APPLICATION NOTE

A wideband linear power amplifier
 (1.6 - 28 MHz) for 300 W PEP with
 2 MOS transistors BLF177
 NCO8703

A wideband linear power amplifier (1.6-28 MHz)
 for 300 W PEP with 2 MOS transistors BLF177

CONTENTS

1	SUMMARY
2	INTRODUCTION
3	DESIGN OF THE AMPLIFIER
3.1	General
3.2	Output circuit
3.2 .1	Load impedance
3.2 .2	Output transformer
3.2 .3	The tapped choke
3.2.4	Tuning of the output circuit
3.3	Input circuit
3.3 .1	Input impedance
3.3 .2	Input matching circuit
3.3 .3	Input transformer
3.3 .4	Tuning of the inputcircuit
4	CONSTRUCTION OF THE AMPLIFIER
5	MEASURED PERFORMANCE
5.1	Single tone measurements
5.2	Two tone measurements
6	BALANCED CIRCUIT
7	CONCLUSIONS
8	REFERENCES

1 SUMMARY

This report gives a description of a wideband push-pull amplifier for the frequency range $1.6-28 \mathrm{MHz}$.
The amplifier has been designed around 2 MOS transistors BLF177 which operate in class-AB at $\mathrm{V}_{\mathrm{DS}}=50 \mathrm{~V}$ and $\mathrm{I}_{\mathrm{DQ}}=0.5 \mathrm{~A}$ /transistor.
The main properties at $\mathrm{P}_{\mathrm{O}}=300 \mathrm{~W}$ are:
Powergain: 22 to 23 dB
Efficiency: 52.5 to 61\%
Return losses input: $\leq-15.5 \mathrm{~dB}$
2nd harmonics: $\leq-25 \mathrm{~dB}$
3rd harmonics: $\leq-16 \mathrm{~dB}$
IMD at $\mathrm{P}_{\mathrm{O}}=300 \mathrm{~W}$ PEP: $\leq-33 \mathrm{~dB}$.

2 INTRODUCTION

The BLF177 is an RF Power MOS transistor for the HF and VHF range in a 4 leads flange SOT121 encapsulation. For the frequency range $1.6-28 \mathrm{MHz}$ a wideband push-pull power amplifier has been developed with $2 \times$ BLF177 having an output power of 300 W PEP at an intermodulation distortion level below -30 dB .
The transistors operate in class- AB at $\mathrm{V}_{\mathrm{DS}}=50 \mathrm{~V}$ and a quiescent current of 0.5 A each.

3 DESIGN OF THE AMPLIFIER

3.1 General

The schematic set-up is given in Fig.1.

Fig. 1 Schematic set-up $2 \times$ BLF177 amplifier.

The two balance to unbalance transformers are applied to split the single ended input into 2 out of phase driving ports and to add the 2 out of phase output ports into one single ended output. The transformers have an impedance transformation ratio of 4:1 and match the low-ohmic in- and output impedance of the transistors to the 50Ω system impedance. At the input a special circuit takes care of a good input matching and a flat powergain over the whole bandwidth.

A wideband linear power amplifier ($1.6-28 \mathrm{MHz}$) for 300 W PEP with 2 MOS transistors BLF177

3.2 Output circuit

3.2.1 LOAD IMPEDANCE

The output impedance of each transistor can be represented as a combination of the output capacitance $\mathrm{C}_{\text {oss }}$ and the optimum load resistance. Because of the larger drain voltage swing the effective output capacitance C_{O} is appr. 15% higher than the value of $\mathrm{C}_{\text {oss }}$. So $\mathrm{C}_{\mathrm{O}}=1.15 \times 190 \approx 220 \mathrm{pF}$. The optimum load resistance for class-AB can be determined with formula:
$R_{L}=\left(0.85 \times V_{D S}\right)^{2} /\left(2 \times P_{O}\right)$
For $\mathrm{V}_{\mathrm{DS}}=50 \mathrm{~V}$ and $\mathrm{P}_{\mathrm{O}}=150 \mathrm{~W}$ we get $\mathrm{R}_{\mathrm{L}}=6 \Omega$. To keep the transformer simple a transformation ratio of 4 or 9 is preferable. A ratio of 4 gives a load impedance of $50 / 4=12.5 \Omega \rightarrow 6.25 \Omega$ for each transistor. This is very near to the optimum load resistance.

