
BASCOM-AVR-HELPFILE page 1

Index

BASCOM-AVR

Version 1.0.0.7

Installation »page 6
The BASCOM IDE »page 15

Running BASCOM-AVR »page 15
File New »page 15
File Open »page 15
File Close »page 16
File Save »page 16
File Save As »page 16
File Print Preview »page 16
File Print »page 17
File Exit »page 17

Edit Undo »page 17
Edit Redo »page 17
Edit Cut »page 17
Edit Copy »page 17
Edit Paste »page 17
Edit Find »page 18
Edit Find Next »page 18
Edit Replace »page 18
Edit Goto »page 18
Edit Toggle Bookmark »page 18
Edit Goto Bookmark »page 18
Edit Indent Block »page 18
Edit Unindent Block »page 18

Program Compile »page 19
Program Syntax Check »page 19
Program Show Result »page 19
Program Simulate »page 20
Program Send to Chip »page 21

Tools Terminal Emultator »page 22
Tools LCD Designer »page 23

BASCOM-AVR-HELPFILE page 2

Options Compiler »page 24
Options Compiler Chip »page 24
Options Compiler Output »page 25
Options Compiler Communication »page 26
Options Compiler I2C,SPI,1WIRE »page 27
Options Compiler LCD »page 28

Options Communication »page 29
Options Environment »page 30
Options Simulator »page 32
Options Programmer »page 33

Editor Keys »page 35
BASCOM Developing Order »page 37
BASCOM and Memory »page 37
BASCOM Error codes »page 39
BASCOM and Hardware

Additional Hardware »page 42
AVR Internal Hardware »page 43
AVR Internal Hardware TIMER0 »page 45
AVR Internal Hardware TIMER1 »page 46
AVR Internal Hardware Watchdog timer »page 48
AVR Internal Hardware PORT B »page 48
AVR Internal Hardware PORT D »page 49
AVR Internal Registers »page 44
Attaching an LCD display »page 51
Using the I2C protocol »page 52
Using the 1 Wire protocol »page 53
Using the SPI protocol »page 53
Power Up »page 53

Language Fundamentals »page 55
Reserved Words »page 53
BASCOM Language Reference

$ASM »page 63
$BAUD »page 64
$CRYSTAL »page 64
$DATA »page 65
$DEFAULT »page 66
$EEPROM »page 67
$EXTERNAL »page 68
$INCLUDE »page 69
$LCD »page 70
$LCDRS »page 72
$LCDPUTCTRL »page 70
$LCDPUTDATA »page 71
$LIB »page 73
$REGFILE »page 75
$SERIALINPUT »page 75
$SERIALINPUT2LCD »page 77
$SERIALOUTPUT »page 77
$XRAMSIZE »page 78
$XRAMSTART »page 79
1WRESET »page 79

BASCOM-AVR-HELPFILE page 3

1WREAD »page 81
1WWRITE »page 82
ABS »page 84
ALIAS »page 84
ASC »page 85
BAUD »page 86
BCD »page 87
BITWAIT »page 88
BYVAL »page 89
CALL »page 90
CHR »page 91
CLS »page 92
CLOCKDIVISION »page 93
CLOSE »page 94
CONFIG »page 95
CONFIG TIMER0 »page 103
CONFIG TIMER1 »page 106
CONFIG LCD »page 99
CONFIG LCDBUS »page 99
CONFIG LCDMODE »page 100
CONFIG 1WIRE »page 96
CONFIG SDA »page 101
CONFIG SCL »page 102
CONFIG DEBOUNCE »page 96
CONFIG SPI »page 103
CONFIG LCDPIN »page 101
CONFIG WATCHDOG »page 109
CONFIG PORT »page 110
COUNTER0 AND COUNTER1 »page 112
CONST »page 127
CRYSTAL »page 114
CPEEK »page 113
CURSOR »page 115
DATA »page 116
DEBOUNCE »page 118
DECR »page 119
DECLARE FUNCTION »page 120
DECLARE SUB »page 122
DEFXXX »page 123
DEFLCDCHAR »page 123
DELAY »page 124
DIM »page 125
DISABLE »page 128
DISPLAY »page 129
DO-LOOP »page 130
ELSE »page 131
ENABLE »page 132
END »page 133
EXIT »page 133
FOR-NEXT »page 134
FOURTHLINE »page 135
FUSING »page 136
GETADC »page 136

BASCOM-AVR-HELPFILE page 4

GETRC0 »page 138
GETRC5 »page 138
GOSUB »page 141
GOTO »page 141
HEX »page 142
HEXVAL »page 143
HIGH »page 143
HOME »page 144
I2CRECEIVE »page 144
I2CSEND »page 145
I2CSTART,I2CSTOP,I2CRBYTE,I2CWBYTE »page 146
IDLE »page 147
IF-THEN-ELSE-END IF »page 148
INCR »page 149
INKEY »page 149
INP »page 150
INPUTBIN »page 151
INPUTHEX »page 152
INPUT »page 153
LCD »page 154
LEFT »page 157
LEN »page 158
LOAD »page 159
LOADADR »page 204
LOCAL »page 159
LOCATE »page 162
LOOKUP »page 162
LOOKUPSTR »page 163
LOW »page 164
LOWERLINE »page 164
LTRIM »page 158
MAKEBCD »page 165
MAKEDEC »page 166
MAKEINT »page 166
MID »page 167
ON INTERRUPT »page 168
ON VALUE »page 169
OPEN »page 169
OUT »page 171
PEEK »page 172
POKE »page 172
POWERDOWN »page 173
PRINT »page 174
PRINTBIN »page 175
READ »page 176
READEEPROM »page 177
REM »page 178
RESET »page 179
RESTORE »page 180
RETURN »page 180
RIGHT »page 181
ROTATE »page 182
RTRIM »page 182

BASCOM-AVR-HELPFILE page 5

SELECT CASE - END SELECT »page 183
SET »page 184
SHIFTCURSOR »page 184
SHIFTIN »page 185
SHIFTOUT »page 186
SHIFTLCD »page 186
SOUND »page 187
SPACE »page 188
SPIIN »page 188
SPIOUT »page 190
START »page 190
STOP »page 192
STR »page 193
STRING »page 194
SUB »page 194
SWAP »page 195
THIRDLINE »page 195
TRIM »page 196
UPPERLINE »page 196
VAL »page 197
VARPTR »page 198
WAIT »page 198
WAITKEY »page 199
WAITMS »page 199
WAITUS »page 200
WHILE-WEND »page 200
WRITEEEPROM »page 201

International Resellers »page 9
Supported Programmers »page 206
Assembly Mnemonics »page 206
Mixing BASIC with assembly »page 212

If you have questions, remarks or suggestions please let us know.
You can contact us by sending an email to avr@mcselec.com
Our website is at http://www.mcselec.com

For info on updates : please read the readme.txt file that is installed into the
BASCOM-AVR directory

MCS Electronics may update this documentation without notice.
Products specification and usage may change accordingly.
MCS Electronics will not be liable for any mis-information or errors found in this document.
All software provided with this product package is provided ' AS IS' without any warranty
expressed or implied.
MCS Electronics will not be liable for any damages, costs or loss of profits arising from the
usage of this product package.
No part of this document may be reproduced or transmitted in any form or by any means,
electronic or mechanical, including photocopying and recording, for any purpose, without
written permission of MCS Electronics.

Copyright MCS Electronics. All rights reserved.

BASCOM-AVR-HELPFILE page 6

Installation of BASCOM-AVR
Insert the disk labeled 'disk 1 of 2' and double click the file SETUP.EXE from the Windows
explorer.

The following window will appear:

Click on the Next button to continue installation.

The following license info window will appear:

Read the license agreement and click the Yes button when you agree.
A window with additional information is then displayed. This information will be installed as
a readme.txt file and contains information on how to get free updates.

BASCOM-AVR-HELPFILE page 7

After reading the information, click the Next button.
Now the following window appears:

Fill in your name and company name.
Click the Next button to continue.

Now you have the change to select the directory in which BASCOM will be installed.

Select the Browse button to change the directory path if required.
By default BASCOM-AVR will be installed into:

BASCOM-AVR-HELPFILE page 8

C:\Program Files\MCS Electronics\BASCOM-AVR

After selecting the installation directory, click the Next button.
This time you will be asked in which program group the BASCOM-AVR icon must be
placed.
By default, a new program group named MCS Electronics will be made.

After selecting the group, click the Next button to continue.
A summary will be showed. You may go back and change your settings. Otherwise, click
the Next button to complete the installation of BASCOM-AVR.

BASCOM-AVR-HELPFILE page 9

When the installation is completed you must click the Finish-button, and restart Windows.

A sub directory named SAMPLES contains all the BASCOM-AVR sample files.
A sub directory named LIB contains the Library files.

IMPORTANT FOR THE COMMERCIAL VERSION

The license file is not included in the setup. You must copy this file to the
\WINDOWS\SYSTEM directory.
The license file is named BSCAVRL.DLL and can be found on the last installation disk
named 'DISK 2 of 2'.

To copy from the Explorer:
Select the file from disk A and drag it into the \WINDOWS\SYSTEM directory.
When the file is not visible turn the 'Show system Files' option on.

Of course the name of your system directory can be \W95\SYSTEM or \WINNT\SYSTEM
too.

International Resellers

���������
�������� ��	�
����� �� 	
���
��
�
�� ���� ������ � ��������

����
� �����
��	 !"�!�

#$
��% &'�(�(�)��(*���
+�,% &'�(�(�)��(*���

 -��
% .��������
/0��/
1����
-���
222% $��3%44555�.��������
/���
-���

�	
�������
����
����
�����
6
� 7�8�����
#��� 9
, '�'
"�

�-����� �*��
�:;"��<��

 -��
 % .
�0.
���
������
-
222% $��3%44555�.
���
������
-

������
�	 �
������� ������
��
����
��� ��
����� ���� ��
7����
 2����������
�:� � 6 ; " 7���= ���
> # ?�*'�(***
�<:7 !�: ;�>
���;�<

 -��
 % 5/09
��
/��
���9�
222% $��3%44555�9
��
/��
���9�45/4

������
������� �������� ��! ���
;��1� <��@�-��
�' A������ 7��.
5� #
���� ;� �
7�.����� ���= �
9����
"�� �	? >���.�
#$
��% �*�('�)(?��?
+�, % �*�('�?(��*?

 -��
 % ����$��0����$����
-
222% $��3%44555�����$����
-

�����������������������
���

��������������������

��������
DIY Electronics (HK) Ltd.
Peter Crowcroft
P.O. Box 88458,
Sham Shui Po, Hong Kong
CHINA

�����������
��������������

������������
�" ���#�
���#� $%�%�%
7������� .�����
� % B��� 7�@�
�
3�3� '���
�**� <C�9
C���
;<�A !��

#$
��% &�?)()�(��(���(**= (��(���(*'

BASCOM-AVR-HELPFILE page 10

Phone: +852 2720 0255
Fax: +852 2725 0610
Email: peter@kitsrus.com
WWW: http://kitsrus.com

+�, % &�?)()�(�?'()??
 -��
 % C����-�@�
�0�1��(�
���
222% $��3%44555��1��(�
���

������
�������
����� !%&%�%
���
��� ;���@�
#
���� �*�
�
���@

)�? *�
>D >� � #:�<�>
#$
��% &**��*('*)(��?��)
+�, % &**��*('*)('��??

 ��!����
�����
������
���!'���� (��!�&�)'����
6�� (���� >
��� 8��$��

7��$
��������� �
6(*��'� 6���.��
	 �7�!E
#$
��%&������?'�*���?
+�, %&������?'�*���'
 -��
 % ��/
0�@��$��
��$
222% $��3%44555��@��$��
��$

 ��!���
���*�&���*��$�� ��*&���+,'��& -+).
7����� 6����
2�
$�
-�(7�

���(;��� ??
6(���'? 6��-

.
	 �7�!E
#$
��% &�� '���(?���
+�, % &�� '���(?)���
 (7��
% ��
��0�
�@��
��@
�.���.�
222% 555��
�@��
��@
�.���.�
A������9�9F�
� �� ��-9���= ���
��= <��3���=
+���@/���= 7F��$��

�	�����
����" ��$/ .'� �&0
�-�� 	��3��
���

� � �(�=
�(�*�� ��.�3���
�:!	��E
#$
��% &�)� �'))��*
+�, % &�)� �') ���)
 -��
 �
.�,0-��
�-���1�$�
222 $��3%44555�$3�
�
�����
-4�
.�,

"����
-&�1�2
3
;�
1��
�� 6�-��

A�� .�

G��������
 ?4)
�**�) ;�	�
���
 .� #���
 ��
�"�<E
#$
��% &�� �'�� ?���*'�
+�, % &�� �'�� ?���))�
 -��
 % ���$0���/
���
222% $��3%44555����/
��
- � ��
���$�
222% $��3%44555����/
��� ����
����

#�����$%&'(��������)
������ ����.�
���-� ��-�@�5�
��7�6�!�(!�;��(�(�(?(?*�
7�!�(>�"E
B�#�! ')�(**��
#$
��%&?�(���(�?(�?''
+�,% &?�(���(�?(�?''
 -��
 -
-���0-9���/
5�9����C3

#�����$�*+��������)
����&�������� 4�&�! (��1�&+�����
��%/��$%
;$�C� !
��@�
;����� �(�() "�@�9� >��H
�9���@� #��/�
B�#�! �*'(**��
#$
��% &?�(��?('*(����
+�, % &?�(��?('*(����
 -��
 ��
��0�3����
�C3
222 $��3%44555��3����
�C3

,����
���4�� �����&����! ��%
B���$

� 8�-
�*) B��$�� ��(�� ;$��@�H E
������ ;�
�

8
���
#
���
 �
.� ��*(*�*
#$
��% ?�(�(�*�(�??�
+�, % ?�(�(�*�(�??�
 -��
 % ��/
0��-3
���
�@�
222% $��3%44555���-3
���
�@�

-�����

#5�6����
�
9��� 8��3��H�@�
>� <7�!;8� 	� �*
*'(?�' 	��6D�;8 7�D�
#�<�!6�

-���	����
������
�'���$� ����/ �$�
B
�I��- �
�1�.�
#��� �
, ���
���' ��
 "���

#��":	�<

BASCOM-AVR-HELPFILE page 11

#$
��% &�?�� ��� �* ��
+�,% &�?�� ��� �* ��
 -��
 �
9���@0���1�
-3�5�5�3

#$
��% &�'� (� ()�*����
+�, % &�'� (� (�?)����
 -��
% ��/
0-�
��.�����
��
-
222% $��3%44555�-�
��.�����
��
-

����������� �;5�.��= !
�5�H=

6��-��@�
.� � ���� .�&�7��
>$������B
$����
�
��9
����� �� >
;(�)� '� ����
$

-
;2 6 !
#$
��% &�) ���(�� ** ??
+�, % &�) ���(�� ** ??
 -��
% ��/
0$�$��
-
222% $��3%44555�$�$��
-

������
�������
<��� 2���
���
�
8
�99����� �
; (�?� �� "E��!	
;2 6 !
#$
��% &�) �*��'� '�?��
+�, % &�) �*��'� '�?�?
222% $��3%44555�
�5���
��
-
 -��
% ��/
0
�5���
��
-

�����
�)�&��+,
7�I��
 D�����
>4� .�
 #���= ��-��
 ? �9�C
��
 (*�*��
#�
-� .� 7�

���
;#��!
#$
��% &�� ��� �� �')) ��
+�, % &�� ��� �� �')� '?
 -��
% �9���
-30��
��(��3���
222% $��3%44555��9���
-3���

�	����
�8� ��+���$ ��&*���
���4� ;
@�@ �(�

@ !
% �4�*�
�+� ;���H� >������ (���;���H�
�'�** �
��
1� (��-��

#$
��% **�*(���(�)����� (�?
+�,% **�*(���(�)��'�'
 (-��
 % �9.
�.0��3��
�
�����
-
 (-��
 % �9.0�9.(
�.��
-
 (-��
 % ��
��0�9.(
�.��
-
 (-��
 % /���@0�9.(
�.��
-
222 % 555��9.��
-���

�,
���.���� ���
����� ���
6
��� �9��$�-
�� 6��1���� �
�.

