2 \times 470 \mathrm{pF}$, in parallel $1 \times 390 \mathrm{pF}$, in parallel $2 \times 1000 \mathrm{pF}$, in parallel $1 \times 820 \mathrm{pF}$, in parallel $3 \times 100 \mathrm{nF}$, in parallel $2 \times 47 \mathrm{pF}$, in parallel $2 \times 56 \mathrm{pF}$, in parallel $5 \times 10 \mathrm{nF}$, in parallel $3 \times 100 \mathrm{nF}$, in parallel 33 pF $3.3 \mu \mathrm{~F}$ $220 \mu \mathrm{~F}$ 100 nF $220 \mu \mathrm{FF}$	polyester, $\pm 20 \%$ trimmer polystyrene, $\pm 1 \%$ polystyrene, $\pm 1 \%$ polystyrene, $\pm 1 \%$ polyester, $\pm 20 \%$ ceramic, $\pm 2 \%$ polyester, $\pm 20 \%$ polyester, $\pm 20 \%$ ceramic, $\pm 2 \%$ $\pm 10 \%$ 4 V, electrolytic polyester, $\pm 20 \%$ 10 V, electrolytic	222234244103 222280908003 222242643301 222242643001 222242644701 222242643901 222242644102 222242648201 222234244104 222265034479 222265034569 222234244103 222234244104 222265034339 222234421335 22220162221 222234244104 22220164221
Inductors			
$\begin{aligned} & \mathrm{L} 1=\mathrm{L} 2 \\ & \mathrm{~L} 3=\mathrm{L} 4 \\ & \mathrm{Ch} 1=\mathrm{Ch} 2 \\ & \mathrm{Ch} 3=\mathrm{Ch} 4 \end{aligned}$	12.9 nH ; consists of $3 / 4$ turn of 1.3 mm Cu wire 5 mm diameter 21 nH ; consists of 1 turn of 1.3 mm Cu wire 7.5 mm diameter 2.5 turns through 6 hole ferrite bead grade 3B 3 parallel turns through 6 hole bead grade 3B		$\begin{aligned} & 431202031500 \\ & 431202031500 \end{aligned}$

Two-stage wideband HF linear amplifier for 400 W PEP using BLW96 and BLW50F

Application note

AN98030

Transformers	
T1	Two transformers with parallel connected primary and secondary windings. Each transformer wound on 4C6 toroids $14 \times 9 \times 15 \mathrm{~mm},(432202091020)$. Primary winding consists of 10 turns of copper tape approximately 1.5 mm wide. Secondary winding consists of 30 turns of 0.45 mm chain enamelled Cu wire. Windings separated by a layer of PTFE tape approximately 0.025 mm thick.
T2	4 turns of $2 \times 1.0 \mathrm{~mm}$ enamelled Cu wire twisted, on a 50 mm length of $4 \mathrm{A10}$ or equivalent grade aerial rod 10 mm diameter, (4311 02055390$).$
T3	Two transformers with parallel connected primary and secondary windings. Each transformer wound on 4 C 6 toroids $36 \times 23 \times 15 \mathrm{~mm},(4322020 ~ 91090)$. Primary winding consists of 6 turns copper tape 8.0 mm wide. Secondary winding consists of 14 turns of $4 \times 0.5 \mathrm{~mm}$ diameter Cu wire in parallel. Windings separated by a layer of PTFE approximately 0.025 mm thick.
B1	11 turns of 50Ω co-axial cable approximately 3 mm external diameter with PTFE dielectric and 11 turns of 0.5 mm enamelled Cu wire wound on 4C6 toroid $23 \times 14 \times 7 \mathrm{~mm},(432202091070)$.
B2	8 turns of 50Ω co-axial cable approximately 4 mm external diameter with PTFE dielectric and 8 turns of 1 mm enamelled Cu wire wound on two 4C6 toroids $36 \times 23 \times 15 \mathrm{~mm},(432202091090)$.

Fig. 2 BLW96 power amplifier circuit board (a) and component lay-out (b).

Fig. 3 BLW96 power amplifier component lay-out, underside of heatsink.

Two-stage wideband HF linear amplifier for 400 W PEP using BLW96 and BLW50F

Application note AN98030

Fig. 4 Intermodulation performance of BLW96 amplifier at 200 W PEP.

Fig. 5 Intermodulation performance of BLW96 amplifier at 300 W PEP.