3.2.2 OUTPUT TRANSFORMER

The output transformer has to transform the 50Ω asymmetrical impedance to the $2 \times 6.25=12.5 \Omega$ symmetrical load impedance. The reactance ($\omega \mathrm{L}$) of the shunting inductance at 1.6 MHz has been chosen at 4 times $50 \Omega=200 \Omega$. So the inductance is $20 \mu \mathrm{H}$. The transformer has been wound on a ferrite toroid of 4C6 material. Dimensions: $36 \times 23 \times 15 \mathrm{~mm}$ $(D \times d \times h)$ which gives a volume (A.1) $=8.97 E-6 m^{3}$.
Because the power handling of one toroid is critical two transformers in parallel with an inductance of $40 \mu \mathrm{H}$ each have been chosen.
$\mathrm{n}_{\text {sec }}=\operatorname{SQR}((\mathrm{L} .1) /(\mu \mathrm{o} \times \mu \mathrm{r} \times \mathrm{A}))$
$\mathrm{n}_{\text {sec }}=\operatorname{SQR}((40 \mathrm{E}-6 \times 9.2 \mathrm{E}-2) /(4 \pi \mathrm{E}-7 \times 120 \times 97.6 \mathrm{E}-6))=15.8$ turns.
So $n_{p r}=8$ turns and $n_{\text {sec }}=16$ turns.
For each transformer $\mathrm{V}_{\text {max }}$ depends on the power over 100Ω.
$\mathrm{V}_{\text {max }}=\operatorname{SQR}\left(2 \times \mathrm{P}_{\mathrm{O}} \times \mathrm{R}_{\mathrm{L}}\right)=\operatorname{SQR}(2 \times 150 \times 100)=173.2 \mathrm{~V}$
$B_{\max }$ depends on the parallel loss resistance at 1.6 MHz ; for a power loss of 1% : $B_{\max }=1.3 \mathrm{E}-2 \mathrm{~T}$.
The volume A. 1 needed per core is:
A. $1=\left(V_{\text {max }} /\left(\omega \times B_{\text {max }}\right)\right)^{2}\left(\mu_{0} \times \mu_{\mathrm{r}}\right) / L$.
$A .1=(1.73 .2 /(2 \pi \times 1.6 E+6 \times 0.013))^{2}(4 \pi E-7 \times 120) / 40 E-6=6.62 E-6 \mathrm{~m}^{3}$.
Each of the toroids has a volume of $8.97 \mathrm{E}-6 \mathrm{~m}^{3}$. Figure 7 shows one of the two parallel connected output transformers. On each toroid the primary winding has 8 turns of copperfoil (width 5 mm and thickness 0.05 mm). The secondary winding has 16 turns of 2 enamelled copper wires (0.6 mm) in parallel.
So each primary turn has been covered with 2 secondary turns which means 4 wires of 0.6 mm . Both windings are isolated with PTFE-foil (thickness 0.1 mm). To reduce the stray-inductance the transformer has been wound as follows:

1. The primary has been wound evenly around the periphery of the toroid
2. With the secondary the same has been done with the first 8 turns; the second part of 8 turns has been wound in between the first part. So the secondary has been wound twice around the core.
The measured secondary inductance of each transformer is $38 \mu \mathrm{H}$ and $\mathrm{L}_{\text {str }}=300 \mathrm{nH}$.
With the aid of a network analyser the parallel combination of these 2 transformers has been corrected. For the higher frequencies at the low-ohmic side a parallel capacitor of 240 pF and for the lower frequencies at the high-ohmic side a series capacitor of 10 nF give return losses below -21 dB over the whole frequency range (see Fig.2).

Fig. 2 Output transformer with correction.

Replacing the transistors by resistors of 6.25Ω the return loss can be measured at the 50Ω side. Figure 11 gives the return losses of the parallel combination of the two transformers before and after the correction.

3.2.3 The tapped choke

The chokes in the drain circuits are wound around a common ferrite rod of 4B1 material. Dimensions: $50 \times 10 \mathrm{~mm}(\mathrm{I} \times \mathrm{d})$. Figure 3 gives a schematic electrical circuit of the output.

Fig. 3 Output with the tapped choke.

Between both drains the impedance for the even harmonics depends on the coupling factor between both windings. If the coupling factor amounts to 1 both drains will be short circuited for the even harmonics.
Because the voltage over one winding is equal to half of the voltage between both drains, the total inductance between both drains is 4 times the inductance of one winding.
The reactance of the shunting inductance at 1.6 MHz has been chosen at 4 times $12.5 \Omega=50 \Omega$.

A wideband linear power amplifier ($1.6-28 \mathrm{MHz}$) for 300 W PEP with 2 MOS transistors BLF177

Application Note NC08703

So the inductance between both drains is $5 \mu \mathrm{H}$, this means for one winding an inductance of $1.25 \mu \mathrm{H}$. According to the Philips Data Handbook "MA01 on soft ferrites of 1996, the effective permeability" of a rod with $1 / \mathrm{d}=5$ and $\mu_{r}=250$ is appr. 20.
The number of turns can be calculated with:
$\mathrm{n}=\operatorname{SQR}\left(\mathrm{L} .1 /\left(\mu_{0} \times \mu_{r} \times \mathrm{A}\right)\right)$
$n=\operatorname{SQR}\left(1.25 E-6 \times 50 E-3 /\left(4 \pi E-7 \times 20 \times 1 / 4 \pi(10 E-3)^{2}\right)=5.6\right.$ turns. In practice 6 twisted turns of the primary and secondary windings have been wound around the rod. Figure 8 shows the tapped choke. To increase the coupling factor each winding consists of 2 enamelled copper wires (0.8 mm) in parallel. The measured inductance is $1.275 \mu \mathrm{H}$.