�$�-
<
�.
� ; � �;�
#$
��% *��� ��� '���
� *�?� �?? �)?�
+�,% *��� ?��)���
 -��
% .
���0.���
���
��@
222%555�������.���
���
��@4J.
���4.

���4

���
������*!/ ���%
+���@ >�3�

�
#� �
, �)�
����
��= !B *?''�
:;�
#$
��% �*?(�??(?���
+�,% �*?(�??(??��
 -��
% "��$��@�0���$��@���
-
222% $��3%44555����$��@���
-

���
�% �*�&! ����&,&�!�!
7��$��
 2� �@���
�?** A���H��. �1���� K
#
������
�= >� ��'))()���
:;�
#$
��% &�(��'()�*(�)**
+�,% &�(��'()�*(�)**
 -��
% ��/
0-5�@�����
-
222% $��3%44555�-5�@�����
-

BASCOM-AVR-HELPFILE page 12

Installation of BASCOM-AVR
Insert the disk labeled 'disk 1 of 2' and double click the file SETUP.EXE from the Windows
explorer.

The following window will appear:

Click on the Next button to continue installation.

The following license info window will appear:

Read the license agreement and click the Yes button when you agree.
A window with additional information is then displayed. This information will be installed as
a readme.txt file and contains information on how to get free updates.

BASCOM-AVR-HELPFILE page 13

After reading the information, click the Next button.
Now the following window appears:

Fill in your name and company name.
Click the Next button to continue.

Now you have the change to select the directory in which BASCOM will be installed.

Select the Browse button to change the directory path if required.
By default BASCOM-AVR will be installed into:
C:\Program Files\MCS Electronics\BASCOM-AVR

BASCOM-AVR-HELPFILE page 14

After selecting the installation directory, click the Next button.
This time you will be asked in which program group the BASCOM-AVR icon must be
placed.
By default, a new program group named MCS Electronics will be made.

After selecting the group, click the Next button to continue.
A summary will be showed. You may go back and change your settings. Otherwise, click
the Next button to complete the installation of BASCOM-AVR.

When the installation is completed you must click the Finish-button, and restart Windows.

A sub directory named SAMPLES contains all the BASCOM-AVR sample files.

BASCOM-AVR-HELPFILE page 15

IMPORTANT FOR THE COMMERCIAL VERSION

The license file is not included in the setup. You must copy this file to the
\WINDOWS\SYSTEM directory.
The license file is named BSCAVRL.DLL and can be found on the last installation disk
named 'DISK 2 of 2'.

To copy from the Explorer:
Select the file from disk A and drag it into the \WINDOWS\SYSTEM directory.

Of course the name of your system directory can be \W95\SYSTEM or \WINNT\SYSTEM
too.

Running BASCOM-AVR

Double-click the BASCOM-AVR icon to run BASCOM.

The following window will appear. (If this is your first run, the edit window will be empty.)

The most-recently opened file will be loaded.

File New

This option creates a new window in which you will write your program.

The focus is set to the new window.

File new shortcut: , CTRL + N

File Open

With this option you can load an existing program from disk.

BASCOM-AVR-HELPFILE page 16

BASCOM saves files in standard ASCII format. Therefore, if you want to load a file that
was made with another editor be sure that it is saved as an ASCII file.

Note that you can specify that BASCOM must reformat the file when it opens it with the
Options Environment option. This should only be necessary when loading files made with
another editor.

File open shortcut : , CTRL+O

File Close

Close the current program.

When you have made changes to the program, you will be asked to save the program
first.

File close shortcut :

File Save

With this option, you save your current program to disk under the same file name.

If the program was created with the File New option, you will be asked to name the file
first. Use the File Save As option to give the file another name.

Note that the file is saved as an ASCII file.

File save shortcut : , CTRL+S

File Save As

With this option, you can save your current program to disk under a different file name.

Note that the file is saved as an ASCII file.

File save as shortcut :

File Print Preview

With this option, you can preview the current program before it is printed.

Note that the current program is the program that has the focus.

File print preview shortcut :

BASCOM-AVR-HELPFILE page 17

File Print

With this option, you can print the current program.

Note that the current program is the program that has the focus.

File print shortcut : , CTRL+P

File Exit

With this option, you can leave BASCOM.

If you have made changes to your program, you can save them upon leaving BASCOM.

File exit shortcut :

Edit Undo

With this option, you can undo the last text manipulation.

Edit Undo shortcut : , CTRL+Z

Edit Redo

With this option, you can redo the last undo.

Edit Redo shortcut : , CTRL+SHIFT+Z

Edit Cut

With this option, you can cut selected text into the clipboard.

Edit cut shortcut : , CTRL+X

Edit Copy

With this option, you can copy selected text into the clipboard.

Edit copy shortcut : , CTRL+C

Edit Paste

With this option, you can paste text from the clipboard into the current cursor position.

Edit paste shortcut : , CTRL+V

BASCOM-AVR-HELPFILE page 18

Edit Find

With this option, you can search for text in your program.

Text at the cursor position will be placed in the find dialog box.

Edit Find shortcut : , CTRL+F

Edit Find Next

With this option, you can search for the last specified search item.

Edit Find Next shortcut : , F3

Edit Replace

With this option, you can replace text in your program.

Edit Replace shortcut : , CTRL+R

Edit Goto

With this option, you can immediately go to a line .

Edit go to line shortcut : ,CTRL+G

Edit Toggle Bookmark

With this option, you can set/reset a bookmark, so you can jump in your code with the Edit
Go to Bookmark option. Shortcut : CTRL+K + x where x can be 1-8

Edit Goto Bookmark

With this option, you can jump to a bookmark.

There can be up to 8 bookmarks. Shortcut : CTRL+Q+ x where x can be 1-8

Edit Indent Block

With this option, you can indent a selected block of text.

Edit Indent Block shortcut : , CTRL+SHIFT+I

Edit Unindent Block

With this option, you can un-indent a block.

Edit Unindent Block shortcut : , CTRL+SHIFT+U

BASCOM-AVR-HELPFILE page 19

Program Compile

With this option, you can compile your current program.

Your program will be saved automatically before being compiled.

The following files will be created depending on the Option Compiler Settings.

File Description

xxx.BIN Binary file which can be programmed into the microprocessor

xxx.DBG Debug file that is needed by the simulator.

xxx.OBJ Object file for AVR Studio

xxx.HEX Intel hexadecimal file which is needed by some programmers.

xxx.ERR Error file. (only when errors are found)

xxx.RPT Report file.

xxx.EEP EEPROM image file

If a serious error occurs, you will receive an error message in a dialog box and the
compilation will end.

All other errors will be displayed at the bottom above the status bar.

When you click on the line with the error info, you will jump to the line that contains the
error. The margin will also display the sign.

At the next compilation, the error window will disappear.

Program compile shortcut : , F7

Program Syntax Check

With this option, your program is checked for syntax errors. No file will be created except
for an error file, if an error is found.

Program syntax check shortcut , CTRL + F7

Program Show Result

Use this option to view the result of the compilation.

See the Options Compiler Output for specifying which files must be created.

The files that can be viewed are report and error.

File show result shortcut : ,CTRL+W

BASCOM-AVR-HELPFILE page 20

Information provided in the report:

Info Description

Report Name of the program

Date and time The compilation date and time.

Compiler The version of the compiler.

Processor The selected target processor.

SRAM Size of microprocessor SRAM (internal RAM).

EEPROM Size of microprocessor EEPROM (internal EEPROM).

ROMSIZE Size of the microprocessor FLASH ROM.

ROMIMAGE Size of the compiled program.

BAUD Selected baud rate.

XTAL Selected XTAL or frequency

BAUD error The error percentage of the baud rate.

XRAM Size of external RAM.

Stack start The location in memory which the hardware stack points to. The
HW-stack pointer "grows down".

S-Stacksize The size of the software stack.

S-Stackstart The location in memory which the software stack pointer points
to. The software stack pointer "grows down".

Framesize The size of the frame. The frame is used for storing local
variables.

Framestart The location in memory where the frame starts.

LCD address The address that must be placed on the bus to enable the LCD
display E-line.

LCD RS The address that must be placed on the bus to enable the LCD
RS-line

LCD mode The mode the LCD display is used with. 4 bit mode or 8 bit
mode.

Program Simulate

With this option, you can simulate your program.

At this moment there is no internal Simulator. It will be added later.

You can simulate your programs with AVR Studio for the time being.

Program Simulate shortcut : , F2

BASCOM-AVR-HELPFILE page 21

Program Send to Chip

This option will bring up the selected programmer or will program the chip directly if this
option is selected from the Programmer options.

Program send to chip shortcut , F4

The following window will be shown:

Menu item Description
File Exit Return to editor
Buffer Clear Clears buffer
Buffer Load from file Loads a file into the buffer
Buffer Save to file Saves the buffer content to a file
Chip Identify Identifies the chip
Write buffer into chip Programs the buffer into the chip ROM or EEPROM
Read chipcode into
buffer

Reads the code or data from the chips code memory or data
memory

Chip blank check Checks if the chip is blank
Chip erase Erase the content of both the program memory and the data

memoty
Chip verify verifies if the buffer is the same as the chip program or data

memory
Chip Set lockbits Writes the selected lock bits. Only an erase will reset the lock

bits
Chip autoprogram Erases the chip and programs the chip. After the

programming is completed, a verification is performed.

BASCOM-AVR-HELPFILE page 22

Tools Terminal Emulator

With this option you can communicate via the RS-232 interface to the microcomputer. The
following window will appear :

Information you type and information that the computer board sends are displayed in the
same window.

Note that you must use the same baud rate on both sides of the transmission. If you
compiled your program with the Compiler Settings at 4800 baud, you must also set the
Communication Settings to 4800 baud.

The setting for the baud rate is also reported in the report file.

File Upload

Uploads the current program in HEX format. This option is meant for
loading the program into a monitor program.

File Escape

Aborts the upload to the monitor program.

File Exit

Closes terminal emulator.

Terminal Clear

Clears the terminal window.

BASCOM-AVR-HELPFILE page 23

Terminal Open Log

Open or closes a LOG file. When there is no LOG file selected you will be asked to enter
or select a filename. All info that is printed to the terminal window is captured into the log
file. The menu caption will change into 'Close Log' and when you choose this option the
file will be closed.

The terminal emulator has a strange bug that you can't select the menu options by using
the keyboard. This is an error in the terminal component and I hope the third party will fix
this bug.

Tools LCD Designer

With this option you can design special characters for LCD-displays.

The following window will appear:

The LCD-matrix has 7x5 points. The bottom row is reserved for the cursor but can be
used.

You can select a point by clicking the left mouse button. If a cell was selected it will be
deselected.

Clicking the Set All button will set all points.

Clicking the Clear All button will clear all points.

When you are finished you can press the Ok button : a statement will be inserted in your
active program-editor window at the current cursor position. The statement looks like this :

Deflcdchar ?,1,2,3,4,5,6,7,8

You must replace the ?-sign with a character number ranging from 0-7.

BASCOM-AVR-HELPFILE page 24

Options Compiler

With this option, you can modify the compiler options.

The following TAB pages are available:

Options Compiler Chip »page 24

Options Compiler Output »page 25

Options Compiler Communication »page 26

Options Compiler I2C , SPI, 1WIRE »page 27

Options Compiler LCD »page 28

Options Compiler Chip

The following options are available:

Options Compiler Chip

Item Description

Chip Selects the target chip. Each chip has a corresponding x.DAT file
with specifications of the chip. Note that some DAT files are not
available yet.

XRAM Selects the size of the external RAM.

Stack size Specifies the size of the software stack.
Each local variable uses 2 bytes. Each variable that is passed in a
sub program uses 2 bytes too. So when you have used 10 locals
in a SUB and the SUB passes 3 parameters, you need 13 * 2 =
26 bytes.

BASCOM-AVR-HELPFILE page 25

Frame size Specifies the size of the frame.
Each local is stored in a space that is named the frame.
When you have 2 local integers and a string with a length of 10,
you need a framesize of (2*2) + 11 = 15 bytes.
The internal conversion routines used when you use INPUT
num,STR(),VAL() etc, also use the frame. They need a maximum
of 12 bytes. So for this example 15+12 = 27 would be a good
value.

XRAM waitstate Select to insert a wait state for the external RAM.

Default Press or click this button to use the current Compiler Chip settings
as default for all new projects.

Options Compiler Output

Options Compiler Output

Item Description

Binary file Select to generate a binary file. (xxx.bin)

Debug file Select to generate a debug file (xxx.dbg)

Hex file Select to generate an Intel HEX file (xxx.hex)

Report file Select to generate a report file (xxx.rpt)

Error file Select to generate an error file (xxx.err)

AVR Studio object
file

Select to generate an AVR Studio object file (xxx.obj)

Size warning Select to generate a warning when the code size exceeds the
Flash ROM size.