Two-stage wideband HF linear amplifier for 400 W PEP using BLW96 and BLW50F

Application note AN98030

Fig. 6 Intermodulation performance of BLW96 amplifier at 400 W PEP.

Fig. 7 Gain and input VSWR of BLW96 at 400 W C.W.

2 PART 2
 A SINGLE-STAGE WIDEBAND (1.6-30 MHz) LINEAR AMPLIFIER FOR 25 W PEP USING BLW50F TRANSISTORS IN CLASS A

1 INTRODUCTION

This amplifier was developed to drive a 400 W linear amplifier using BLW96 transistors in class AB and to provide data for future development of a two stage amplifier for the same power with both driver and p.a. stages working from a nominal 50 V supply.

The driver amplifier described herein was designed to give 25 W PEP into a 50Ω load sufficient to drive the amplifier described in Chapter 2. Class A operation is necessary because the required intermodulation distortion of the driver circuit alone should be substantially less than that of the p.a., the driver circuit distortion being somewhat degraded when working into the non-linear input impedance of the p.a. A target figure of intermodulation products $<-40 \mathrm{~dB}$ over the frequency band 1.6 to 30 MHz was therefore required.

As with the BLW96 p.a., 50Ω input and output impedances were assumed initially, but direct inter-stage impedance matching is used in the two stage amplifier which will be reported subsequently.

2 GENERAL CIRCUIT DESCRIPTION

The circuit diagram of the amplifier is given in Fig.8, and follows conventional class-A push-pull linear HF amplifier design practice.
Some shunt and series feedback is applied: the shunt feedback resistors are also used to determine bias conditions.
The design and construction of the broadband input and output impedance matching transformers is critical in overall amplifier performance.
Details of these and other construction features are given in Chapter 3.

3 DESIGN AND CONSTRUCTION

3.1 Bias condition

In the design of linear class-A amplifiers, in order to arrive at the best intermodulation performance, a suitable starting point is to assume maximum bias current and voltage permitted by the maximum anticipated heatsink temperature.

In this design, therefore, a practical maximum operating heatsink temperature of $70^{\circ} \mathrm{C}$ was assumed. At this heatsink temperature, the practical bias conditions for the BLW50F of $\mathrm{V}_{\mathrm{CE}}=44 \mathrm{~V}, \mathrm{I}_{\mathrm{C}}=1 \mathrm{~A}$ are permissible.
Note that the BLW96 amplifier of Part 1 shows a worst case gain of about 13.5 dB and a worst case VSWR of about 1.45 (these two conditions do not occur at the same frequency however). But, conservatively, we may say that a suitable driver should be capable of about 18.7 W in a 50Ω load.

In addition, if this power (18.7 W) is to be available at intermodulation products $\mathrm{d} 3, \mathrm{~d} 5,<-40 \mathrm{~dB}$, experience has shown that the maximum available power from the amplifier (class A) into a linear resistive load should approach 35 W , at which power intermodulation products will of course exceed -40 dB.

Further, with the circuit configuration chosen (Fig.8), it will be seen that appreciable power is dissipated in the shunt feedback resistors.

We expect about 15% of the available power will be so dissipated; therefore the maximum available power requirement becomes about 40 W from the transistors.

The projected initial bias conditions, $\mathrm{V}_{\mathrm{CE}}=44 \mathrm{~V}, \mathrm{I}_{\mathrm{C}}=1 \mathrm{~A}$ correspond to a collector dissipation of 44 W per transistor. Under class-A operation, the maximum output power would then be 22 W per transistor, 44 W total.

Two-stage wideband HF linear amplifier for 400 W PEP using BLW96 and BLW50F

Application note AN98030

There is therefore some margin compared with the estimated capability requirement of 35 W and this is reasonable, in part because some further degradation of intermodulation performance may be expected when directly driving into the somewhat non-linear input impedance of the p.a., instead of the linear, non reactive design load (50Ω).
Having chosen $\mathrm{V}_{\mathrm{CE}}=44 \mathrm{~V}$, a further voltage drop of 2 V may be assumed across the external emitter resistor for bias stabilisation.