3.2.4 TUNING OF THE OUTPUT CIRCUIT

For an optimum alignment of the output circuit the 2 transistors have been replaced by dummies consisting of the parallel connection of a resistance and a capacitance. The resistance is equal to the optimum load resistance and the capacitance to the output capacitance (see Section 3.2.1).
Tuning of the output circuit has been carried out by measuring the return losses at the output with a network analyser under swept conditions (see Fig.4).

Fig. 4 Output circuit before tuning.

The measured return losses should be as low as possible by changing the correction capacitors. Figure 12 shows the return losses of the output before and after tuning. For optimum results the capacitance across the primary winding of the output transformer has been reduced from 240 to 150 pF and the low frequency correction capacitor of 10 nF at the output has been changed to an inductance of 100 nH . The last change can be explained as follows:

1. The low frequency compensation is taken over by the coupling capacitors between the drain choke and the impedance transformer
2. The function of the transformer is not only impedance matching but also transfer from balanced to unbalanced. The latter makes that the interwinding capacitance has more influence. This is so much that a series inductance at the output is needed for high frequency compensation.

A wideband linear power amplifier ($1.6-28 \mathrm{MHz}$) for 300 W PEP with 2 MOS transistors BLF177

Application Note NC08703

3.3 Input circuit

3.3.1 INPUT IMPEDANCE

The input impedance and gain of the transistor can be determined with the aid of a computer model of the BLF177. Table 1 shows the calculated gain and impedances for the frequency range 1.6 to 28 MHz .
BLF177 Vds $=50 \mathrm{~V}$ Po $=150 \mathrm{~W}$ Class-AB.
Table 1 Calculated gain and impedances of the BLF177

\mathbf{f} $(\mathbf{M H z})$	G (dB)	INP.IMP. (Ω)	LOAD IMP. (Ω)
1.6	54.70	$2.29-\mathrm{j} 133.58$	$6.23+\mathrm{j} .07$
2.5	50.82	$2.29-\mathrm{j} 85.50$	$6.23+\mathrm{j} .12$
3.5	47.90	$2.29-\mathrm{j} 61.09$	$6.23+\mathrm{j} .16$
5.0	44.80	$2.29-\mathrm{j} 42.78$	$6.22+\mathrm{j} .23$
7.0	41.88	$2.29-\mathrm{j} 30.58$	$6.21+\mathrm{j} .32$
10.0	38.78	$2.29-\mathrm{j} 21.45$	$6.18+\mathrm{j} .46$
14.0	35.85	$2.29-\mathrm{j} 15.37$	$6.13+\mathrm{j} .64$
20.0	32.75	$2.29-\mathrm{j} 10.84$	$6.03+\mathrm{j} .89$
24.0	31.17	$2.29-\mathrm{j} 9.09$	$5.95+\mathrm{j} 1.05$
28.0	29.83	$2.29-\mathrm{j} 7.85$	$5.85+\mathrm{j} 1.20$

By adding a gate-source resistor of 6.25Ω the power gain reduces from 29.8 to 23.3 dB at 28 MHz .

3.3.2 INPUT MATCHING CIRCUIT

As mentioned in Section 3.1 a special circuit matches the input impedance of each transistor to the 6.25Ω of the input transformer. The matching network chosen can be treated as the half of a double π-section as described in Ref. 1 .
Removing the in- and output capacitance the circuit changes in a T-section with C_{i} as capacitor and 2 inductances with a value of half the inductances of the double π-section (see Fig.5).

Fig. 5 Input matching circuit.

A wideband linear power amplifier (1.6-28 MHz) for 300 W PEP with 2 MOS transistors BLF177

Application Note NC08703
C_{i} represents the input capacitance of the BLF177 and can be calculated from the input impedance of Table 1.
For 7 MHz : $\mathrm{C}_{\mathrm{i}}=1 /(2 \pi \times 7 \mathrm{E}+6 \times 30.58)=744 \mathrm{pF}$.
Across this capacitor a constant voltage versus frequency from 1.6 up to 28 MHz has to be developed. Provided C_{i} is an ideal capacitance the dimensioning of this network is as follows:
$\mathrm{R}_{\mathrm{G}}=\mathrm{R}_{\mathrm{gs}}$ must be appr. 6Ω to obtain low I.M. distortion and good stability. This appeared during the development of the narrow band testcircuit as given in the BLF177 publication data. To judge whether this value is also acceptable for wideband operation we calculate the product:
$\mathrm{W}_{\mathrm{c}} \times \mathrm{C}_{\mathrm{i}} \times \mathrm{R}_{\mathrm{gs}}$ in which ω_{c} is the maximum angular frequency.
Doing so we find:
$2 \pi \times 28 \mathrm{E}+6 \times 744 \mathrm{E}-12 \times 6.25=0.818$
R_{gs} has been chosen 6.25Ω for the ease of transformation. Comparing the value of this product with the one given in Ref. 2 we see that with a double π-section we can easily reach a bandwidth of 50 MHz . Therefore we have simplified the network as described above. Continuing the calculation we find:
$\mathrm{L}=0.997 \mathrm{R}_{\mathrm{G}} / \omega_{\mathrm{c}}=35.4 \mathrm{nH}$ (So L1 $=\mathrm{L} 2=17.7 \mathrm{nH}$)
With the computer model mentioned in Section 3.3.1 a gain of 22.3 dB has been calculated with $\mathrm{R}_{\mathrm{gs}}=6.25 \Omega$.
Starting from this 22.3 dB gain, $\mathrm{L}_{1}=\mathrm{L}_{2}=17.7 \mathrm{nH}$ and $\mathrm{R}_{\mathrm{gs}}=6.25 \Omega$ the input VSWR and gain deviation have been calculated (see Table 2).