BASCOM-AVR-HELPFILE page 26

Options Compiler Communication

Options Compiler Communication

Item Description

Baud rate Selects the baud rate for the serial statements. You can also type
in a new baud rate.

Frequency Select the frequency of the used crystal. You can also type in a
new frequency.

The settings for the internal hardware UART are:

No parity

8 data bits

1 stop bit

BASCOM-AVR-HELPFILE page 27

Options Compiler I2C, SPI, 1WIRE

Options Compiler I2C, SPI, 1WIRE

Item Description

SCL port Select the port that serves as the SCL-line for the I2C related
statements.

SDA port Select the port that serves as the SDA-line for the I2C related
statements.

1WIRE Select the port that serves as the 1WIRE-line for the 1Wire
related statements.

Clock Select the port that serves as the clock-line for the SPI related
statements.

MOSI Select the port that serves as the MOSI-line for the SPI related
statements.

MISO Select the port that serves as the MISO-line for the SPI related
statements.

SS Select the port that serves as the SS-line for the SPI related
statements.

Use hardware SPI Select to use built-in hardware for SPI, otherwise software
emulation of SPI will be used.

BASCOM-AVR-HELPFILE page 28

Options Compiler LCD

Options Compiler LCD

Item Description

LCD type The LCD display used.

Bus mode The LCD can be operated in BUS mode or in PIN mode. In PIN
mode, the data lines of the LCD are connected to the processor
pins. In BUS mode the data lines of the LCD are connected to the
data lines of the BUS.
Select 4 when you have only connect DB4-DB7. When the data
mode is 'pin' , you should select 4.

Data mode Select the mode in which the LCD is operating. In PIN mode,
individual processor pins can be used to drive the LCD. In BUS
mode, the external data bus is used to drive the LCD.

LCD address In BUS mode you must specify which address will select the enable
line of the LCD display. For the STK200, this is C000 = A14 + A15.

RS address In BUS mode you must specify which address will select the RS line
of the LCD display. For the STK200, this is 8000 = A15

Enable For PIN mode, you must select the processor pin that is connected
to the enable line of the LCD display.

RS For PIN mode, you must select the processor pin that is connected
to the RS line of the LCD display.

DB7-DB4 For PIN mode, you must select the processor pins that are
connected to the upper four data lines of the LCD display.

BASCOM-AVR-HELPFILE page 29

Options Communication

With this option, you can modify the communication settings for the terminal emulator.

Item Description

Comport The communication port of your PC that you use for ther terminal
emulator.

Baud rate The baud rate to use.

Parity Parity, default None.

Data bits Number of data bits, default 8.

Stop bits Number of stop bits, default 1.

Handshake The handshake used, default is none.

Emulation Emulation used, default BBS ANSI.

Font Font type and color used by the emulator.

Back color Background color of the terminal emulator.

Note that the baud rate of the terminal emulator and the baud rate setting of the compiler
options, must be the same in order to work correctly.

BASCOM-AVR-HELPFILE page 30

Options Environment

OPTION DESCRIPTION

Auto Indent When you press return, the cursor is set to the next line at the
current column position

Don't change case When set, the reformatting won't change the case of the text.
Default is that the text is reformatted so every word begins with
upper case.

Reformat BAS files Reformat files when loading them into the editor.
This is only necessary when you are loading files that where
created with another editor. Normally you won't need to set this
option.

Reformat code Reformat code when entered in the editor.

Smart TAB When set, a TAB will go to the column where text starts on the
previous line.

Syntax highlighting This options highlights BASCOM statements in the editor.

Show margin Shows a margin on the right side of the editor.

Comment The position of the comment. Comment is positioned at the
right of your source code.

TAB-size Number of spaces that are generated for a TAB.

Keymapping Choose default, Classic, Brief or Epsilon.

No reformat
extension

File extensions separated by a space that will not be
reformatted when loaded.

Size of new editor
window

When a new editor window is created you can select how it will
be made. Normal or Maximized (full window)

BASCOM-AVR-HELPFILE page 31

OPTION DESCRIPTION

Background color The background color of the editor window.

Keyword color The color of the reserved words. Default Navy.
The keywords can be displayed in bold too.

Comment color The color of comment. Default green.
Comment can be shown in Italic too.

ASM color Color to use for ASM statements. Default purple.

HW registers color The color to use for the hardware registers/ports. Default
maroon.

Editor font Click on this label to select another font for the editor window.

BASCOM-AVR-HELPFILE page 32

OPTION DESCRIPTION

Tooltips Show tooltips.

Show toolbar Shows the toolbar with the shortcut icons.

Save File As … for
new files.

Will display a dialogbox so you can give new files a name
when they must be saved. When you dont select this option
the default name will be give to the file (nonamex.bas). Where
x is a number.

File location Double click to select a directory where your program files are
stored. By default Windows will use the My Documents path.

Options Simulator

With this option you can modify the simulator settings.

OPTION DESCRIPTION

Program The path with the program name of the simulator.

Parameter The parameter to pass to the program. {FILE}.OBJ will
supplie the name of the current program with the extension
.OBJ to the simulator.

BASCOM-AVR-HELPFILE page 33

Options Programmer

With this option you can modify the programmer settings.

OPTION DESCRIPTION

Programmer Select one from the list.

Auto flash Some programmers support auto flash. Pressing F4 will program
the chip without showing the programmer window.

Auto verify Some programmers support verifying. The chip content will be
verified after programming.

LPT address Port address of the LPT that is connected to the programmer.

Send HEX Only for EPROM Simulator on LPT. Select when a HEX file must
be sent instead of the bin file.

Options Monitor

With this option you can modify the monitor settings.

OPTION DESCRIPTION

Upload speed Selects the baud rate used for uploading

Monitor prefix String that will be send to the monitor before the upload starts

Monitor suffix String that us sent to the monitor after the download is
completed.

BASCOM-AVR-HELPFILE page 34

Monitor delay Time in millions of seconds to wait after a line has been sent to
the monitor.

Prefix delay Time in millions of seconds to wait after a prefix has been sent
to the monitor.

Options Printer

With this option you can modify the printer settings.

There are only settings to change the margins of the paper.

OPTION DESCRIPTION

Left The left margin.

Right The right margin.

Top The top margin.

Bottom The bottom margin.

Window Cascade

Cascade all open editor windows.

Window Tile

Tile all open editor windows.

Window Arrange Icons

Arrange the icons of the minimized editor windows.

Window Minimize All

Minimize all open editor windows.

Help About

This option shows an about box as showed below.

BASCOM-AVR-HELPFILE page 35

Your serial number is shown in the about box.

You will need this when you have questions about the product.

The library version is also shown. In this case, it is 1.00.

You can compare it with the one on our web site in case you need an update.

Click on Ok to return to the editor.

Help Index

Shows the BASCOM help file.

When you are in the editor window, the current word will be used as a keyword.

Help on Help

Shows help on how to use the Windows help system.

Help Credits

Shows a form with credits to people I would like to thank for their contributions to
BASCOM.

BASCOM Editor Keys

Key Action

LEFT ARROW One character to the left

BASCOM-AVR-HELPFILE page 36

RIGHT ARROW One character to the right

UP ARROW One line up

DOWN ARROW One line down

HOME To the beginning of a line

END To the end of a line

PAGE UP Up one window

PAGE DOWN Down one window

CTRL+LEFT One word to the left

CTRL+RIGHT One word to the right

CTRL+HOME To the start of the text

CTRL+END To the end of the text

CTRL+ Y Delete current line

INS Toggles insert/overstrike mode

F1 Help (context sensitive)

F3 Find next text

F4 Send to chip (run flash programmer)

F5 Run

F7 Compile File

F8 Step

F9 Set breakpoint

F10 Run to

CTRL+F7 Syntax Check

CTRL+F Find text

CTRL+G Go to line

CTRL+K+x Toggle bookmark. X can be 1-8

CTRL+L LCD Designer

CTRL+M File Simulation

CTRL+N New File

CTRL+O Load File

CTRL+P Print File

CTRL+Q+x Go to Bookmark. X can be 1-8

CTRL+R Replace text

CTRL+S Save File

CTRL+T Terminal emulator

CTRL+P Compiler Options

CTRL+W Show result of compilation

BASCOM-AVR-HELPFILE page 37

CTRL+X Cut selected text to clipboard

CTRL+Z Undo last modification

SHIFT+CTRL+Z Redo last undo

CTRL+INS Copy selected text to clipboard

SHIFT+INS Copy text from clipboard to editor

CTRL+SHIFT+J Indent Block

CTRL+SHIFT+U Unindent Block

Select text Hold the SHIFT key down and use the cursor keys to select
text. or keep the left mouse key pressed and tag the cursor
over the text to select.

Developing Order

� Start BASCOM;

� Open a file or create a new one;

� Check the chip settings, baud rate and frequency settings for the target system;

� Compile the file;

� If an error occurs fix it and recompile (F7);

� Run the simulator (AVR Studio at the moment);

� Program the chip;

Memory usage

Every variable uses memory. This memory is also called SRAM.

The available memory depends on the chip.

A special kind of memory are the registers in the AVR. Registers 0-31 have addresses 0-
31.

Almost all registers are used by the compiler or might be used in the future.

Which registers are used depends on the statements you used.

This brings us back to the SRAM.

No SRAM is used by the compiler other than the space needed for the software stack and
frame.

Each 8 used bits occupy one byte.

Each byte occupies one byte.

Each integer/word occupies two bytes.

Each Long or Single occupies four bytes.

Each String occupies at least 2 byes.

BASCOM-AVR-HELPFILE page 38

A string with a length of 10. occupies 11 byes. The extra byte is needed to indicate the
end of the string.

Use bits or bytes where you can to save memory. (not allowed for negative values)

The software stack is used to store the addresses of LOCAL variables and for variables
that are passed to SUB routines.

Each LOCAL variable and passed variable to a SUB, uses two bytes to store the address.
So when you have a SUB routine in your program that passes 10 variables, you need 10 *
2 = 20 bytes. When you use 2 LOCAL variables in the SUB program that receives the 10
variables, you need an additional 2 * 2 = 4 bytes.

The software stack size can be calculated by taking the maximum number of parameters in a SUB
routine, adding the number of LOCAL variables and multiplying the result by 2. To be safe,
add 4 more bytes for internally-used LOCAL variables.

LOCAL variables are stored in a place that is named the frame.

When you have a LOCAL STRING with a size of 40 bytes, and a LOCAL LONG, you need
41 + 4 bytes = 45 bytes of frame space.

The report will show the result of both calculations.

When you use conversion routines such as STR(), VAL() etc. that convert from numeric to
string and vice versa, you also need a frame. It should be 16 bytes in that case.

Note that the use of the INPUT statement with a numeric variable, or the use of the
PRINT/LCD statement with a numeric variable, will also force you to reserve 16 bytes of
frame space. This because these routines use the internal numeric<>string conversion
routines.

XRAM

You can easy add external memory to a 8515. Then XRAM will become
available.(extended memory).

When you add a 32KB RAM, the first address wil be 0.

But because the XRAM can only start after the SRAM, which is &H0260, the lower
memory locations of the XRAM will not be used.

ERAM

Most AVR chips have internal EEPROM on board.

This EEPROM can be used to store and retrieve data.

In BASCOM, this dataspace is called ERAM.

An important difference is that an ERAM variable can be written for a maximum of
100.000 times. So only assign an ERAM variable when it is needed and not in a loop.

BASCOM-AVR-HELPFILE page 39

Constant code usage

Constants are stored in a constant table.

Each used constant in your program will end up in the constant table.

For example:

Print "ABCD"

Print "ABCD"

This example will only store one constant (ABCD).

Print "ABCD"

Print "ABC"

In this example, two constants will be stored because the strings differ.

Error Codes

The following table lists errors that can occur.

Error Description

1 Unknown statement

2 Unknown structure EXIT statement

3 WHILE expected

4 No more space for IRAM BIT

5 No more space for BIT

6 . expected in filename

7 IF THEN expected

8 BASIC source file not found

9 Maximum 128 aliases allowed

10 Unknown LCD type

11 INPUT, OUTPUT, 0 or 1 expected

12 Unknown CONFIG parameter

13 CONST already specified

14 Only IRAM bytes supported

15 Wrong data type

16 Unknown Definition

17 9 parameters expected

18 BIT only allowed with IRAM or SRAM

BASCOM-AVR-HELPFILE page 40

19 STRING length expected (DIM S AS STRING * 12 ,for example)

20 Unknown DATA TYPE

21 Out of IRAM space

22 Out of SRAM space

23 Out of XRAM space

24 Out of EPROM space

25 Variable already dimensioned

26 AS expected

27 parameter expected

28 IF THEN expected

29 SELECT CASE expected

30 BIT's are GLOBAL and can not be erased

31 Invalid data type

32 Variable not dimensioned

33 GLOBAL variable can not be ERASED

34 Invalid number of parameters

35 3 parameters expected

36 THEN expected

37 Invalid comparison operator

38 Operation not possible on BITS

39 FOR expected

40 Variable can not be used with RESET

41 Variable can not be used with SET

42 Numeric parameter expected

43 File not found

44 2 variables expected

45 DO expected

46 Assignment error

47 UNTIL expected

50 Value doesn't fit into INTEGER

51 Value doesn't fit into WORD

52 Value doesn't fit into LONG

60 Duplicate label

61 Label not found

62 SUB or FUNCTION expected first

63 Integer or Long expected for ABS()

64 , expected

BASCOM-AVR-HELPFILE page 41

65 device was not OPEN

66 device already OPENED

68 channel expected

70 BAUD rate not possible

71 Different parameter type passed then declared

72 Getclass error. This is an internal error.

73 Printing this FUNCTION not yet supported

74 3 parameters expected

80 Code does not fit into target chip

81 Use HEX(var) instead of PRINTHEX

82 Use HEX(var) instead of LCDHEX

85 Unknown interrupt source

86 Invalid parameter for TIMER configuration

87 ALIAS already used

88 0 or 1 expected

89 Out of range : must be 1-4

90 Address out of bounds

91 INPUT, OUTPUT, BINARY, or RANDOM expected

92 LEFT or RIGHT expected

93 Variable not dimensioned

94 Too many bits specified

95 Falling or rising expected for edge

96 Prescale value must be 1,8,64,256 or 1024

97 SUB or FUNCTION must be DECLARED first

98 SET or RESET expected

99 TYPE expected

100 No array support for IRAM variables

101 Can't find HW-register

102 Error in internal routine

103 = expected

104 LoadReg error

105 StoreBit error

106 Unknown register

107 LoadnumValue error

108 Unknown directive in device file

109 = expected in include file for .EQU

110 Include file not found

BASCOM-AVR-HELPFILE page 42

111 SUB or FUNCTION not DECLARED

112 SUB/FUNCTION name expected

113 SUB/FUNCTION already DECLARED

114 LOCAL only allowed in SUB or FUNCTION

115 #channel expected

116 Invalid register file

117 Unknown interrupt

200 .DEF not found

201 Low Pointer register expected

202 .EQU not found, probably using functions that are not supported by the
selected chip

203 Error in LD or LDD statement

204 Error in ST or STD statement

205 } expected

10000 DEMO/BETA only supports 1024 bytes of code

Additional Hardware

Of course just running a program on the chip is not enough. You will probably attach all
kind of electronics to the processor ports.