3.2 Components and lay-out

Figure 9 gives details of the circuit board and component lay-out. The parts list in Table 3 includes details of wound components including the two wideband matching transformers.
A suitable heatsink must be provided, sufficient to limit the junction temperature to $<200^{\circ} \mathrm{C}$ under DC (bias) conditions.
The total current required at 46 V is about 2.25 A , which includes base bias current flowing in the feedback resistors.
The total dissipation of the BLW50F transistors is, however approximately $44 \times 2=88 \mathrm{~W}$.
The feedback resistors and external emitter resistors together dissipate a further 14 W approximately.
If these resistors are mounted so that they do not contribute to the heatsink surface temperature close to the transistors, then the required heatsink thermal resistance, $\theta_{\text {h-amb }}$, which determines a heatsink temperature of $70{ }^{\circ} \mathrm{C}$ in a $25^{\circ} \mathrm{C}$
laboratory ambient, for example is given by: $\theta_{\mathrm{h} \text {-amb }} \leq \frac{70-25}{88}$
i.e. $<0.51^{\circ} \mathrm{C} / \mathrm{W}$.

To obtain the best compromise between input VSWR and gain, particularly between 26 and $30 \mathrm{MHz}, \mathrm{C}_{2}$ is made adjustable; this accommodates the inevitable spread of leakage reactance of the input transformer T_{1}.

Similarly, to allow for leakage reactance spreads in $\mathrm{T}_{2}, \mathrm{C}_{3}$ is also made adjustable.

4 AMPLIFIER PERFORMANCE

Figures 10 and 11 show the measured amplifier performance.
Figure 11 shows 3rd and 5th order intermodulation products relative to the amplitude of each tone (6.25 W) under standard 2-tone drive conditions.
Figure 10 shows amplifier gain and input VSWR under single tone drive at $\mathrm{P}_{\text {load }}=25 \mathrm{~W}$.
Note that d_{3} is substantially $<-40 \mathrm{~dB}$ over the frequency range of interest; the minimum gain and worst case VSWR are $15.7 \mathrm{~dB}, 1.36$ respectively, both occurring at the lower frequencies.

5 CONCLUSIONS

A wideband linear HF amplifier has been designed and constructed, using BLW50F transistors in class A which can give up to 25 W PEP over the band 1.6 to 30 MHz with 3 rd and 5 th order intermodulation better than -40 dB between 2 and 28 MHz .

Amplifier gain and input VSWR are better than 15.7 dB and 1.4:1 respectively over the frequency range. The amplifier should be suitable to drive a further linear amplifier using BLW96s in class AB to 400 W PEP.

D1 = BY206;
TR1, TR2 = BLW50F.
Fig. 8 Circuit diagram of 25 W linear amplifier.

Two-stage wideband HF linear amplifier for
Application note 400 W PEP using BLW96 and BLW50F

Table 3 Parts list for Fig. 8

Resistors			
R1 $=$ R2	$2 \times 200 \Omega$, in series	PR52, $\pm 5 \%$	232219232001
$\mathrm{R} 3=\mathrm{R} 4$	$5 \times 12 \Omega$, in parallel	CR25, $\pm 5 \%$	232221113129
R5	6.8Ω	CR25, $\pm 5 \%$	232221113688
R6	22Ω	CR37, $\pm 5 \%$	232221113229
R7	15Ω	CR25, $\pm 5 \%$	232221113159
R8	3.3Ω, adjustable	TPW22	232201102338
Capacitors			
C 1 = C4	10 nF	polyester, $\pm 20 \%$	222235244103
$\mathrm{C} 2=\mathrm{C} 3$	60 pF	trimmers	222280908003
C5	22 nF	polyester, $\pm 20 \%$	222235244223
$\mathrm{C} 6=\mathrm{C} 7$	$2 \times 47 \mathrm{nF}$, in parallel	polyester, $\pm 20 \%$	222235244473
Transformers			
T1	1 : 1.5 turns ratio, wound on twin hole bead Philips grade 4B1, (4312 02031525). Primary 4 turns of $2 \times 0.45 \mathrm{~mm}$ enamelled Cu wire in parallel, tapped at centre and 2×1 turn from centre.		
T2	1 : 1.4 turns ratio, wound on a Philips 4C6 toroid $23 \times 14 \times 7 \mathrm{~mm}$, (4322 020 91070). Primary 22 turns of $2 \times 0.45 \mathrm{~mm}$ enamelled Cu wire centre tapped. Secondary 16 turns of copper tape approx. 1.5 mm wide. Primary wound on top of secondary winding and insulated by PTFE tape approximately 0.025 mm thick.		
Ch1	2.5 turns on 6 hole bead grade 3B, (4312 02031500).		