Initial results
Rs $=6.250 \Omega$; Gs $=22.300 \mathrm{~dB}$
Par.LR: $\mathrm{L}=17.700 \mathrm{nH} ; \mathrm{R}=6.250 \Omega$
Ser.Ind.: $L=17.700 \mathrm{nH}$
Table 2 Results before optimization

\mathbf{f} $(\mathbf{M H z})$	VSWR	dG $(\mathbf{d B})$
1.6	1.010	1.440
2.5	1.016	1.435
3.5	1.023	1.431
5.0	1.032	1.419
7.0	1.046	1.402
10.0	1.068	1.354
14.0	1.100	1.265
20.0	1.161	1.075
24.0	1.214	.910
28.0	1.281	.703

Before optimization the maximum VSWR $=1.28$ and the gain $=22.7 \mathrm{~dB} \pm 0.37 \mathrm{~dB}$. To achieve a maximally flat gain and a low input VSWR a computer optimization program has been used. This optimization results in a gain of 23.3 dB with a maximum Δ Gain $= \pm 0.09 \mathrm{~dB}$ and a VSWR ≤ 1.09, see Table 3 . For these results L_{1} has been changed from 17.7 nH to 9 nH and L_{2} from 17.7 nH to 21.1 nH . the R_{gs} has been decreased from 6.25Ω to 5.7Ω.
Final results
$R s=6.250 \Omega$; $\mathrm{Gs}=23.300 \mathrm{~dB}$
Par.LR: L = $21.079 \mathrm{nH} ; \mathrm{R}=5.749 \Omega$
Ser.Ind.: $L=8.950 n H$

A wideband linear power amplifier ($1.6-28 \mathrm{MHz}$) for 300 W PEP with 2 MOS transistors BLF177

Application Note NC08703

Table 3 Results after optimization

\mathbf{f} $(\mathbf{M H z})$	VSWR	dG $(\mathbf{d B})$
1.6	1.087	.072
2.5	1.087	.071
3.5	1.087	.074
5.0	1.086	.076
7.0	1.085	.084
10.0	1.082	.087
14.0	1.076	.086
20.0	1.059	.056
24.0	1.047	.006
28.0	1.044	-.087

3.3.3 INPUT TRANSFORMER

The input transformer is simular to the output transformer. It transforms the asymmetrical system impedance to the $2 \times 6.25 \Omega=12.5 \Omega$ symmetrical source impedance. However the lower power handling (<3 W) justifies a toroid of 4C6 material with smaller dimensions: $14 \times 9 \times 5 \mathrm{~mm}(\mathrm{D} \times \mathrm{d} \times \mathrm{h})$ which gives a volume $\mathrm{A} .1=0.445 \mathrm{E}-6 \mathrm{~m}^{3}$. As described in Section 3.2.2 the primary winding can be calculated for $L=20 \mu \mathrm{H}$.
$n_{p r}=\operatorname{SQR}\left((L .1) /\left(\mu_{0} \times \mu_{r} \times A\right)\right)$
$\mathrm{n}_{\mathrm{pr}}=\operatorname{SQR}\left((20 \mathrm{E}-6 \times 3.55 \mathrm{E}-2) /(4 \pi \mathrm{E}-7 \times 120 \times 12.54 \mathrm{E}-6)=19.4\right.$ turns. With $\mathrm{n}_{\mathrm{pr}}=20$ turns and a transformation ratio of $4: 1$ the $\mathrm{n}_{\mathrm{sec}}=10$ turns.
$\mathrm{V}_{\text {max }}=\operatorname{SQR}\left(2 \times \mathrm{P}_{\mathrm{i}} \times \mathrm{R}_{\mathrm{S}}\right)=17.3 \mathrm{~V}$ and $\mathrm{B}_{\text {max }}=0.013 \mathrm{~T}$.
The needed core volume A. 1 is:
A. $1=\left(V_{\max } /\left(\omega \times B_{\max }\right)\right)^{2} \times\left(\mu_{\mathrm{o}} \times \mu_{\mathrm{r}}\right) / L$
A. $1=\left(17.3 /(2 \pi \times 1.6 \mathrm{E}+6 \times 0.013)^{2} \times(4 \pi \mathrm{E}-7 \times 120) / 20 \mathrm{E}-6=0.14 \mathrm{E}-6 \mathrm{~m}^{3}\right.$

The core used has a volume of $0.445 \mathrm{E}-6 \mathrm{~m}^{3}$.
Figure 9 shows the input transformer. The secondary winding has 10 turns of copperfoil (width 2 mm , thickness 0.05 mm). The primary winding has 20 turns of enamelled copper wire (0.5 mm). Each secondary turn has been covered with 2 primary turns with a PTFE foil of 0.1 mm thickness as isolation between the 2 windings. The method of winding is the same as described for the output transformer in Section 3.2.2. The measured inductance is $20.95 \mu \mathrm{H}$ and
$\mathrm{L}_{\text {str }}=250 \mathrm{nH}$.
The correction method used for the input transformer is the same as described already in Section 3.2.2 (see Fig.6).