BASCOM supports a lot of hardware and so has lots of hardware related statements.

Before explaining about programming the additional hardware, it might be better to talk
about the chip.

The AVR internal hardware »page 43

Attaching an LCD display »page 51

Using the I2C protocol »page 52

Using the 1WIRE protocol »page 53

Using the SPI protocol »page 53

You can attach additional hardware to the ports of the microprocessor.

The following statements will become available:

I2CSEND »page 145 and I2CRECEIVE »page 144 and other I2C related statements.

CLS, »page 92 LCD, »page 154 DISPLAY »page 129 and other related LCD-statements.

1WRESET »page 79 , 1WWRITE »page 82 and 1WREAD »page 81

BASCOM-AVR-HELPFILE page 43

AVR Internal Hardware

The AVR chips all have internal hardware that can be used.

For the description we have used the 8515 so some described hardware will not be
available when you select a 2313 for example.

Timer / Counters
The AT90S8515 provides two general purpose Timer/Counters - one 8-bit T/C and one
16-bit T/C. The Timer/Counters have individual pre-scaling selection from the same 10-bit
pre-scaling timer. Both Timer/Counters can either be used as a timer with an internal clock
time base or as a counter with an external pin connection which triggers the counting.

More about TIMERO »page 45

More about TIMER1 »page 46

The WATCHDOG Timer. »page 48

Almost all AVR chips have the ports B and D. The 40 pin devices also have ports A and C
that also can be used for addressing an external RAM chip. Since all ports are identical
but the PORT B and PORT D have alternative functions, only these ports are described.

PORT B »page 48

PORT D »page 49

BASCOM-AVR-HELPFILE page 44

AVR Internal Registers

You can manipulate the register values directly from BASIC. They are also reserved
words. The internal registers for the AVR90S8515 are :

Addr. Register

$3F SREG I T H S V N Z C

$3E SPH SP15 SP14 SP13 SP12 SP11 SP10 SP9 SP8

$3D SPL SP7 SP6 SP5 SP4 SP3 SP2 SP1 SP0

$3C Reserved

$3B GIMSK INT1 INT0 - - - - - -

$3A GIFR INTF1 INTF0

$39 TIMSK TOIE1 OCIE1A OCIE1B - TICIE1 - TOIE0 -

$38 TIFR TOV1 OCF1A OCF1B -ICF1 -TOV0 -

$37 Reserved

$36 Reserved

$35 MCUCR SRE SRW SE SM ISC11 ISC10 ISC01 ISC00

$34 Reserved

$33 TCCR0 - - - - - CS02 CS01 CS00

$32 TCNT0 Timer/Counter0 (8 Bit)

$31 Reserved

$30 Reserved

$2F TCCR1A COM1A1 COM1A0 COM1B1 COM1B0 - -PWM11 PWM10

$2E TCCR1B ICNC1 ICES1 - - CTC1 CS12 CS11 CS10

$2D TCNT1H Timer/Counter1 - Counter Register High Byte

$2C TCNT1L Timer/Counter1 - Counter Register Low Byte

$2B OCR1AH Timer/Counter1 - Output Compare Register A High Byte

$2A OCR1AL Timer/Counter1 - Output Compare Register A Low Byte

$29 OCR1BH Timer/Counter1 - Output Compare Register B High Byte

$28 OCR1BL Timer/Counter1 - Output Compare Register B Low Byte

$27 Reserved

$26 Reserved

$25 ICR1H Timer/Counter1 - Input Capture Register High Byte

$24 ICR1L Timer/Counter1 - Input Capture Register Low Byte

$23 Reserved

$22 Reserved

$21 WDTCR - - - WDTOE WDE WDP2 WDP1 WDP0

$20 Reserved

$1F Reserved - - - - - - - EEAR8

$1E EEARL EEPROM Address Register Low Byte

$1D EEDR EEPROM Data Register

$1C EECR - - - - - EEMWE EEWE EERE

$1B PORTA PORTA7 PORTA6 PORTA5 PORTA4 PORTA3 PORTA2 PORTA1 PORTA0

BASCOM-AVR-HELPFILE page 45

$1A DDRA DDA7 DDA6 DDA5 DDA4 DDA3 DDA2 DDA1 DDA0

$19 PINA PINA7 PINA6 PINA5 PINA4 PINA3 PINA2 PINA1 PINA0

$18 PORTB PORTB7 PORTB6 PORTB5 PORTB4 PORTB3 PORTB2 PORTB1 PORTB0

$17 DDRB DDB7 DDB6 DDB5 DDB4 DDB3 DDB2 DDB1 DDB0

$16 PINB PINB7 PINB6 PINB5 PINB4 PINB3 PINB2 PINB1 PINB0

$15 PORTC PORTC7 PORTC6 PORTC5 PORTC4 PORTC3 PORTC2 PORTC1 PORTC0

$14 DDRC DDC7 DDC6 DDC5 DDC4 DDC3 DDC2 DDC1 DDC0

$13 PINC PINC7 PINC6 PINC5 PINC4 PINC3 PINC2 PINC1 PINC0

$12 PORTD PORTD7 PORTD6 PORTD5 PORTD4 PORTD3 PORTD2 PORTD1 PORTD0

$11 DDRD DDD7 DDD6 DDD5 DDD4 DDD3 DDD2 DDD1 DDD0

$10 PIND PIND7 PIND6 PIND5 PIND4 PIND3 PIND2 PIND1 PIND0

$0F SPDR SPI Data Register

$0E SPSR SPIF WCOL - - - - - -

$0D SPCR SPIE SPE DORD MSTR CPOL CPHA SPR1 SPR0

$0C UDR UART I/O Data Register

$0B USR RXC TXC UDRE FE OR - - -

$0A UCR RXCIE TXCIE UDRIE RXEN TXEN CHR9 RXB8 TXB8

$09 UBRR UART Baud Rate Register

$08 ACSR ACD - ACO ACI ACIE ACIC ACIS1 ACIS0

$00 Reserved

The registers and their addresses are defined in the xxx.DAT files which are placed in the
BASCOM-AVR application directory.

The registers can be used as normal byte variables.

PORTB = 40 will place a value of 40 into port B.

Note that internal registers are reserved words. This means that they can't be dimensioned
as BASCOM variables!

So you can't use the statement DIM SREG As Byte because SREG is an internal register.

You can however manipulate the register with the SREG = value statement.

AVR Internal Hardware TIMER0

The 8-Bit Timer/Counter0

The 8-bit Timer/Counter0 can select its clock source from CK, pre-scaled CK, or an
external pin. In addition it can be stopped.

The overflow status flag is found in the Timer/Counter Interrupt Flag Register - TIFR.
Control signals are found in the Timer/Counter0 Control Register - TCCR0. The interrupt

BASCOM-AVR-HELPFILE page 46

enable/disable settings for Timer/Counter0 are found in the Timer/Counter Interrupt Mask
Register - TIMSK.

When Timer/Counter0 is externally clocked, the external signal is synchronized with the
oscillator frequency of the CPU. To assure proper sampling of the external clock, the
minimum time between two external clock transitions must be at least one internal CPU
clock period. The external clock signal is sampled on the rising edge of the internal CPU
clock.

The 8-bit Timer/Counter0 features both a high resolution and a high accuracy usage with
the lower pre-scaling opportunities. Similarly, the high pre-scaling opportunities make the
Timer/Counter0 useful for lower speed functions or exact timing functions with infrequent
actions.

AVR Internal Hardware TIMER1

The 16-Bit Timer/Counter1 (8515 other timers may be different)

The 16-bit Timer/Counter1 can select clock source from CK, pre-scaled CK, or an external
pin. In addition it can be stopped.

The different status flags (overflow, compare match and capture event) and control signals
are found in the Timer/Counter1 Control Registers - TCCR1A and TCCR1B.

The interrupt enable/disable settings for Timer/Counter1 are found in the Timer/Counter
Interrupt Mask Register - TIMSK.

BASCOM-AVR-HELPFILE page 47

When Timer/Counter1 is externally clocked, the external signal is synchronized with the
oscillator frequency of the CPU. To assure proper sampling of the external clock, the
minimum time between two external clock transitions must be at least one internal CPU
clock period.

The external clock signal is sampled on the rising edge of the internal CPU clock.

The 16-bit Timer/Counter1 features both a high resolution and a high accuracy usage with
the lower prescaling opportunities.

Similarly, the high prescaling opportunities make the Timer/Counter1 useful for lower
speed functions or exact timing functions with infrequent actions.

The Timer/Counter1 supports two Output Compare functions using the Output Compare
Register 1 A and B -OCR1A and OCR1B as the data sources to be compared to the
Timer/Counter1 contents.

The Output Compare functions include optional clearing of the counter on compareA
match, and actions on the Output Compare pins on both compare matches.

Timer/Counter1 can also be used as a 8, 9 or 10-bit Pulse With Modulator. In this mode
the counter and the OCR1A/OCR1B registers serve as a dual glitch-free stand-alone
PWM with centered pulses.

BASCOM-AVR-HELPFILE page 48

The Input Capture function of Timer/Counter1 provides a capture of the Timer/Counter1
contents to the Input Capture Register - ICR1, triggered by an external event on the Input
Capture Pin - ICP. The actual capture event settings are defined by the Timer/Counter1
Control Register -TCCR1B.

In addition, the Analog Comparator can be set to trigger the Input Capture.

AVR Internal Hardware Watchdog timer

The Watchdog Timer

The Watchdog Timer is clocked from a separate on-chip oscillator which runs at 1MHz.
This is the typical value at VCC = 5V.

By controlling the Watchdog Timer pre-scaler, the Watchdog reset interval can be
adjusted from 16K to 2,048K cycles (nominally 16 - 2048 ms). The RESET WATCHDOG
- instruction resets the Watchdog Timer.

Eight different clock cycle periods can be selected to determine the reset period.

If the reset period expires without another Watchdog reset, the AT90Sxxxx resets and
executes from the reset vector.

AVR Internal Hardware Port B

Port B

Port B is an 8-bit bi-directional I/O port. Three data memory address locations are
allocated for the Port B, one each for the Data Register - PORTB, $18($38), Data
Direction Register - DDRB, $17($37) and the Port B Input Pins - PINB, $16($36). The Port
B Input Pins address is read only, while the Data Register and the Data Direction Register
are read/write.

All port pins have individually selectable pull-up resistors. The Port B output buffers can
sink 20mA and thus drive LED displays directly. When pins PB0 to PB7 are used as inputs
and are externally pulled low, they will source current if the internal pull-up resistors are
activated.

The Port B pins with alternate functions are shown in the following table:

When the pins are used for the alternate function the DDRB and PORTB register has to
be set according to the alternate function description.

BASCOM-AVR-HELPFILE page 49

Port B Pins Alternate Functions

Port Pin Alternate Functions

PORTB.0 T0 (Timer/Counter 0 external counter input)

PORTB.1 T1 (Timer/Counter 1 external counter input)

PORTB.2 AIN0 (Analog comparator positive input)

PORTB.3 AIN1 (Analog comparator negative input)

PORTB.4 SS (SPI Slave Select input)

PORTB.5 MOSI (SPI Bus Master Output/Slave Input)

PORTB.6 MISO (SPI Bus Master Input/Slave Output)

PORTB.7 SCK (SPI Bus Serial Clock)

The Port B Input Pins address - PINB - is not a register, and this address enables access
to the physical value on each Port B pin. When reading PORTB, the PORTB Data Latch is
read, and when reading PINB, the logical values present on the pins are read.

PortB As General Digital I/O

All 8 bits in port B are equal when used as digital I/O pins. PORTB.X, General I/O pin: The
DDBn bit in the DDRB register selects the direction of this pin, if DDBn is set (one), PBn is
configured as an output pin. If DDBn is cleared (zero), PBn is configured as an input pin. If
PORTBn is set (one) when the pin configured as an input pin, the MOS pull up resistor is
activated.

To switch the pull up resistor off, the PORTBn has to be cleared (zero) or the pin has to be
configured as an output pin.

DDBn Effects on Port B Pins

DDBn PORTBn I/O Pull up Comment

0 0 Input No Tri-state (Hi-Z)

0 1 Input Yes PBn will source current if ext. pulled
low.

1 0 Output No Push-Pull Zero Output

1 1 Output No Push-Pull One Output

AVR Internal Hardware Port D

Port D

Port D Pins Alternate Functions

Port Pin Alternate Function

PORTD.0 RDX (UART Input line)

PORTD.1 TDX (UART Output line)

BASCOM-AVR-HELPFILE page 50

PORTD.2 INT0 (External interrupt 0 input)

PORTD.3 INT1 (External interrupt 1 input)

PORTD.5 OC1A (Timer/Counter1 Output compareA match output)

PORTD.6 WR (Write strobe to external memory)

PORTD.7 RD (Read strobe to external memory)

RD - PORTD, Bit 7

RD is the external data memory read control strobe.

WR - PORTD, Bit 6

WR is the external data memory write control strobe.

OC1- PORTD, Bit 5

Output compare match output: The PD5 pin can serve as an external output when the
Timer/Counter1 com-pare matches.

The PD5 pin has to be configured as an out-put (DDD5 set (one)) to serve this f unction.
See the Timer/Counter1 description for further details, and how to enable the output. The
OC1 pin is also the output pin for the PWM mode timer function.

INT1 - PORTD, Bit 3

External Interrupt source 1: The PD3 pin can serve as an external interrupt source to the
MCU. See the interrupt description for further details, and how to enable the source

INT0 - PORTD, Bit 2

INT0, External Interrupt source 0: The PD2 pin can serve as an external interrupt source
to the MCU. See the interrupt description for further details, and how to enable the source.