Fig. 9 Printed circuit board and lay-out.

Two-stage wideband HF linear amplifier for 400 W PEP using BLW96 and BLW50F

Application note AN98030

Fig. 10 BLW50F linear amplifier gain and input VSWR versus frequency.

Fig. 11 BLW50F linear amplifier-intermodulation products versus frequency.

3 PART 3
 A TWO-STAGE WIDEBAND H.F. LINEAR AMPLIFIER FOR 400 W PEP USING TWO BLW96 AND BLW50F TRANSISTORS

1 INTRODUCTION

It has been shown in Part 1 that two BLW96 transistors in a wideband class-AB push-pull amplifier can give 400 W PEP under two-tone drive with intermodulation products $<-26 \mathrm{~dB}$ in the band $1.6-30 \mathrm{MHz}$.

Part 2 described a suitable drive amplifier using two BLW50F transistors in class-A at the same supply voltage (50 V nominal). The intermodulation performance of the drive amplifier is $<-40 \mathrm{~dB}$ into a 50Ω load.

The two amplifiers have been combined using direct inter-stage impedance transformation and the overall design is described here in Part 3.

2 CIRCUIT DESCRIPTION

The circuit diagram of the complete amplifier is shown in Fig. 12.
Standard design practice for the individual BLW96 and BLW50F push-pull linear amplifiers has been closely followed. The differences are:

1. Direct impedance matching between the driver stage output (100 Ω) and the p.a. input (5.5Ω).
2. Replacement of adjustable capacitors by fixed-value capacitors, because it is considered impractical to have the complication of adjustments in a two-stage circuit.
The fixed capacitors are chosen to compensate for leakage reactance of cricital transformers towards the higher frequency limit of the band, assuming good winding and mounting technique.
3. Omission of the balun and adjustable centre-tap arrangement in the p.a. input circuits, which are unnecessary with balance provided by a push-pull driver.

3 CONSTRUCTIONAL DETAILS

Figure 14 shows the printed circuit board and component layout.
Figure 15 shows the general arrangement of a water-cooled copper heatsink on the underside of which the temperature compensated p.a. bias unit is mounted.

The parts list (Table 5) includes winding instructions and inductors and transformers.

Two-stage wideband HF linear amplifier for 400 W PEP using BLW96 and BLW50F

Application note
AN98030

4 AMPLIFIER PERFORMANCE

The separate performance of the basic driver and p.a. circuits with 50Ω terminations is summarised below

	DRIVER	P.A.
Bias		
$\mathrm{V}_{\text {CE }}$	44 V	50 V
I_{C}	$2 \times 1 \mathrm{~A}$	$2 \times 100 \mathrm{~mA}$ (zero signal)
Single tone 1.6-30 MHz		
P_{L}	25 W	400 W
Gain		
(mid band)	15.8 dB	13.4 dB
(min., max.)	$15.7 \mathrm{~dB}, 16.4 \mathrm{~dB}$	13.4 dB, 15.8 dB
Input VSWR		
(mid band)	$1.35: 1$	1.1:1
(max)	1.36 :1	$1.45: 1$
Two tone 1.6-30 MHz		
P_{L} (PEP)	25 W	400 W
Efficiency		37.7\% (min)
3rd order intermodulation		
(mid band)	$-46 \mathrm{~dB}$	-28 dB
(max)	-39 dB	$-27 \mathrm{~dB}$

4.1 GAIN, VSWR and INTERMODULATION

The overall performance of the two stage amplifier is shown in Figs 16 to 20.
Figure 16 shows gain and input VSWR under single tone drive with 50 V supply and $\mathrm{P}_{\text {load }}=400 \mathrm{~W}$. Minimum gain and VSWR are seen to be 25 dB and $2: 1$ respectively. Figures 17 to 19 show 3rd and 5th order intermodulation under two tone drive conditions with 50 V supply and $\mathrm{P}_{\text {load }} 200,300$ and 400 W PEP.

It is seen that at 400 W PEP, $d_{3}<-26 \mathrm{~dB}$, and at 300 W PEP, $\mathrm{d}_{3}<-30 \mathrm{~dB}$.
In addition, Fig. 20 shows intermodulation performance at 300 W PEP, but with 45 V supply. It is seen that d_{3} is still $<-30 \mathrm{~dB}$.