Fig. 6 Inputtransformer with correction.

A wideband linear power amplifier (1.6-28 MHz) for 300 W PEP with 2 MOS transistors BLF177

The transformer has been corrected with parallel capacitors for the higher frequencies and a series capacitor for the lower frequencies. Figure 13 gives the return losses before and after the correction.

3.3.4 TUNING OF THE INPUTCIRCUIT

For the practical tuning of the inputcircuit each transistor has been adjusted at $\mathrm{V}_{\mathrm{DS}}=50 \mathrm{~V}$ and a quiescent current of 0.5 A .
The gain and input return losses have been measured in the frequency range 1.6 up to 35 MHz . The best results have been achieved by changing the secondary correction capacitor of the inputtransformer from 220 to 30 pF and the primary correction trimmer from $\approx 15 \mathrm{pF}$ to $\approx 20 \mathrm{pF}$. The low frequency correction capacitor at the input has been removed. The inductance in serie with R_{gs} has been increased from 21.6 to 35 nH . Figure 14 gives the complete circuit diagram of the wide band amplifier with 2 BLF177 transistors. Table 5 gives the corresponding parts list.

4 CONSTRUCTION OF THE AMPLIFIER

For the printed circuit board double Cu-clad epoxy fibre glass has been used with a thickness of $1 / 16$ " and $\varepsilon_{r}=4.5$. The position of the components is on one side and the other side serves as a groundplane. Connections to the groundplane have been made with rivets and with straps under the source leads and at the edges of the PC-board on the in- and output side.
The printed circuit board has been attached to a solid copper plate ($145 \times 120 \times 10 \mathrm{~mm}$) which functions as a heatsink. Around the position of both transistors a tube has been soldered in the copper plate to controle the temperature by means of a watercooling system. For a good thermal contact between heatsink and transistors heatsink compound has been used.
Figure 15 shows the lay-out of the amplifier. The transformers have been fastened above the printed circuit board by means of accessories of Delrin material.
These accessories have been attached through the PC-board in the copper plate.

5 MEASURED PERFORMANCE

5.1 Single tone measurements

Figures 16 to 20 show at a constant outputpower of 300 W at 2 heatsink temperatures the gain, efficiency, input return losses, 2nd and 3rd harmonics at the output as a function of the frequency. In the range 1.6 to 28 MHz the gain is 22 to 23 dB , the efficiency 52.5 to 61%, the input return losses are below -15.5 dB , the second harmonics better then -25 dB and the third harmonics below -16 dB .
At a heatsink temperature of $70^{\circ} \mathrm{C}$ the gain decreases about 1.5 dB . The heatsink temperature has only little influence on the other parameters. Figures 21 to 23 shows at 4 frequencies the output power as a function of the input power and the gain and efficiency versus outputpower.
Above 10 MHz the efficiency decreases about 6%. At 20 MHz the gain decreases above $\mathrm{P}_{\mathrm{O}}=200 \mathrm{~W}$. At other frequencies this decrease starts at $\mathrm{P}_{\mathrm{O}}=300 \mathrm{~W}$.

5.2 Two tone measurements

The two tone measurements have been carried out with 2 carriers with a frequency distance of 1 KHz . Figure 24 to 27 give as a function of the frequency the gain, efficiency, 3rd order distortion and 5 th order distortion at 4 output levels. Over the whole frequency range the gain variation is less than 1 dB at each power level. At $\mathrm{P}_{\mathrm{O}}=300 \mathrm{~W}$ PEP the efficiency is at least 40%, the 3rd order distortion $\leq-33 \mathrm{~dB}$ and the 5 th order distortion $\leq-38 \mathrm{~dB}$.
Figures 28 and 29 give the 3rd and 5th order distortion versus output power at 4 frequencies.
To verify the choice of $I_{D Q}=1 \mathrm{~A}$ the 2 nd and $3 r d$ order distortion have been measured versus $I_{D Q}$. These measurements have been carried out at the most critical frequency and output level of 20 MHz and 30 W PEP resp.
Figure 30 shows that $\mathrm{I}_{\mathrm{DQ}}=1 \mathrm{~A}$ for both transistors together was a good choice.

A wideband linear power amplifier ($1.6-28 \mathrm{MHz}$)
 Application Note for 300 W PEP with 2 MOS transistors BLF177
 NC08703

6 BALANCED CIRCUIT

As shown in Table 4 there is a certain amount of unbalance between both drain currents at RF operation. It is possible to improve this by using baluns in front of the input transformer and after the output transformer.