TXD - PORTD, Bit 1

Transmit Data (Data output pin for the UART). When the UART transmitter is enabled, this
pin is configured as an output regardless of the value of DDRD1.

RXD - PORTD, Bit 0

Receive Data (Data input pin for the UART). When the UART receiver is enabled this pin
is configured as an output regardless of the value of DDRD0. When the UART forces this
pin to be an input, a logical one in PORTD0 will turn on the internal pull-up.

When pins TXD and RXD are not used for RS-232 they can be used as an input or output
pin.

No PRINT, INPUT or other RS-232 statement may be used in that case.

BASCOM-AVR-HELPFILE page 51

The UCR register will by default not set bits 3 and 4 that enable the TXD and RXD pins for
RS-232 communication. It is however reported that this not works for all chips. In this case
you must clear the bits in the UCR register with the following statements:

RESET UCR.3

RESET UCR.4

Attaching an LCD Display

A LCD display can be connected with two methods.

� By wiring the LCD-pins to the processor port pins.
This is the pin mode. The advantage is that you can choose the pins and that they
don't have to be on the same port. This can make your PCB design simple. The
disadvantage is that more code is needed.

� By attaching the LCD-data pins to the data bus. This is convenient when you have an
external RAM chip and will adds little code.

The LCD-display can be connected in PIN mode as follows:

LCD-DISPLAY PORT PIN

DB7 PORTB.7 14

DB6 PORTB.6 13

DB5 PORTB.5 12

DB4 PORTB.4 11

E PORTB.3 6

RS PORTB.2 4

RW Ground 5

Vss Ground 1

Vdd +5 Volt 2

Vo 0-5 Volt 3

This leaves PORTB.1 and PORTB.0 and PORTD for other purposes.

You can change these settings from the Options LCD »page 28 menu.

BASCOM supports many statements to control the LCD-display.

For those who want to have more control the example below shows how to use the
internal routines.

BASCOM-AVR-HELPFILE page 52

$ASM

Ldi _temp1, 5 'load register R24 with value

Rcall _Lcd_control 'it is a control value to control the display

Ldi _temp1,65 'load register with new value (letter A)

Rcall _Write_lcd 'write it to the LCD-display

$END ASM

Note that _lcd_control and _write_lcd are assembler subroutines which can be called from
BASCOM.

See the manufacturer's details from your LCD display for the correct assignment.

Using the I2C protocol

The I2C protocol is a 2-wire protocol designed by Philips. Of course you also need power
and ground so it really needs 4 wires.

The I2C protocol was invented for making designs of TV PCB's more simple. But with the
availability of many I2C chips, it is ideal for the hobbyist too.

The PCF8574 is a nice chip - it is an I/O extender with 8 pins that you can use either as
input or output.

The design below shows how to implement an I2C-bus.

R1 and R2 are 330 ohm resistors.

R3 and R4 are 10 kilo-ohm resistors. For 5V, 4K7 is a good value in combination with AVR
chips.

You can select which port pins you want to use for the I2C interface with the compiler
settings.

BASCOM-AVR-HELPFILE page 53

Using the 1 WIRE protocol

The 1 wire protocol was invented by Dallas Semiconductors and needs only 1 wire for the
communication. You also need power and ground of course.

This topic is not finished at this stage.

Using the SPI protocol

This topic is not finished yet.

Power Up

At power up all ports are in Tri-state and can serve as input pins.

When you want to use the ports (pins) as output, you must set the data direction first with
the statement : CONFIG PORTB = OUTPUT

Individual bits can also be set to be uses as input or output.

For example : DDRB = &B00001111 , will set a value of 15 to the data direction register of
PORTB.

PORTB.0 to PORTB.3 (the lower 5 bits) can be used as outputs because they are set
low. The upper four bits (PORTB.4 to PORTB.7), can be used for input because they are
set low.

You can also set the direction of a port pin with the statement :

CONFIG PINB.0 = OUTPUT | INPUT

Reserved Words

The following table shows the reserved BASCOM statements or characters.

^

!

;

$BAUD

$CRYSTAL

$DATA

$DEFAULT

$END

$EEPROM

$INCLUDE

$LCD

$LCDRS

$LCDPUTCTRL

$LCDPUTDATA

$REGFILE

$SERIALINPUT

$SERIALINPUT2LCD

$SERIALOUTPUT

$XRAMSIZE

$XRAMSTART

1WRESET

1WREAD

1WWRITE

ACK

ABS()

ALIAS

AND

AS

ASC()

AT

BAUD

BCD()

BIT

BASCOM-AVR-HELPFILE page 54

BITWAIT

BLINK

BOOLEAN

BYTE

BYVAL

CALL

CAPTURE1

CASE

CHR()

CLS

CLOSE

COMPARE1A

COMPARE1B

CONFIG

CONST

COUNTER

COUNTER0

COUNTER1

COUNTER2

CPEEK()

CRYSTAL

CURSOR

DATA

DEBOUNCE

DECR

DECLARE

DEFBIT

DEFBYTE

DEFLNG

DEFWORD

DEGSNG

DEFLCDCHAR

DEFINT

DEFWORD

DELAY

DIM

DISABLE

DISPLAY

DO

DOWNTO

ELSE

ELSEIF

ENABLE

END

ERAM

ERASE

ERR

EXIT

EXTERNAL

FOR

FOURTH

FOURTHLINE

FUNCTION

GATE

GETAD()

GETRC5()

GOSUB

GOTO

HEXVAL()

HIGH()

HOME

I2CRECEIVE

I2CSEND

I2CSTART

I2CSTOP

I2CRBYTE

I2CWBYTE

IDLE

IF

INCR

INKEY

INP()

INPUT

INPUTBIN

INPUTHEX

INT0

INT1

INTEGER

INTERNAL

IS

LCASE()

LCD

LEFT

LEFT()

LEN()

LOAD

LOCAL

LOCATE

LONG

LOOKUP()

LOOKUPSTR()

LOOP

LTRIM()

LOW()

LOWER

LOWERLINE

MAKEBCD()

MAKEDEC()

MAKEINT()

MID()

MOD

MODE

NACK

NEXT

NOBLINK

NOSAVE

NOT

OFF

ON

OR

OUT

OUTPUT

PEEK()

POKE

PORTA

PORTB

PORTC

BASCOM-AVR-HELPFILE page 55

PORTD

POWERDOWN

PRINT

PRINTBIN

PWM1A

PWM1B

READ

READEEPROM

REM

RESET

RESTORE

RETURN

RIGHT

RIGHT()

ROTATE

RTRIM()

SELECT

SERIAL

SET

SHIFT

SHIFTLCD

SHIFTCURSOR

SHIFTIN

SHIFTOUT

SOUND

SPACE()

SPIINIT

SPIIN

SPIOUT

START

STEP

STR()

STRING()

STOP

STOP TIMER

SUB

SWAP

THEN

THIRD

THIRDLINE

TIMER0

TIMER1

TIMER2

TO

TRIM()

UCASE()

UNTIL

UPPER

UPPERLINE

VAL()

VARPTR()

WAIT

WAITKEY()

WAITMS

WAITUS

WATCHDOG

WRITEEEPROM

WEND

WHILE

WORD

XOR

XRAM

Language Fundamentals

Characters from the BASCOM character set are put together to form labels, keywords,
variables and operators.

These in turn are combined to form the statements that make up a program.

This chapter describes the character set and the format of BASCOM program lines. In
particular, it discusses:

� The specific characters in the character set and the special meanings of some
characters.

� The format of a line in a BASCOM program.

� Line labels.

� Program line length.

Character Set

The BASCOM BASIC character set consists of alphabetic characters, numeric
characters, and special characters.

BASCOM-AVR-HELPFILE page 56

The alphabetic characters in BASCOM are the uppercase letters (A-Z) and lowercase
letters (az) of the alphabet.

The BASCOM numeric characters are the digits 0-9.

The letters A-H can be used as parts of hexadecimal numbers.

The following characters have special meanings in BASCOM statements and
expressions:

Character Name

ENTER Terminates input of a line

Blank (or space)

' Single quotation mark (apostrophe)

* Asterisks (multiplication symbol)

+ Plus sign

, Comma

- Minus sign

. Period (decimal point)

/ Slash (division symbol) will be handled as \

: Colon

" Double quotation mark

; Semicolon

< Less than

= Equal sign (assignment symbol or relational operator)

> Greater than

\ Backslash (integer/word division symbol)

^ Exponent

The BASCOM program line
BASCOM program lines have the following syntax:

[[line-identifier]] [[statement]] [[:statement]] ... [[comment]]

Using Line Identifiers
BASCOM support one type of line-identifier; alphanumeric line labels:

BASCOM-AVR-HELPFILE page 57

An alphabetic line label may be any combination of from 1 to 32 letters and digits, starting
with a letter and ending with a colon.

BASCOM keywords are not permitted.

The following are valid alphanumeric line labels:

Alpha:

ScreenSUB:

Test3A:

Case is not significant. The following line labels are equivalent:

alpha:

Alpha:

ALPHA:

Line labels may begin in any column, as long as they are the first characters other than
blanks on the line.

Blanks are not allowed between an alphabetic label and the colon following it.

A line can have only one label.

BASCOM Statements
A BASCOM statement is either " executable" or " non-executable".

An executable statement advances the flow of a programs logic by telling the program
what to do next.

Non executable statement perform tasks such as allocating storage for variables,
declaring and defining variable types.

The following BASCOM statements are examples of non-executable statements:

� REM or (starts a comment)

� DIM

A "comment" is a non-executable statement used to clarify a programs operation and
purpose.

A comment is introduced by the REM statement or a single quote character(').

The following lines are equivalent:

PRINT " Quantity remaining" : REM Print report label.

PRINT " Quantity remaining" ' Print report label.

BASCOM-AVR-HELPFILE page 58

More than one BASCOM statement can be placed on a line, but colons(:) must separate
statements, as illustrated below.

FOR I = 1 TO 5 : PRINT " Gday, mate." : NEXT I

BASCOM LineLength
If you enter your programs using the built-in editor, you are not limited to any line length,
although it is advised to shorten your lines to 80 characters for clarity.

Data Types
Every variable in BASCOM has a data type that determines what can be stored in the
variable. The next section summarizes the elementary data types.

Elementary Data Types
� Bit (1/8 byte). A bit can hold only the value 0 or 1.

A group of 8 bits is called a byte.

 � Byte (1 byte).
Bytes are stores as unsigned 8-bit binary numbers ranging in value from 0 to 255.

� Integer (two bytes).
Integers are stored as signed sixteen-bit binary numbers ranging in value from -
32,768 to +32,767.

� Word (two bytes).
Words are stored as unsigned sixteen-bit binary numbers ranging in value from 0 to
65535.

� Long (four bytes).
Longs are stored as signed 32-bit binary numbers ranging in value from -
2147483648 to 2147483647.

� Single.
Singles are stored as signed 32 bit binary numbers.

� String (up to 254 bytes).
Strings are stored as bytes and are terminated with a 0-byte.
A string dimensioned with a length of 10 bytes will occupy 11 bytes.

Variables can be stored internal (default) , external or in EEPROM.

Variables
A variable is a name that refers to an object--a particular number.

A numeric variable, can be assigned only a numeric value (either integer, byte, long,
single or bit).

BASCOM-AVR-HELPFILE page 59

The following list shows some examples of variable assignments:

� A constant value:
A = 5
C = 1.1

� The value of another numeric variable:
abc = def
k = g

� The value obtained by combining other variables, constants, and operators: Temp = a
+ 5
Temp = C + 5

� The value obtained by calling a function:

Temp = Asc(S)

Variable Names
A BASCOM variable name may contain up to 32 characters.

The characters allowed in a variable name are letters and numbers.

The first character in a variable name must be a letter.

A variable name cannot be a reserved word, but embedded reserved words are allowed.

For example, the following statement is illegal because AND is a reserved word.

AND = 8

However, the following statement is legal:

ToAND = 8

Reserved words include all BASCOM commands, statements, function names, internal
registers and operator names.

(see BASCOM Reserved Words »page 53 , for a complete list of reserved words).

You can specify a hexadecimal or binary number with the prefix &H or &B.

a = &HA , a = &B1010 and a = 10 are all the same.

Before assigning a variable, you must tell the compiler about it with the DIM statement.

BASCOM-AVR-HELPFILE page 60

Dim b1 As Bit, I as Integer, k as Byte , s As String * 10

The STRING type needs an additional parameter to specify the length.

You can also use DEFINT, DEFBIT, DEFBYTE ,DEFWORD ,DEFLNG or DEFSNG.

For example DEFINT c tells the compiler that all variables that are not dimensioned and
that are beginning with the character c are of the Integer type.

Expressions and Operators
This chapter discusses how to combine, modify, compare, or get information about
expressions by using the operators available in BASCOM.

Anytime you do a calculation you are using expressions and operators.

This chapter describes how expressions are formed and concludes by describing the
following kind of operators:

� Arithmetic operators, used to perform calculations.

� Relational operators, used to compare numeric or string values.

� Logical operators, used to test conditions or manipulate individual bits.

� Functional operators, used to supplement simple operators.

Expressions and Operators
An expression can be a numeric constant, a variable, or a single value

obtained by combining constants, variables, and other expressions with operators.

Operators perform mathematical or logical operations on values.

The operators provided by BASCOM can be divided into four categories, as follows:

1. Arithmetic

2. Relational

3. Logical

4. Functional

Arithmetic
Arithmetic operators are +, - , * , \, / and ^.

BASCOM-AVR-HELPFILE page 61

� Integer

Integer division is denoted by the backslash (\).
Example: Z = X \ Y

� Modulo Arithmetic

 Modulo arithmetic is denoted by the modulus operator MOD.

 Modulo arithmetic provides the remainder, rather than the quotient, of an
integer division.

Example: X = 10 \ 4 : remainder = 10 MOD 4

� Overflow and division by zero

Division by zero, produces an error.

At the moment no message is produced, so you have to make sure yourself that
this won't happen.

Relational Operators
Relational operators are used to compare two values as shown in the table below.

The result can be used to make a decision regarding program flow.

Operator Relation Tested Expression

= Equality X = Y

<> Inequality X <> Y

< Less than X < Y

> Greater than X > Y

<= Less than or equal to X <= Y

>= Greater than or equal to X >= Y

Logical Operators
Logical operators perform tests on relations, bit manipulations, or Boolean operators.