4.2 Harmonic content

The amplifier was driven to 400 W C.W. and the amplitude of the harmonics measured relative to the fundamental signal in the wideband load.

Table 4

TEST FREQUENCY $(\mathbf{M H z})$	$\mathbf{f}_{\mathbf{2}}$ $(\mathbf{d B})$	\mathbf{f}_{3} $(\mathbf{d B})$	\mathbf{f}_{4} $(\mathbf{d B})$	\mathbf{f}_{5} $(\mathbf{d B})$	\mathbf{f}_{6} $(\mathbf{d B})$	\mathbf{f}_{7} $(\mathbf{d B})$	\mathbf{f}_{8} $(\mathbf{d B})$	$\mathbf{f}_{\mathbf{9}}$ $(\mathbf{d B})$	$\mathbf{f}_{\mathbf{1 0}}$ $(\mathbf{d B})$
1.6	-46	-19	-56	-34	-48	-48	-50	-45	-59
3.5	-45	-19	-50	-33	-58	-44	-56	-45	-60
7	-54	-18	-50	-29	-48	-40			
10	-48	-17	-45	-32	-55	-50			
14	-43	-16	-50	-44					
20	-34	-25							
28	-40	-45							

5 CONCLUSION

A wideband linear HF amplifier has been designed using BLW96 output and BLW50F driver transistors. The overall amplifier gain is in the range $25-29 \mathrm{~dB}$ over the band $1.6-30 \mathrm{MHz}$ and the input VSWR is less than 2:1.

When operated at 400 W PEP, the (2-tone) intermodulation products are $<-26 \mathrm{~dB}$.
An intermodulation product of <-30 dB may be obtained at 300 W PEP even with the supply rail reduced to 45 V .

$\mathrm{L} 1, \mathrm{~L} 2=1$ turn 1.3 mm Cu wire 5 mm dia.
$\mathrm{L} 3, \mathrm{~L} 4=1$ turn 1.3 mm Cu wire 7.5 mm dia
Fig. 12 Circuit diagram of the complete amplifier.

[^0]Two-stage wideband HF linear amplifier for 400 W PEP using BLW96 and BLW50F

Application note AN98030

Table 5 Parts list for Fig. 12

Resistors			
R1, R2	$5 \times 12 \Omega$, in parallel	CR25, $\pm 5 \%$	232221113129
R3, R4	$2 \times 200 \Omega$, in series	PR52, $\pm 5 \%$,	232219232001
R5	15Ω	CR25, $\pm 5 \%$	232221113159
$\mathrm{R} 6=\mathrm{R} 18$	3.3Ω, adjustable	TPW22	232201102338
$\mathrm{R} 7=\mathrm{R} 14=\mathrm{R} 15$	22Ω	CR25, $\pm 5 \%$	232221113229
R8	6.8Ω	CR25, $\pm 5 \%$	232221113688
R9	1.8Ω	AC10, $\pm 10 \%$	232232910188
$\mathrm{R} 10=\mathrm{R} 11$	18Ω	PR37, $\pm 5 \%$	232221231209
$\mathrm{R} 12=\mathrm{R} 13$	$2 \times 12 \Omega$, in parallel	PR37, $\pm 5 \%$	232221231209
	$2 \times 15 \Omega$, in parallel		232221231509
R16	$1.5 \mathrm{k} \Omega$	PR37, $\pm 5 \%$	232221231502
R17	$3 \times 180 \Omega$, in parallel	EH15, $\pm 5 \%$	232233003181
R19	22Ω	CR37, $\pm 5 \%$	232221213229
Capacitors			
$\mathrm{C} 1=\mathrm{C} 23=\mathrm{C} 24$	10 nF	polyester, $\pm 20 \%$	222235244103
C2	39 pF	ceramic, $\pm 2 \%$	222263210399
C3	27 pF	ceramic, $\pm 2 \%$	222263210279
C4	680 pF	polystyrene, $\pm 2 \%$	22224266801
C5	22 nF	polyester, $\pm 20 \%$	222235244223
C6	$2 \times 47 \mathrm{nF}$, in parallel	polyester, $\pm 20 \%$	222235242473
$\mathrm{C} 7=\mathrm{C} 8$	$2 \times 470 \mathrm{pF}$, in parallel	polyester, $\pm 2 \%$	22224264701
	$1 \times 390 \mathrm{pF}$, in parallel	polyester, $\pm 2 \%$	22224263901
$\mathrm{C} 9=\mathrm{C} 10$	$2 \times 1000 \mathrm{pF}$, in parallel	polyester, $\pm 2 \%$	22224261002
	$1 \times 820 \mathrm{pF}$, in parallel	polyester, $\pm 2 \%$	22224268201
C11	100 nF	polyester, $\pm 20 \%$	222235244104
$\mathrm{C} 12=\mathrm{C} 13$	$2 \times 47 \mathrm{pF}$, in parallel	ceramic, $\pm 2 \%$	222263234479
	$2 \times 56 \mathrm{pF}$, in parallel	ceramic, $\pm 2 \%$	222263234569
C14 $=$ C15	$5 \times 10 \mathrm{nF}$, in parallel	polyester, $\pm 20 \%$	222235244103
C16 = C17	$3 \times 100 \mathrm{nF}$, in parallel	polyester, $\pm 20 \%$	222235254104
C18	60 pF	trimmer	222280908003
$\mathrm{C} 19=\mathrm{C} 20$	$3.3 \mu \mathrm{~F}$	polyester, $\pm 10 \%$	222234421335
$\mathrm{C} 21=\mathrm{C} 22$	$220 \mu \mathrm{~F}$	4 V , electrolytic	22220162221
C25	$220 \mu \mathrm{~F}$	10 V , electrolytic	22220164221
Inductors			
Ch1 = Ch2 = Ch3	2.5 turns through 6 hole ferrite bead grade 3B 3 parallel loops through 6 hole ferrite bead grade 3B 13.9 nH ; see diagram on Fig. 12 21 nH ; see diagram on Fig. 12		431202031500
Ch4 = Ch5			431202031500
$\mathrm{L} 1=\mathrm{L} 2$			
L3 $=\mathrm{L} 4$			