Table 4 Drain currents at $\mathrm{P}_{\mathrm{O}}=300 \mathrm{~W}$

f $(\mathbf{M H z)}$	$\mathbf{I}_{\mathbf{D} 1}$ (\mathbf{A})	$\mathbf{I}_{\mathbf{D} 2}$ (\mathbf{A})
1.6	5.2	4.8
5	5.1	4.75
10	5.25	4.8
15	5.3	4.95
20	5.7	5.3
25	6.2	5.25
30	5.85	5.15

7 CONCLUSIONS

This report shows that it is possible to design a wideband push-pull amplifier with 2 BLF177 MOS transistors having a very good performance.
The main properties are:

- Bandwidth: 1.6 to 28 MHz
- $\mathrm{V}_{\mathrm{DS}}: 50 \mathrm{~V}$
- $I_{D Q}: 1 \mathrm{~A}$
- Gain at $\mathrm{P}_{\mathrm{O}}=300 \mathrm{~W}: 22$ to 23 dB
- Efficiency at $\mathrm{P}_{\mathrm{O}}=300 \mathrm{~W}: 52.5$ to 61%
- Return losses input at $\mathrm{P}_{\mathrm{O}}=300 \mathrm{~W}: \leq-15.5 \mathrm{~dB}$
- 2nd harmonics output at $\mathrm{P}_{\mathrm{O}}=300 \mathrm{~W}: \leq-25 \mathrm{~dB}$
- 3rd harmonics output at $\mathrm{P}_{\mathrm{O}}=300 \mathrm{~W}: \leq-16 \mathrm{~dB}$
- IMD at $\mathrm{P}_{\mathrm{O}}=300 \mathrm{~W}$ PEP: $\leq-33 \mathrm{~dB}$.

8 REFERENCES

G. Lukkassen

Application report NCO8602
A wideband power amplifier (25 to 110 MHz) with the MOS transistor BLF245.

A wideband linear power amplifier (1.6-28 MHz)

Fig. 7 Output transformer.

Fig. 8 Tapped drain choke.

Fig. 9 Input transformer.

Fig. 10 Decoupling choke.

A wideband linear power amplifier ($1.6-28 \mathrm{MHz}$)

Application Note NC08703

Fig. 11 Output transformer correction.

Fig. 12 Return losses output circuit.

A wideband linear power amplifier ($1.6-28 \mathrm{MHz}$)

Fig. 13 Input transformer correction.

Fig. 14 Circuit diagram of the $2 \times$ BLF177 amplifier.

A wideband linear power amplifier ($1.6-28 \mathrm{MHz}$) for 300 W PEP with 2 MOS transistors BLF177

Table 5 Parts list of the wide band push-pull amplifier with $2 \times$ BLF277 (1.6 to 28 MHz); note 1

C1	$5-60$ pF film dielectric trimmer (cat.nr.: 222280908003)
C2	30 pF multilayer chip capacitor; note 2
C3	$2 \times 100 \mathrm{nF}$ multilayer chip capacitor (cat.nr.: 2222852 47104)
C4 = C5	$3 \times 100 \mathrm{nF}$ metallized film capacitor (car.nr.: 2222368 21104)
C6 = C7	100 nF multilayer chip capacitor (cat.nr.: 2222852 47104)
C8	$10 \mu \mathrm{~F}(63 \mathrm{~V}$) electrolytic capacitor (cat.nr. 2222030 28109)
$\mathrm{C} 9=\mathrm{C} 10$	$4 \times 10 \mathrm{nF}$ metallized film capacitor (cat.nr. 222236851103)
C11	$2 \times 75 \mathrm{pF}$ multilayer chip capacitor; note 2
L1 = L2	$\approx 9 \mathrm{nH}$, printed inductance; $\mathrm{I}=47$ and $\mathrm{w}=6 \mathrm{~mm}$
L3 = L4	$35 \mathrm{nH}, 3$ turns enamelled Cu-wire (0.7 mm) int.dia.: $3 \mathrm{~mm}, \mathrm{I}=2.35 \mathrm{~mm}$
L 5 = L6	$2.2 \mu \mathrm{H}$, 1 turns through modified Ferroxcube choke grade 3B (cat.nr.: 431202036642); see Fig. 10
L7	100 nH , 5 turns enamelled Cu-wire (0.8 mm) int.dia.: $5 \mathrm{~mm}, 1=6.1 \mathrm{~mm}$
$\mathrm{R} 1=\mathrm{R} 2$	5.9Ω; 4 metal film resistors of $23.7 \Omega(0.4 \mathrm{~W}$) in parallel (cat.nr.: 232215172379$)$
R3	$1 \mathrm{k} \Omega$, metal film resistor (0.4 W) (cat.nr.: 232215171002)
R4	$1 \mathrm{M} \Omega$, metal film resistor (0.4 W) (cat.nr.: 2322151 71005)
R5	500Ω, Cermet potentiometer (0.75 W)
R6	5.6 k , metal film resistor (1 W) (cat.nr.: 2322153 55622)
T1	input transformer: $\mathrm{n}_{\mathrm{pr}}=20$ turns enamelled Cu-wire (0.5 mm) $\mathrm{n}_{\mathrm{sec}}=10$ turns copper foil (width 2 mm), thickness 0.05 mm) wound around toroidal core, grade 4C6, dimensions: $14 \times 9 \times 5 \mathrm{~mm}$ (cat.nr. 4322020 97181) see Fig. 9
T2	drain choke: 6 turns of twisted pairs of 0.8 mm Cu-wires (each winding consists of 2 wires in parallel) wound on a Ferroxcube rod, grade 4B1, dimensions $10 \times 50 \mathrm{~mm}$, see Fig. 8
T3	$\mathrm{n}_{\mathrm{pr}}=8$ turns copper foil (width 6 mm , thickness 0.05 mm) $\mathrm{n}_{\mathrm{sec}}=16$ turns of 2 enamelled Cu-wires (0.6 mm) in parallel wound around toroidal core, grade 4C6, dimensions: $36 \times 23 \times 15 \mathrm{~mm}$ (cat.nr. 4322020 97201) see Fig.7; 2 of these transformers in parallel form the complete outputtransformer