There four operators in BASCOM are :

Operator Meaning

NOT Logical complement

AND Conjunction

OR Disjunction

XOR Exclusive or

BASCOM-AVR-HELPFILE page 62

It is possible to use logical operators to test bytes for a particular bit pattern.

For example the AND operator can be used to mask all but one of the bits

of a status byte, while OR can be used to merge two bytes to create a particular binary
value.

Example

A = 63 And 19

PRINT A

A = 10 Or 9

PRINT A

Output

16

11

Floating point (ASM code used is supplied by Jack Tidwell)

Single numbers conforming to the IEEE binary floating point standard.

An eight bit exponent and 24 bit mantissa are supported.

Using four bytes the format is shown below:

31 30________23 22______________________________0

s exponent mantissa

The exponent is biased by 128. Above 128 are positive exponents and

below are negative. The sign bit is 0 for positive numbers and 1 for

negative. The mantissa is stored in hidden bit normalized format so

that 24 bits of precision can be obtained.

All mathematical operations are supported by the single.

You can also convert a single to an integer or word or vise versa:

Dim I as Integer, S as Single

S = 100.1 'assign the single

I = S 'will convert the single to an integer

BASCOM-AVR-HELPFILE page 63

Arrays
An array is a set of sequentially indexed elements having the same type. Each element
of an array has a unique index number that identifies it. Changes made to an element of
an array do not affect the other elements.

The index must be a numeric constant, a byte, an integer , word or long.

The maximum number of elements is 65535.

The first element of an array is always one. This means that elements are 1-based.

Arrays can be used on each place where a 'normal' variable is expected.

Example:
Dim a(10) as byte 'make an array named a, with 10 elements (1 to 10)

Dim c as Integer

For C = 1 To 10

 a(c) = c 'assign array element

 Print a(c) 'print it

Next

a(c + 1) = a 'you can add an offset to the index too

$ASM

Action
Start of inline assembly code block.

Syntax
$ASM

Remarks
Use $ASM together with $END ASM to insert a block of assembler code in your BASIC
code.

Example
Dim c as Byte

Loadadr x,x 'load address of variable C into register X

$ASM

 Ldi R24,1 'load register R24 with the constant 1

 St X,R24 ;store 1 into var c

$END ASM

Print c

End

BASCOM-AVR-HELPFILE page 64

$BAUD

Action
Instruct the compiler to override the baud rate setting from the options menu.

Syntax

$BAUD = var

Remarks
Var The baud rate that you want to use.

var : Constant.

The baud rate is selectable from the Compiler Settings »page 26. It is stored in a
configuration file. The $BAUD statement is provided for compatibility with BASCOM-8051.

In the generated report, you can view which baud rate is actually generated.

See also
$CRYSTAL »page 64 , BAUD »page 86

Example
$BAUD = 2400

$CRYSTAL = 14000000 ' 14 MHz crystal

Print "Hello"

'Now change the baudrate in a program

BAUD = 9600 '

Print "Did you change the terminal emulator baud rate too?"

END

$CRYSTAL

Action
Instruct the compiler to override the crystal frequency options setting.

Syntax

$CRYSTAL = var

Remarks

BASCOM-AVR-HELPFILE page 65

var Frequency of the crystal.

var : Constant.

The frequency is selectable from the Compiler Settings »page 26. It is stored in a
configuration file. The $CRYSTAL statement is provided for compatibility with BASCOM-
8051.

See also
$BAUD »page 64 BAUD »page 86

Example
$BAUD = 2400

$CRYSTAL = 14000000

PRINT "Hello"

END

$DATA

Action
Instruct the compiler to store the data in the DATA lines following the $DATA directive, in
code memory.

Syntax

$DATA

Remarks
The AVR has built-in EEPROM. With the WRITEEEPROM and READEEPROM
statements, you can write and read to the EEPROM.

To store information in the EEPROM, you can add DATA lines to your program that hold
the data that must be stored in the EEPROM.

A separate file is generated with the EEP extension. This file can be used to program the
EEPROM.

The compiler must know which DATA must go into the code memory or the EEP file and
therefore two compiler directives were added.

$EEPROM and $DATA.

$EEPROM tells the compiler that the DATA lines following the compiler directive, must be
stored in the EEP file.

To switch back to the default behaviour of the DATA lines, you must use the $DATA
directive.

BASCOM-AVR-HELPFILE page 66

See also
$EEPROM »page 67

ASM

Example
Dim B As Byte

Restore Lbl 'point to code data

Read B

Print B

Restore Lbl2

Read B

Print B

End

Lbl:

DATA 100

$EEPROM 'the following DATA lines data will go to the EEP
'file

DATA 200

$DATA 'switch back to normal

Lbl2:

DATA 300

$DEFAULT

Action
Set the default for data types dimensioning to the specified type.

Syntax

$DEFAULT = var

Remarks
Var SRAM, XRAM, ERAM

Each variable that is dimensioned will be stored into SRAM, the internal memory of the
chip. You can override it by specifying the data type.

Dim B As XRAM Byte , will store the data into external memory.

BASCOM-AVR-HELPFILE page 67

When you want all your variables to be stored in XRAM for example, you can use the
statement : $DEFAULT XRAM

Each Dim statement will place the variable in XRAM than.

To switch back to the default behaviour, use $END $DEFAULT

See also

ASM

Example
$DEFAULT XRAM

Dim A As Byte, b As Byte, C As Byte

'a,b and c will be stored into XRAM

$DEFAULT SRAM

Dim D As Byte

'D will be stored in internal memory, SRAM

$EEPROM

Action
Instruct the compiler to store the data in the DATA lines following the $DATA directive in
an EEP file.

Syntax

$EEPROM

Remarks
The AVR has build in EEPROM. With the WRITEEEPROM and READEEPROM
statements, you can write and read to the EEPROM.

To store information in the EEPROM, you can add DATA lines to your program that hold
the data that must be stored in the EEPROM.

A separate file is generated with the EEP extension. This file can be used to program the
EEPROM.

The compiler must know which DATA must go into the code memory or the EEP file and
therefore two compiler directives were added.

$EEPROM and $DATA.

BASCOM-AVR-HELPFILE page 68

$EEPROM tells the compiler that the DATA lines following the compiler directive, must be
stored in the EEP file.

To switch back to the default behaviour of the DATA lines, you must use the $DATA
directive.

See also
$DATA »page 65

ASM

Example
Dim B As Byte

Restore Lbl 'point to code data

Read B

Print B

Restore Lbl2

Read B

Print B

End

Lbl:

DATA 100

$EEPROM 'the following DATA lines data will go to the EEP
'file

DATA 200

$DATA 'switch back to normal

Lbl2:

DATA 300

$EXTERNAL

Action
Instruct the compiler to include ASM routines form a library.

Syntax

$EXTERNAL Myroutine [, myroutine2]

Remarks

BASCOM-AVR-HELPFILE page 69

You can place ASM routines in a library file. With the $EXTERNAL directive you tell the
compiler which routines must be included in your program.

An automatic search will be added later so the $EXTERNAL directive will not be needed
any longer.

See also
$LIB »page 73

Example
Dim B As Byte

$LIB "Mylib.LIB"

$EXTERNAL TestAsm

Rcall TestAsm

End

$INCLUDE

Action
Includes an ASCII file in the program at the current position.

Syntax

$INCLUDE file

Remarks
File Name of the ASCII file, which must contain valid BASCOM statements.

This option can be used if you make use of the same routines in
Many programs. You can write modules and include them into your
program.
If there are changes to make you only have to change the module file,
not all your BASCOM programs.
You can only include ASCII files!

Example
'---
' (c) 1997-1999 MCS Electronics
'--

' file: INCLUDE.BAS

' demo: $INCLUDE

'--

Print "INCLUDE.BAS"

$include c:\bascom\123.bas 'include file that prints Hello

Print "Back in INCLUDE.BAS"

End

BASCOM-AVR-HELPFILE page 70

$LCD

Action
Instruct the compiler to generate code for 8-bit LCD displays attached to the data bus.

Syntax

$LCD = [&H]address

Remarks
Address The address where must be written to, to enable the LCD display

and the RS line of the LCD display.
The db0-db7 lines of the LCD must be connected to the data
lines D0-D7. (or is 4 bit mode, connect only D4-D7)
The RS line of the LCD can be configured with the LCDRS
statement.

On systems with external RAM, it makes more sense to attach
the LCD to the data bus. With an address decoder, you can
select the LCD display.

See also
$LCDRS »page 72

Example
REM We use a STK200 board so use the following addresses

$LCD = &HC000 'writing to this address will make the E-line of the LCD 'high
and the RS-line of the LCD high.

$LCDRS = &H8000 'writing to this address will make the E-line of the LCD
'high.

Cls

LCD "Hello world"

$LCDPUTCTRL

Action
Specifies that LCD control output must be redirected.

Syntax

$LCDPUTCTRL = label

Remarks
Label The name of the assembler routine that must be called when a

control byte is printed with the LCD statement. The character
must be placed in R24/_temp1.

BASCOM-AVR-HELPFILE page 71

With the redirection of the LCD statement, you can use your own routines.

See also
$SERIALPUTDATA »page 71

Example
'define chip to use
$regfile = "8535def.dat"

'define used crystal
$crystal = 4000000

'dimension used variables
Dim S As String * 10
Dim W As Long

'inform the compiler which routine must be called to get serial 'characters
$LCDPUTDATA = Myoutput
$LCDPUTCTRL = MyoutputCtrl
'make a never ending loop
Do
 LCD "test"
Loop

End

'custom character handling routine
'instead of saving and restoring only the used registers
'and write full ASM code, we use Pushall and PopAll to save and 'restore
'all registers so we can use all BASIC statements
'$LCDPUTDATA requires that the character is passed in R24

Myoutput:
 Pushall 'save all registers
'your code here
 Popall 'restore registers
Return

MyoutputCtrl:
 Pushall 'save all registers
'your code here
 Popall 'restore registers
Return

$LCDPUTDATA

Action
Specifies that LCD data output must be redirected.

Syntax

$LCDPUTDATA = label

BASCOM-AVR-HELPFILE page 72

Remarks
Label The name of the assembler routine that must be called when a

character is printed with the LCD statement. The character must
be placed in R24/_temp1.

With the redirection of the LCD statement, you can use your own routines.

See also
$SERIALPUTCTRL »page 70

Example
'define chip to use
$regfile = "8535def.dat"

'define used crystal
$crystal = 4000000

'dimension used variables
Dim S As String * 10
Dim W As Long

'inform the compiler which routine must be called to get serial 'characters
$LCDPUTDATA = Myoutput

'make a never ending loop
Do
 LCD "test"
Loop

End

'custom character handling routine
'instead of saving and restoring only the used registers
'and write full ASM code, we use Pushall and PopAll to save and 'restore
'all registers so we can use all BASIC statements
'$LCDPUTDATA requires that the character is passed in R24

Myoutput:
 Pushall 'save all registers
'your code here
 Popall 'restore registers
Return

$LCDRS

Action
Instruct the compiler to generate code for 8-bit LCD displays attached to the data bus.

Syntax

$LCDRS = [&H]address

Remarks

BASCOM-AVR-HELPFILE page 73

Address The address where must be written to, to enable the LCD
display.
The db0-db7 lines of the LCD must be connected to the data
lines D0-D7. (or is 4 bit mode, connect only D4-D7)

On systems with external RAM, it makes more sense to attach
the LCD to the data bus. With an address decoder, you can
select the LCD display.

See also
$LCD »page 70

Example
REM We use a STK200 board so use the following addresses

$LCD = &HC000 'writing to this address will make the E-line of the LCD 'high
and the RS-line of the LCD high.

$LCDRS = &H8000 'writing to this address will make the E-line of the LCD
'high.

Cls

LCD "Hello world"

$LIB

Action
Informs the compiler about the use libraries.

Syntax

$LIB " libname1" [, " libname2"]

Remarks
Libname is the name of the libray that holds ASM routines that are used by your program.
More filenames can be specified by separating the names by a comma.

The libraries will be searched when you specify the routines to use with the $EXTERNAL
directive.

The search order is the same as the order you specify the library names.

The MCS.LIB will be searched last and is always included so you don't need to specify it
with the $LIB directive.

Because the MCS.LIB is searched last you can include duplicate routines in your own LIB.
Now these routines will be used instead of the ones from the default MCS.LIB library. This
is a good way when you want to enhance the MCS.LIB routines. Just copy the MCS.LIB to
a new file and make the changes in this new file. When we make changes to the library
your changes will be preserved.

BASCOM-AVR-HELPFILE page 74

Creating your own LIB file

A library file is a simple ASCII file. It can be created with the BASCOM editor, notepad or
any other ASCII editor.

The file must include the following header information. It is not used yet but will be later.

copyright = Your name
www = optional location where people can find the latest source
email = your email address
comment = AVR compiler library
libversion = the version of the library in the format : 1.00
date = date of last modification
statement = A statement with copyright and usage information

The routine must start with the name in brackets and must end with the [END] .

The following ASM routine example is from the MCS.LIB library.

[_ClockDiv]
; MEGA chips only
;_temp1 holds the division in the range from 0-129
; 0 will set the division to 1
_ClockDiv:
Cpi _temp1,0 ; is it zero?
Breq _ClockDivX ; yes so turn of the division
Subi _temp1,2 ; subtract 2
Com _temp1 ;complement
Clr _temp2
Out XDIV,_temp2 ; enable write by writing zeros
_ClockDivX:
Out XDIV,_temp1 ; write new division
Ret ;return

[END]

See also
$EXTERNAL »page 68

Example
'define chip to use
$regfile = "8535def.dat"

'define used crystal
$crystal = 4000000

'dimension used variables
Dim S As String * 10
Dim W As Byte

$LIB "MYLIB.LIB" , "MCS.LIB"
$EXTERAL _ShiftL1 , _ShiftL2

Shift W , LEFT , 2 'uses _shiftL1

BASCOM-AVR-HELPFILE page 75

$REGFILE

Action
Instruct the compiler to use the specified register file instead of the selected dat file.

Syntax

$REGFILE = var

Remarks
Var The name of the register file. The register files are stored in

the BASCOM-AVR application directory and all end with the
DAT extension.
The register file holds information about the chip such as the
internal registers and interrupt addresses.

The $REGFILE statement overrides the setting from the Options menu.

The settings are stored in a <project>.CFG file and the directive is added for compatibility
with BASCOM-8051

The $REGFILE directive must be the first statement in your program.