Two-stage wideband HF linear amplifier for 400 W PEP using BLW96 and BLW50F

Application note
AN98030

Transformers	
T1	1:1.5 turns ratio, wound on twin hole bead Philips grade 4B1 (4312 020 31525). Primary: 4 turns of $2 \times 0.45 \mathrm{~mm}$ enamelled Cu wire in parallel. Secondary: 6 turns of $2 \times 0.45 \mathrm{~mm}$ enamelled Cu wire in parallel tapped at centre and at 2×1 turns from centre. See Fig. 13 . Typical primary reactance at $\mathrm{f}=1.6 \mathrm{MHz}=($ secondary $\mathrm{o} / \mathrm{c})=j 160$, typical leakage reactance at $\mathrm{f}=30 \mathrm{MHz}=($ secondary $\mathrm{s} / \mathrm{c})=\mathrm{j} 25$.
T2	4.5 : 1 turns ratio. Consists of two transformers with primary and secondary windings connected in parallel, each wound on twin hole bead Philips grade 4B1 (4312 020 31500). Primary winding 9 turns 0.45 mm enamelled Cu wire centre tapped. Secondary 2 turns of $2 \times 0.45 \mathrm{~mm}$ enamelled Cu wire in parallel. Typical primary reactance of combination at $\mathrm{f}=1.6 \mathrm{MHz}$ (secondary o / c) $=\mathrm{j} 400$. Typical leakage reactance of combination at $\mathrm{f}=30 \mathrm{MHz}$ (secondary s / c) $=\mathrm{j} 90$.
T3	The centre tapped choke, wound on a 50 mm length of 4 A 10 aerial rod (or equivalent), (4311 020 55390), 4 turns of twisted enamelled Cu wire 1.0 mm , typical total reactance at $\mathrm{f}=1.6 \mathrm{MHz}=\mathrm{j} 40$.
T4	2.33 : 1 turns ratio, consists of two transformers with primary windings and secondary windings connected in parallel, each wound on 4C6 toroids $36 \times 23 \times 15 \mathrm{~mm}$ (4322 020 91090). Primary winding 6 turns of Cu tape 8 mm wide. Secondary winding 14 turns of $4 \times 0.5 \mathrm{~mm}$ enamelled Cu wire in parallel. Windings are separated by PTFE tape approximately 0.25 mm thick. Typical primary reactance of combination at $f=1.6 \mathrm{MHz}($ primary $\mathrm{o} / \mathrm{c})=\mathrm{j} 200$. Typical leakage reactance of combination at $\mathrm{f}=30 \mathrm{MHz}$ (primary s/c) $=\mathrm{j} 50$.
T5	Output balun transformer. Wound on two 4C6 toroids $36 \times 23 \times 15 \mathrm{~mm}$, (4322 020 91090), with 8 turns of 50Ω coaxial cable having PTFE insulation and approximately 4 mm external diameter and 8 turns of 1 mm enamelled Cu wire for the balancing winding - see diagram

Fig. 13 Transformer T_{1}.