Notes

1. PC-board: double Cu-clad, $1 / 16$ " epoxy fibre glass ($\varepsilon_{r}=4.5$)
2. American Technical Ceramics type 100B or capacitor of same quality.

Fig. 15 Lay-out of the $2 \times$ BLF177 amplifier.

Fig. 16 Gain versus frequency.
\qquad

$2 \times$ BLF177.
$V_{D S}=50 \mathrm{~V}$.
$I_{D Q}=1 \mathrm{~A}$.
$\mathrm{P}_{\mathrm{O}}=300 \mathrm{~W}$.
Fig. 18 Input return losses versus frequency.
\qquad
$2 \times$ BLF177.
$V_{D S}=50 \mathrm{~V}$.
$\mathrm{I}_{\mathrm{DQ}}=1 \mathrm{~A}$.
$\mathrm{PO}=300 \mathrm{~W}$.

Fig. 20 2nd harmonics versus frequency.

A wideband linear power amplifier ($1.6-28 \mathrm{MHz}$)

$2 \times$ BLF177.
$V_{D S}=50 \mathrm{~V}$.
$I_{D Q}=1 A$.
Fig. 22 Efficiency versus outputpower.

$2 \times$ BLF177.
$\mathrm{V}_{\mathrm{DS}}=50 \mathrm{~V}$.
$I_{D Q}=1 A$.

Fig. 23 Outputpower versus inputpower.

$2 \times$ BLF177.
$V_{D S}=50 \mathrm{~V}$.
$\mathrm{I}_{\mathrm{DQ}}=1 \mathrm{~A}$.
$f_{p}-f_{q}=1 \mathrm{kHz}$.
Fig. 24 Gain versus frequency.

Fig. 25 Efficiency versus frequency.

Fig. 27 Fifth order dist. versus frequency.

A wideband linear power amplifier ($1.6-28 \mathrm{MHz}$)

$2 \times$ BLF177.
$V_{D S}=50 \mathrm{~V}$.
$\mathrm{I}_{\mathrm{DQ}}=1 \mathrm{~A}$.
$\mathrm{f}_{\mathrm{p}}-\mathrm{f}_{\mathrm{q}}=1 \mathrm{kHz}$.

Fig. 28 3rd order distortion versus P_{O}.

Fig. 29 5th order distortion versus P_{O}.

A wideband linear power amplifier ($1.6-28 \mathrm{MHz}$)

Philips Semiconductors - a worldwide company

Argentina: see South America
Australia: 34 Waterloo Road, NORTH RYDE, NSW 2113,
Tel. +61 29805 4455, Fax. +61 298054466
Austria: Computerstr. 6, A-1101 WIEN, P.O. Box 213, Tel. +43 160 1010, Fax. +43 1601011210
Belarus: Hotel Minsk Business Center, Bld. 3, r. 1211, Volodarski Str. 6, 220050 MINSK, Tel. +375 172200 733, Fax. +375 172200773
Belgium: see The Netherlands
Brazil: see South America
Bulgaria: Philips Bulgaria Ltd., Energoproject, 15th floor, 51 James Bourchier Blvd., 1407 SOFIA,
Tel. +3592689 211, Fax. +3592689102
Canada: PHILIPS SEMICONDUCTORS/COMPONENTS, Tel. +1 8002347381
China/Hong Kong: 501 Hong Kong Industrial Technology Centre, 72 Tat Chee Avenue, Kowloon Tong, HONG KONG,
Tel. +852 2319 7888, Fax. +852 23197700
Colombia: see South America
Czech Republic: see Austria
Denmark: Prags Boulevard 80, PB 1919, DK-2300 COPENHAGEN S, Tel. +45 3288 2636, Fax. +45 31570044
Finland: Sinikalliontie 3, FIN-02630 ESPOO,
Tel. +3589615800, Fax. +358961580920
France: 51 Rue Carnot, BP317, 92156 SURESNES Cedex, Tel. +33 14099 6161, Fax. +33 140996427
Germany: Hammerbrookstraße 69, D-20097 HAMBURG,
Tel. +49 402353 60, Fax. +49 4023536300
Greece: No. 15, 25th March Street, GR 17778 TAVROS/ATHENS,
Tel. +30 14894 339/239, Fax. +30 14814240
Hungary: see Austria
India: Philips INDIA Ltd, Band Box Building, 2nd floor,
254-D, Dr. Annie Besant Road, Worli, MUMBAI 400 025,
Tel. +91 22493 8541, Fax. +91 224930966
Indonesia: see Singapore
Ireland: Newstead, Clonskeagh, DUBLIN 14,
Tel. +353 17640 000, Fax. +353 17640200
Israel: RAPAC Electronics, 7 Kehilat Saloniki St, PO Box 18053,
TEL AVIV 61180, Tel. +972 3645 0444, Fax. +972 36491007
Italy: PHILIPS SEMICONDUCTORS, Piazza IV Novembre 3,
20124 MILANO, Tel. +39 26752 2531, Fax. +39 267522557
Japan: Philips Bldg 13-37, Kohnan 2-chome, Minato-ku, TOKYO 108,
Tel. +81 33740 5130, Fax. +81 337405077
Korea: Philips House, 260-199 Itaewon-dong, Yongsan-ku, SEOUL,
Tel. +82 2709 1412, Fax. +82 27091415
Malaysia: No. 76 Jalan Universiti, 46200 PETALING JAYA, SELANGOR, Tel. +60 3750 5214, Fax. +60 37574880
Mexico: 5900 Gateway East, Suite 200, EL PASO, TEXAS 79905,
Tel. +9-5 8002347381
Middle East: see Italy