See also

ASM

Example
$REGFILE = "8515DEF.DAT"

$SERIALINPUT

Action
Specifies that serial input must be redirected.

Syntax

$SERIALINPUT = label

Remarks
Label The name of the assembler routine that must be called when a

character is needed from the INPUT routine. The character must
be returned in R24/_temp1.

BASCOM-AVR-HELPFILE page 76

With the redirection of the INPUT command, you can use your own routines.

This way you can use other devices as input devices.
Note that the INPUT statement is terminated when a RETURN code (13) is received.

See also
$SERIALOUTPUT »page 77

Example
'--
' $myserialinput.bas
' (c) 1999 MCS Electronics
' demonstrates $SERIALINPUT redirection of serial input
'--
'define chip to use
$regfile = "8535def.dat"

'define used crystal
$crystal = 4000000

'dimension used variables
Dim S As String * 10
Dim W As Long

'inform the compiler which routine must be called to get serial 'characters
$serialinput = Myinput

'make a never ending loop
Do
 'ask for name
 Input "name " , S
 Print S
 'error is set on time out
 Print "Error " ; Err
Loop

End

'custom character handling routine
'instead of saving and restoring only the used registers
'and write full ASM code, we use Pushall and PopAll to save and 'restore
'all registers so we can use all BASIC statements
'$SERIALINPUT requires that the character is passed back in R24

Myinput:
 Pushall 'save all registers
 W = 0 'reset counter
Myinput1:
 Incr W 'increase counter
 Sbis USR, 7 ' Wait for character
 Rjmp myinput2 'no charac waiting so check again
 Popall 'we got something
 Err = 0 'reset error
 In _temp1, UDR ' Read character from UART
 Return 'end of routine
Myinput2:

BASCOM-AVR-HELPFILE page 77

 If W > 1000000 Then 'with 4 MHz ca 10 sec delay
 rjmp Myinput_exit 'waited too long
 Else
 Goto Myinput1 'try again
 End If
Myinput_exit:
 Popall 'restore registers
 Err = 1 'set error variable
 ldi R24, 13 'fake enter so INPUT will end
Return

$SERIALINPUT2LCD

Action
This compiler directive will redirect all serial input to the LCD display instead of echo-ing to
the serial port.

Syntax
$SERIALINPUT2LCD

Remarks
You can also write your own custom input or output driver with the $SERIALINPUT »page
75 and $SERIALOUTPUT statements, but the $SERIALINPUT2LCD is handy when you
use a LCD display.

See also
$SERIALINPUT »page 75 , $SERIALOUTPUT »page 77

Example
$SERIALINPUT2LCD

Dim v as Byte

CLS

INPUT "Number ", v 'this will go to the LCD display

$SERIALOUTPUT

Action
Specifies that serial output must be redirected.

Syntax

$SERIALOUTPUT = label

Remarks

BASCOM-AVR-HELPFILE page 78

label The name of the assembler routine that must be called when a
character is send to the serial buffer (UDR).
The character is placed into R24/_temp1.

With the redirection of the PRINT and other serial output related commands, you can use
your own routines.

This way you can use other devices as output devices.

See also
$SERIALINPUT »page 75 , $SERIALINPUT2LCD »page 77

Example
$SERIALOUTPUT = MyOutput
 'your program goes here
END

myoutput:
 ;perform the needed actions here
 Ldi _temp1,65 ;serial output buffer (default)
ret

$XRAMSIZE

Action
Specifies the size of the external RAM memory.

Syntax

$XRAMSIZE = [&H] size

Remarks
size Size of external RAM memory chip.

size : Constant.

The size of the chip can be selected from the Options Compiler Chip »page 24 menu.

The $XRAMSIZE overrides this setting.

See also
$XRAMSTART »page 79

Example
$XRAMSTART = &H300

BASCOM-AVR-HELPFILE page 79

$RAMSIZE = &H1000
DIM x AS XRAM Byte 'specify XRAM to store variable in XRAM

$XRAMSTART

Action
Specifies the location of the external RAM memory.

Syntax

$XRAMSTART = [&H]address

Remarks
address The (hex)-address where the data is stored.

Or the lowest address that enables the RAM
chip.
You can use this option when you want to run
your code in systems with external RAM
memory.

address : Constant.

By default the extended RAM will start after the internal memory so the lower addresses of
the external RAM can't be used to store information.

When you want to protect an area of the chip, you can specify a higher address for the
compiler to store the data. For example, you can specify &H400. The first dimensioned
variable will be placed in address &H400 and not in &H260.

See also
$XRAMSIZE »page 78

Example
$XRAMSTART = &H400
$XRAMSIZE = &H1000

Dim B As Byte

1WRESET

Action
This statement brings the 1wire pin to the correct state, and sends a reset to the bus.

Syntax

1WRESET

1WRESET [pin]

BASCOM-AVR-HELPFILE page 80

Remarks
1WRESET Reset the 1WIRE bus. The error variable ERR will return 1 if an

error occurred

pin An optional parameter. This is the port pin that is used for the
1wire statements. For example PORTB.1

New is support for multi 1-wire devices on different pins.

To use this you must specify the port pin that is used for the communication.

The 1wreset, 1wwrite and 1wread statements will work together when used with the old
syntax. And the pin can be configured from the compiler options or with the CONFIG
1WIRE statement.

The syntax for additional 1-wire devices is :

1WRESET pin

1WWRITE var/constant [,bytes] [pin]

var = 1WREAD(pin) , for reading one byte

var = 1WREAD(bytes, pin) ,for reading multiple bytes

See also
1WREAD »page 81 , 1WWRITE »page 82

Asm
Calls: _resetds or for the additional devices : _resetds_pin. For example :

_resetds_portb.1

Input: -

Output: - ERR is set when an error occured.

Example
'--

' 1WIRE.BAS

' Demonstrates 1wreset, 1wwrite and 1wread()

' pullup of 4K7 required to VCC from PORTB.1

' DS2401 serial button connected to PORTB.1

'--

Config 1wire = PORTB.1 'use this pin

Dim Ar(8) As Byte , A As Byte , I As Byte

1wreset 'reset the bus

Print Err 'print error 1 if error

1wwrite &H33 'read ROM command

BASCOM-AVR-HELPFILE page 81

For I = 1 To 8

 Ar(I) = 1wread () 'read byte

Next

' or ar(1) = 1wread(8) 'read 8 bytes

For I = 1 To 8

 Print hex(Ar(I)); 'print output

Next

Print 'linefeed

End

1WREAD

Action
This statement reads data from the 1wire bus into a variable.

Syntax

var2 = 1WREAD([bytes])

var2 = 1WREAD(pin) or var2 = 1WREAD(pin [, bytes])

Remarks

var2 =
1WREAD([bytes])

Reads a byte from the bus and places it into var2.
Optional, the number of bytes to read can be specified.

pin An optional parameter. This is the port pin that is used for
the 1wire statements. For example PORTB.1

New is support for multi 1-wire devices on different pins.

To use this you must specify the port pin that is used for the communication.

The 1wreset, 1wwrite and 1wread statements will work together when used with the old
syntax. And the pin can be configured from the compiler options or with the CONFIG
1WIRE statement.

The syntax for additional 1-wire devices is :

1WRESET pin

1WWRITE var/constant [,bytes] [pin]

var = 1WREAD(pin) , for reading one byte

var = 1WREAD(bytes, pin) ,for reading multiple bytes

Asm
Calls: _readds for 1 byte and _ReadDSbytes for mutiple bytes.

BASCOM-AVR-HELPFILE page 82

Input: R18 number of bytes, X address of variable

Output:

See also
1WWRITE »page 82 , 1WRESET »page 79

Example
'--

' 1WIRE.BAS

' Demonstrates 1wreset, 1wwrite and 1wread()

' pullup of 4K7 required to VCC from PORTB.1

' DS2401 serial button connected to PORTB.1

'--

Config 1wire = PORTB.1 'use this pin

Dim Ar(8) As Byte , A As Byte , I As Byte

1wreset 'reset the bus

Print Err 'print error 1 if error

1wwrite &H33 'read ROM command

For I = 1 To 8

 Ar(I) = 1wread () 'read byte

Next

' or ar(1) = 1wread(8) 'read 8 bytes

For I = 1 To 8

 Print hex(Ar(I)); 'print output

Next

Print 'linefeed

End

1WWRITE

Action
This statement writes a variable to the 1wire bus.

Syntax

1WWRITE var1 [, bytes]

1WWRITE var1 [, bytes] [pin]

BASCOM-AVR-HELPFILE page 83

Remarks
var1 Sends the value of var1 to the bus. The number of bytes can be

specified too but this is optional.

pin An optional parameter. This is the port pin that is used for the
1wire statements. For example PORTB.1

New is support for multi 1-wire devices on different pins.

To use this you must specify the port pin that is used for the communication.

The 1wreset, 1wwrite and 1wread statements will work together when used with the old
syntax. And the pin can be configured from the compiler options or with the CONFIG
1WIRE statement.

The syntax for additional 1-wire devices is :

1WRESET pin

1WWRITE var/constant [,bytes] [pin]

var = 1WREAD(pin) , for reading one byte

var = 1WREAD(bytes, pin) ,for reading multiple bytes

See also
1WREAD »page 81 , 1WRESET »page 79

Asm
Calls: _writeds for 1 byte or _WriteDSBytes for multiple bytes

Input: R18 number of bytes, X address of variable

Output: -

Example
'--

' 1WIRE.BAS

' Demonstrates 1wreset, 1wwrite and 1wread()

' pullup of 4K7 required to VCC from PORTB.1

' DS2401 serial button connected to PORTB.1

'--

Config 1wire = PORTB.1 'use this pin

Dim Ar(8) As Byte , A As Byte , I As Byte

1wreset 'reset the bus

Print Err 'print error 1 if error

1wwrite &H33 'read ROM command

BASCOM-AVR-HELPFILE page 84

For I = 1 To 8

 Ar(I) = 1wread () 'read byte

Next

' or ar(1) = 1wread(8) 'read 8 bytes

For I = 1 To 8

 Print hex(Ar(I)); 'print output

Next

Print 'linefeed

End

ALIAS

Action
Indicates that the variable can be referenced with another name.

Syntax
newvar ALIAS oldvar

Remarks
oldvar Name of the variable such as PORTB.1

newvar New name of the variable such as direction

Aliasing port pins can give the pin names a more meaningful name.

See also
CONST »page 127

Example
direction ALIAS PORTB.1 'now you can refer to PORTB.1 with the variable
direction

SET direction 'has the same effect as SET PORTB.1

END

ABS()

Action
Returns the absolute value of a numeric signed variable.

Syntax

var = ABS(var2)

BASCOM-AVR-HELPFILE page 85

Remarks
var Variable that is assigned the absolute value of var2.

Var2 The source variable to retrieve the absolute value from.

var : Byte, Integer, Word, Long.

var2 : Integer, Long.

The absolute value of a number is always positive.

See also

-

Difference with QB
You can not use numeric constants since the absolute value is obvious for numeric
constants.

Does not work with Singles.

Asm
Calls: _abs16 for an Integer and _abs32 for a Long

Input: R16-R17 for an Integer and R16-R19 for a Long

Output:R16-R17 for an Integer and R16-R19 for a Long

Example
Dim a as Integer, c as Integer

a = -1000

c = Abs(a)

Print c

End

ASC

Action
Convert a string into its ASCII value.

Syntax

var = ASC(string)

Remarks
var Target variable that is assigned.

BASCOM-AVR-HELPFILE page 86

String String variable or constant from which to retrieve the
ASCII value.

var : Byte, Integer, Word, Long.

string : String, Constant.

Note that only the first character of the string will be used.

When the string is empty, a zero will be returned.

See also
CHR »page 91

Asm
Calls: -

Input:

Output: _temp1=R24

Example
Dim a as byte, s as String * 10

s = "ABC"

a = Asc(s)

Print a 'will print 65

End

BAUD

Action
Changes the baud rate for the hardware UART.

Syntax

BAUD = var

Remarks
Var The baud rate that you want to use.

Do not confuse the BAUD statement with the $BAUD compiler directive.

$BAUD overrides the compiler setting for the baud rate and BAUD will change the current
baud rate.

BASCOM-AVR-HELPFILE page 87

See also
$CRYSTAL »page 64 , $BAUD »page 64

Asm
Calls: -

Input: -

Output: -

Code : Ldi _temp1, baud

 Out UBRR, _temp1

Example
$BAUD = 2400

$CRYSTAL = 14000000 ' 14 MHz crystal

Print "Hello"

'Now change the baudrate in a program

BAUD = 9600 '

Print "Did you change the terminal emulator baud rate too?"

END

BCD

Action
Converts a variable stored in BCD format into a string.

Syntax
PRINT BCD(var)

LCD BCD(var)

Remarks
Var Variable to convert.

var1 : Byte, Integer, Word, Long, Constant.

When you want to use an I2C clock device which stores its values as BCD values you can
use this function to print the value correctly.

BCD() displays values with a leading zero.

The BCD() function is intended for the PRINT/LCD statements.

BASCOM-AVR-HELPFILE page 88

Use the MAKEBCD function to convert variables from decimal to BCD.

Use the MAKEDEC function to convert variables from BCD to decimal.

See also
MAKEDEC »page 166 , MAKEBCD »page 165

Asm
Calls: _BcdStr

Input: X hold address of variable

Output: R0 with number of bytes, frame with data.

Example
Dim a as byte

a = 65

LCD a

Lowerline

LCD BCD(a)

End

BITWAIT

Action
Wait until a bit is set or reset.

Syntax

BITWAIT x SET/RESET

Remarks
X Bit variable or internal register like PORTB.x , where x ranges from 0-7.

When using bit variables be sure that they are set/reset by software.

When you use internal registers that can be set/reset by hardware such as PORTB.0 this
doesn't apply.

See also
-

Asm
Calls: -

BASCOM-AVR-HELPFILE page 89

Input: -

Output: -

Code : shown for address 0-31

label1:

Sbic PINB.0,label2

Rjmp label1

Label2:

Example
Dim a as bit

BITWAIT a , SET 'wait until bit a is set

BITWAIT PORTB.7, RESET 'wait until bit 7 of Port B is 0.

End

BYVAL

Action
Specifies that a variable is passed by value.

Syntax
Sub Test(BYVAL var)

Remarks
Var Variable name

The default for passing variables to SUBS and FUNCTIONS, is by reference , BYREF.
When you pass a variable by reference, the address is passed to the SUB or FUNCTION.
When you pass a variable by Value, a temp variable is created on the frame and the
address of the copy is passed.