Fig. 14 Printed circuit board and lay-out.

BIAS UNIT BOARD

Fig. 15 Water cooled heatsink.

Two-stage wideband HF linear amplifier for 400 W PEP using BLW96 and BLW50F

Application note AN98030

Fig. 16 Amplifier gain and VSWR.

Fig. 17 Intermodulation performance (50 V, 200 W PEP).

Two-stage wideband HF linear amplifier for 400 W PEP using BLW96 and BLW50F

Application note AN98030

Fig. 18 Intermodulation performance (50 V, 300 W PEP).

Fig. 19 Intermodulation performance (50 V, 400 W PEP).

Fig. 20 Intermodulation performance (45 V, 300 W PEP).

Philips Semiconductors - a worldwide company

Argentina: see South America
Australia: 34 Waterloo Road, NORTH RYDE, NSW 2113,
Tel. +61 29805 4455, Fax. +61 298054466
Austria: Computerstr. 6, A-1101 WIEN, P.O. Box 213, Tel. +43 160 1010, Fax. +43 1601011210
Belarus: Hotel Minsk Business Center, Bld. 3, r. 1211, Volodarski Str. 6, 220050 MINSK, Tel. +375 172200 733, Fax. +375 172200773
Belgium: see The Netherlands
Brazil: see South America
Bulgaria: Philips Bulgaria Ltd., Energoproject, 15th floor, 51 James Bourchier Blvd., 1407 SOFIA,
Tel. +3592689 211, Fax. +3592689102
Canada: PHILIPS SEMICONDUCTORS/COMPONENTS, Tel. +1 8002347381
China/Hong Kong: 501 Hong Kong Industrial Technology Centre, 72 Tat Chee Avenue, Kowloon Tong, HONG KONG,
Tel. +852 2319 7888, Fax. +852 23197700
Colombia: see South America
Czech Republic: see Austria
Denmark: Prags Boulevard 80, PB 1919, DK-2300 COPENHAGEN S, Tel. +45 3288 2636, Fax. +45 31570044
Finland: Sinikalliontie 3, FIN-02630 ESPOO,
Tel. +3589615800, Fax. +358961580920
France: 51 Rue Carnot, BP317, 92156 SURESNES Cedex, Tel. +33 14099 6161, Fax. +33 140996427
Germany: Hammerbrookstraße 69, D-20097 HAMBURG,
Tel. +49 402353 60, Fax. +49 4023536300
Greece: No. 15, 25th March Street, GR 17778 TAVROS/ATHENS,
Tel. +30 14894 339/239, Fax. +30 14814240
Hungary: see Austria
India: Philips INDIA Ltd, Band Box Building, 2nd floor,
254-D, Dr. Annie Besant Road, Worli, MUMBAI 400 025,
Tel. +91 22493 8541, Fax. +91 224930966
Indonesia: see Singapore
Ireland: Newstead, Clonskeagh, DUBLIN 14,
Tel. +353 17640 000, Fax. +353 17640200
Israel: RAPAC Electronics, 7 Kehilat Saloniki St, PO Box 18053,
TEL AVIV 61180, Tel. +972 3645 0444, Fax. +972 36491007
Italy: PHILIPS SEMICONDUCTORS, Piazza IV Novembre 3,
20124 MILANO, Tel. +39 26752 2531, Fax. +39 267522557
Japan: Philips Bldg 13-37, Kohnan 2-chome, Minato-ku, TOKYO 108,
Tel. +81 33740 5130, Fax. +81 337405077
Korea: Philips House, 260-199 Itaewon-dong, Yongsan-ku, SEOUL,
Tel. +82 2709 1412, Fax. +82 27091415
Malaysia: No. 76 Jalan Universiti, 46200 PETALING JAYA, SELANGOR, Tel. +60 3750 5214, Fax. +60 37574880
Mexico: 5900 Gateway East, Suite 200, EL PASO, TEXAS 79905,
Tel. +9-5 8002347381
Middle East: see Italy