Netherlands: Postbus 90050, 5600 PB EINDHOVEN, Bldg. VB,
Tel. +31 4027 82785, Fax. +31 402788399
New Zealand: 2 Wagener Place, C.P.O. Box 1041, AUCKLAND, Tel. +64 9849 4160, Fax. +64 98497811
Norway: Box 1, Manglerud 0612, OSLO,
Tel. +472274 8000, Fax. +4722748341
Philippines: Philips Semiconductors Philippines Inc., 106 Valero St. Salcedo Village, P.O. Box 2108 MCC, MAKATI, Metro MANILA, Tel. +63 2816 6380, Fax. +63 28173474
Poland: UI. Lukiska 10, PL 04-123 WARSZAWA,
Tel. +48 22612 2831, Fax. +48 226122327
Portugal: see Spain
Romania: see Italy
Russia: Philips Russia, UI. Usatcheva 35A, 119048 MOSCOW, Tel. +7 095755 6918, Fax. +7 0957556919
Singapore: Lorong 1, Toa Payoh, SINGAPORE 1231,
Tel. +65 350 2538, Fax. +65 2516500
Slovakia: see Austria
Slovenia: see Italy
South Africa: S.A. PHILIPS Pty Ltd., 195-215 Main Road Martindale, 2092 JOHANNESBURG, P.O. Box 7430 Johannesburg 2000,
Tel. +27 11470 5911, Fax. +27 114705494
South America: Al. Vicente Pinzon, 173, 6th floor, 04547-130 SÃO PAULO, SP, Brazil,
Tel. +55 11821 2333, Fax. +55 118212382
Spain: Balmes 22, 08007 BARCELONA,
Tel. +34 3301 6312, Fax. +34 33014107
Sweden: Kottbygatan 7, Akalla, S-16485 STOCKHOLM,
Tel. +46 8632 2000, Fax. +46 86322745
Switzerland: Allmendstrasse 140, CH-8027 ZÜRICH, Tel. +41 1488 2686, Fax. +41 14883263
Taiwan: Philips Semiconductors, 6F, No. 96, Chien Kuo N. Rd., Sec. 1, TAIPEI, Taiwan Tel. +886 22134 2865, Fax. +886 221342874
Thailand: PHILIPS ELECTRONICS (THAILAND) Ltd.,
209/2 Sanpavuth-Bangna Road Prakanong, BANGKOK 10260,
Tel. +66 2745 4090, Fax. +66 23980793
Turkey: Talatpasa Cad. No. 5, 80640 GÜLTEPE/ISTANBUL, Tel. +90 212279 2770, Fax. +90 2122826707
Ukraine: PHILIPS UKRAINE, 4 Patrice Lumumba str., Building B, Floor 7, 252042 KIEV, Tel. +38044264 2776, Fax. +380442680461
United Kingdom: Philips Semiconductors Ltd., 276 Bath Road, Hayes, MIDDLESEX UB3 5BX, Tel. +44 181730 5000, Fax. +44 1817548421
United States: 811 East Arques Avenue, SUNNYVALE, CA 94088-3409, Tel. +1 8002347381
Uruguay: see South America
Vietnam: see Singapore
Yugoslavia: PHILIPS, Trg N. Pasica 5/v, 11000 BEOGRAD,
Tel. +381 11625 344, Fax.+381 11635777

For all other countries apply to: Philips Semiconductors,
International Marketing \& Sales Communications, Building BE-p, P.O. Box 218, 5600 MD EINDHOVEN, The Netherlands, Fax. +31 402724825
© Philips Electronics N.V. 1998
All rights are reserved. Reproduction in whole or in part is prohibited without the prior written consent of the copyright owner.
The information presented in this document does not form part of any quotation or contract, is believed to be accurate and reliable and may be changed without notice. No liability will be accepted by the publisher for any consequence of its use. Publication thereof does not convey nor imply any license under patent- or other industrial or intellectual property rights.
Printed in The Netherlands