Netherlands: Postbus 90050, 5600 PB EINDHOVEN, Bldg. VB,
Tel. +31 4027 82785, Fax. +31 402788399
New Zealand: 2 Wagener Place, C.P.O. Box 1041, AUCKLAND, Tel. +64 9849 4160, Fax. +64 98497811
Norway: Box 1, Manglerud 0612, OSLO,
Tel. +472274 8000, Fax. +4722748341
Philippines: Philips Semiconductors Philippines Inc., 106 Valero St. Salcedo Village, P.O. Box 2108 MCC, MAKATI, Metro MANILA, Tel. +63 2816 6380, Fax. +63 28173474
Poland: UI. Lukiska 10, PL 04-123 WARSZAWA,
Tel. +48 22612 2831, Fax. +48 226122327
Portugal: see Spain
Romania: see Italy
Russia: Philips Russia, UI. Usatcheva 35A, 119048 MOSCOW, Tel. +7 095755 6918, Fax. +7 0957556919
Singapore: Lorong 1, Toa Payoh, SINGAPORE 1231,
Tel. +65 350 2538, Fax. +65 2516500
Slovakia: see Austria
Slovenia: see Italy
South Africa: S.A. PHILIPS Pty Ltd., 195-215 Main Road Martindale, 2092 JOHANNESBURG, P.O. Box 7430 Johannesburg 2000,
Tel. +27 11470 5911, Fax. +27 114705494
South America: Al. Vicente Pinzon, 173, 6th floor, 04547-130 SÃO PAULO, SP, Brazil,
Tel. +55 11821 2333, Fax. +55 118212382
Spain: Balmes 22, 08007 BARCELONA,
Tel. +34 3301 6312, Fax. +34 33014107
Sweden: Kottbygatan 7, Akalla, S-16485 STOCKHOLM,
Tel. +46 8632 2000, Fax. +46 86322745
Switzerland: Allmendstrasse 140, CH-8027 ZÜRICH, Tel. +41 1488 2686, Fax. +41 14883263
Taiwan: Philips Semiconductors, 6F, No. 96, Chien Kuo N. Rd., Sec. 1, TAIPEI, Taiwan Tel. +886 22134 2865, Fax. +886 221342874
Thailand: PHILIPS ELECTRONICS (THAILAND) Ltd.,
209/2 Sanpavuth-Bangna Road Prakanong, BANGKOK 10260,
Tel. +66 2745 4090, Fax. +66 23980793
Turkey: Talatpasa Cad. No. 5, 80640 GÜLTEPE/ISTANBUL, Tel. +90 212279 2770, Fax. +90 2122826707
Ukraine: PHILIPS UKRAINE, 4 Patrice Lumumba str., Building B, Floor 7, 252042 KIEV, Tel. +38044264 2776, Fax. +380442680461
United Kingdom: Philips Semiconductors Ltd., 276 Bath Road, Hayes, MIDDLESEX UB3 5BX, Tel. +44 181730 5000, Fax. +44 1817548421
United States: 811 East Arques Avenue, SUNNYVALE, CA 94088-3409, Tel. +1 8002347381
Uruguay: see South America
Vietnam: see Singapore
Yugoslavia: PHILIPS, Trg N. Pasica 5/v, 11000 BEOGRAD,
Tel. +381 11625 344, Fax.+381 11635777

For all other countries apply to: Philips Semiconductors,
International Marketing \& Sales Communications, Building BE-p, P.O. Box 218, 5600 MD EINDHOVEN, The Netherlands, Fax. +31 402724825
© Philips Electronics N.V. 1998
All rights are reserved. Reproduction in whole or in part is prohibited without the prior written consent of the copyright owner.
The information presented in this document does not form part of any quotation or contract, is believed to be accurate and reliable and may be changed without notice. No liability will be accepted by the publisher for any consequence of its use. Publication thereof does not convey nor imply any license under patent- or other industrial or intellectual property rights.
Printed in The Netherlands

[^0]: J0GM79 pue 96M7g 6ulsn dヨd M 00t
 Two-stage wideband HF linear amplifier for