When you pass by reference, changes to the variable will be made to the calling variable.

When you pass by value, changes to the variable will be made to the copy so the original
value will not be changed.

By default passing by reference is used.

See also
CALL »page 90 , DECLARE »page 122 , SUB »page 194 , FUNCTION »page 120

BASCOM-AVR-HELPFILE page 90

ASM

Example
Declare Sub Test(Byval X As Byte, Byref Y As Byte, Z As Byte)

CALL

Action
Call and execute a subroutine.

Syntax

CALL Test [(var1, var-n)]

Remarks
Var1 Any BASCOM variable or constant.

Var-n Any BASCOM variable or constant.

Test Name of the subroutine. In this case Test.

You can call sub routines with or without passing parameters.

It is important that the SUB routine is DECLARED before you make the CALL to the
subroutine. Of course the number of declared parameters must match the number of
passed parameters.

It is also important that when you pass constants to a SUB routine, you must DECLARE
these parameters with the BYVAL argument.

With the CALL statement, you can call a procedure or subroutine.

For example: Call Test2

The call statement enables you to implement your own statements.

You don't have to use the CALL statement:

Test2 will also call subroutine test2

When you don't supply the CALL statement, you must leave out the parenthesis.

So Call Routine(x,y,z) must be written as Routine x,y,x

Unlike normal SUB programs called with the GOSUB statement, the CALL statement
enables you to pass variables to a SUB routine.

BASCOM-AVR-HELPFILE page 91

See also
DECLARE »page 122 , SUB »page 194 , EXIT »page 133 , FUNCTION »page 120 ,
LOCAL »page 159

Example
Dim A As Byte, B as Byte 'dimension some variables

Declare Sub Test(b1 As Byte, BYVAL b2 As Byte) 'declare the SUB program

a = 65 'assign a value to variable A

Call test (a , 5) 'call test with parameter A and constant

test a , 5 'alternative call

Print A 'now print the new value

End

SUB Test(b1 as byte, BYVAL b2 as byte) 'use the same variable names as
'the declared one !!!

LCD b1 'put it on the LCD

Lowerline

LCD BCD(b2)

B1 = 10 'reassign the variable

B2 = 15 'reassign the variable

End SUB

One important thing to notice is that you can change b2 but that the change will not be
reflected to the calling program!

Variable A is changed however.

This is the difference between the BYVAL and BYREF argument in the DECLARE ration
of the SUB program.

When you use BYVAL, this means that you will pass the argument by its value. A copy of
the variable is made and passed to the SUB program. So the SUB program can use the
value and modify it, but the change will not be reflected to the calling parameter. It would
be impossible too when you pass a numeric constant for example.

If you do not specify BYVAL, BYREF will be used by default and you will pass the address
of the variable. So when you reassign B1 in the above example, you are actually changing
parameter A.

CHR

Action
Convert a numeric variable or a constant to a character.

BASCOM-AVR-HELPFILE page 92

Syntax

PRINT CHR(var)

s = CHR(var)

Remarks
Var Numeric variable or numeric constant.

S A string variable.

When you want to print a character to the screen or the LCD display,

you must convert it with the CHR() function.

When you use PRINT numvar, the value will be printed.

When you use PRINT Chr(numvar), the ASCII character itself will be printed.

The Chr() function is handy in combination with the LCD custom characters where you ca
redefine characters 0-7 of the ASCII table.

See also
ASC() »page 85

Example
Dim a As Byte 'dim variable

a = 65 'assign variable

LCD a 'print value (65)

Lowerline

LCD HEX(a) 'print hex value (41)

LCD Chr(a) 'print ASCII character 65 (A)

End

CLS

Action
Clear the LCD display and set the cursor to home.

Syntax

CLS

BASCOM-AVR-HELPFILE page 93

Remarks
Clearing the LCD display does not clear the CG-RAM in which the custom characters are
stored.

See also
$LCD »page 70 , LCD »page 154 , SHIFTLCD »page 186 , SHIFTCURSOR »page 184 ,
SHIFTLCD »page 186

Example
Cls 'Clear LCD display

LCD "Hello" 'show this famous text

End

CLOCKDIVISION

Action
Will set the system clock division available in the MEGA chips.

Syntax

CLOCKDIVISON = var

Remarks
var Variable or numeric constant that sets the clock division.

Valid values are from 2-129.
A value of 0 will disable the division.

On the MEGA 103 and 603 the system clock frequency can be divided so you can save
power for instance. A value of 0 will disable the clock divider. The divider can divide from 2
to 127. So the other valid values are from 2 - 127.

Some routines that rely on the system clock will not work proper anymore when you use
the divider. WAITMS for example will take twice the time when you use a value of 2.

See also
POWERSAVE »page 174

Example
$BAUD = 2400

Clockdivision = 2

END

BASCOM-AVR-HELPFILE page 94

CLOSE

Action
Opens and closes a device.

Syntax
OPEN "device" for MODE As #channel

CLOSE #channel

Remarks
device The default device is COM1 and you don't need to open a channel to

use INPUT/OUTPUT on this device.
With the implementation of the software UART, the compiler must know
to which pin/device you will send/receive the data.
So that is why the OPEN statement must be used. It tells the compiler
about the pin you use for the serial input or output and the baud rate you
want to use.
COMB.0:9600,8,N,2 will use PORT B.0 at 9600 baud with 2 stop bits.

The format for COM1 is : COM1:speed, where the speed is optional and
will override the compiler settings for the speed.

The format for the sofware UART is: COMpin:speed,8,N,stop
bits[,INVERTED]
Where pin is the name of the PORT-pin.
Speed must be specified and stopbits can be 1 or 2.
An optional parameter ,INVERTED can be specified to use inverted RS-
232.
Open "COMD.1:9600,8,N,1,INVERTED" For Output As #1 , will use pin
PORTD.1 for output with 9600 baud, 1 stop bit and with inverted RS-
232.

MODE You can use BINARY or RANDOM for COM1, but for the software UART
pins, you must specify INPUT or OUTPUT.

channel The number of the channel to open. Must be a positive constant >0.

The statements that support the device are PRINT , INPUT and INPUTHEX.

Every opened device must be closed using the CLOSE #channel statement. Of course,
you must use the same channel number.

The best place for the CLOSE statement is at the end of your program.

The INPUT statement in combination with the software UART, will not echo characters
back because there is no default associated pin for this.

BASCOM-AVR-HELPFILE page 95

See also
OPEN »page 169 , PRINT »page 174

Example
'---

' OPEN.BAS

' demonstrates software UART

'---

Dim B As Byte

'open channel for output and use inverted logic

Open "comd.1:9600,8,n,1,inverted" For Output As #1

Print #1 , B

Print #1 , "serial output"

Close #1

'Now open a pin for input and use inverted logic

Open "comd.2:9600,8,n,1,inverted" For Input As #2

Input #2 , B

Close #2

'use normal hardware UART for printing

Print B

End

CONFIG

The CONFIG statement is used to configure the hardware devices.

CONFIG TIMER0 »page 103

CONFIG TIMER1 »page 106

CONFIG LCD »page 99

CONFIG LCDBUS »page 99

CONFIG LCDMODE »page 100

CONFIG 1WIRE »page 96

CONFIG SDA »page 101

CONFIG SCL »page 102

CONFIG DEBOUNCE »page 96

CONFIG SPI »page 103

BASCOM-AVR-HELPFILE page 96

CONFIG LCDPIN »page 101

CONFIG WATCHDOG »page 109

CONFIG PORT »page 110

CONFIG KBD »page 98

CONFIG I2CDELAY »page 97

CONFIG INTx »page 98

CONFIG WAITSUART »page 109

CONFIG 1WIRE

Action
Configure the pin to use for 1WIRE statements and override the compiler setting.

Syntax

CONFIG 1WIRE = pin

Remarks
Pin The port pin to use such as PORTB.0

The CONFIG 1WIRE statement, only overrides the compiler setting.

You can have only one pin for the 1WIRE statements because the idea is that you can
attach multiple 1WIRE devices to the 1WIRE bus.

See also
1WRESET »page 79 , 1WREAD »page 81 , 1WWRITE »page 82

Example
Config 1WIRE = PORTB.0 'PORTB.0 is used for the 1-wire bus

1WRESET 'reset the bus

CONFIG DEBOUNCE

Action
Configures the delay time for the DEBOUNCE statement.

Syntax

CONFIG DEBOUNCE = time

Remarks
Time A numeric constant which specifies the delay time in mS.

BASCOM-AVR-HELPFILE page 97

When debounce time is not configured, 25 mS will be used as a default.

See also
DEBOUNCE

Example
CONFIG DEBOUNCE = 30 'when the config statement is not used a default

' of 25mS will be used

'Debounce Pind.0 , 1 , Pr 'try this for branching when high(1)

 Debounce Pind.0 , 0 , Pr , Sub

 Debounce Pind.0 , 0 , Pr , Sub

 ' ^----- label to branch to

 ' ^---------- Branch when PIND.0 goes low(0)

 ' ^---------------- Examine PIND.0

 'When Pind.0 goes low jump to subroutine Pr

 'Pind.0 must go high again before it jumps again

 'to the label Pr when Pind.0 is low

 Debounce Pind.0 , 1 , Pr 'no branch

 Debounce Pind.0 , 1 , Pr 'will result in a return without gosub

End

Pr:

 Print "PIND.0 was/is low"

Return

CONFIG I2CDELAY

Action
Compiler directive that overrides the internal I2C delay routine.

Syntax

CONFIG I2CDELAY = value

Remarks
value A numeric value in the range of 1-255.

A higher value means a slower I2C clock.

BASCOM-AVR-HELPFILE page 98

For the I2C routines the clock rate is calculated depending on the used crystal. In order to
make it work for all I2C devices the slow mode is used. When you have faster I2C devices
you can specify a low value.

See also
CONFIG SCL »page 102 , CONFIG SDA »page 101

Example
CONFIG SDA = PORTB.7 'PORTB.7 is the SDA line

CONFIG I2CDELAY = 5

See I2C example for more details.

CONFIG INTx

Action
Configures the way the interrupts 4-7 will be triggered.

Syntax

CONFIG INTx = state

Where X can be 4 to 7.

Remarks
state LOW LEVEL to generate an interrupt while the pin is held low.

Holding the pin low will generate an interrupt over and over
again.

FALLING to generate an interrupt on the falling edge.

RISING to generate an interrupt on the rising edge..

Example
'--

Config INT4 = LOW LEVEL

End

CONFIG KBD

Action
Configure the GETKBD() function and tell which port to use.

BASCOM-AVR-HELPFILE page 99

Syntax

CONFIG KBD = PORTx

Remarks
PORTx The name of the PORT to use such as PORTB or PORTD.

See also
GETKBD »page 137

CONFIG LCD

Action
Configure the LCD display and override the compiler setting.

Syntax

CONFIG LCD = LCDtype

Remarks
LCDtype The type of LCD display used. This can be :

40 * 4,16 * 1, 16 * 2, 16 * 4, 16 * 4, 20 * 2 or 20 * 4 or 16 * 1a
Default 16 * 2 is assumed.

When you have a 16 * 2 display, you don't have to use this statement.

The 16 * 1a is special. It is used for 2 * 8 displays that have the address of line 2, starting
at location &H8.

Example
CONFIG LCD = 40 * 4

LCD "Hello" 'display on LCD

FOURTHLINE 'select line 4

LCD "4" 'display 4

END

CONFIG LCDBUS

Action
Configures the LCD data bus and overrides the compiler setting.

Syntax
CONFIG LCDBUS = constant

BASCOM-AVR-HELPFILE page 100

Remarks
Constant 4 for 4-bit operation, 8 for 8-bit mode (default)

Use this statement together with the $LCD = address statement.

When you use the LCD display in the bus mode the default is to connect all the data lines.
With the 4-bit mode, you only have to connect data lines d7-d4.

See also
CONFIG LCD »page 99

Example
$LCD = &HC000 'address of enable and RS signal

$LCDRS = &H800 'address of enable signal

Config LCDBUS = 4 '4 bit mode

LCD "hello"

CONFIG LCDMODE

Action
Configures the LCD operation mode and overrides the compiler setting.

Syntax
CONFIG LCDMODE = type

Remarks
Type PORT will drive the LCD in 4-bit port mode and is the default.

In PORT mode you can choose different PIN's from different PORT's to
connect to the lower 4 data lines of the LCD display. The RS and E can
also be connected to a user selectable pin. This is very flexible since
you can use pins that are not used by your design and makes the board
layout simple. On the other hand, more software is necessary to drive
the pins.

BUS will drive the LCD in bus mode and in this mode is meant when
you have external RAM and so have an address and data bus on your
system. The RS and E line of the LCD display can be connected to an
address decoder. Simply writing to an external memory location select
the LCD and the data is sent to the LCD display. This means the data-
lines of the LCD display are fixed to the data-bus lines.

Use $LCD »page 70 = address and $LCDRS »page 72 = address, to
specify the addresses that will enable the E and RS lines.

BASCOM-AVR-HELPFILE page 101

See also
CONFIG LCD »page 99 , $LCD »page 70 , $LCDRS »page 72

Example
Config LCDMODE = PORT 'the report will show the settings

Config LCDBUS = 4 '4 bit mode

LCD "hello"

CONFIG LCDPIN

Action
Override the LCD-PIN select options.

Syntax
CONFIG LCDPIN = PIN , DB4= PN,DB5=PN, DB6=PN, DB7=PN, E=PN, RS=PN

Remarks
PN The name of the PORT pin such as PORTB.2 for example.

DUM Actually a dummy you can leave out as long as you don't forget to
include the = sign.

You can override the PIN selection from the Compiler Settings with this statement, so a
second configuration lets you not choose more pins for a second LCD display.

See also
CONFIG LCD »page 99

Example
CONFIG LCDPIN = PIN ,DB4= PORTB.1,DB5=PORTB.2,DB6=PORTB.3,
DB7=PORTB.4,E=PORTB.5,RS=PORTB.6

The above example must be typed on one line.

CONFIG SDA

Action
Overrides the SDA pin assignment from the Option Compiler Settings »page 27.

Syntax

CONFIG SDA = pin

BASCOM-AVR-HELPFILE page 102

Remarks
Pin The port pin to which the I2C-SDA line is connected.

When you use different pins in different projects, you can use this statement to override
the Options Compiler setting for the SDA pin. This way you will remember which pin you
used because it is in your code and you do not have to change the settings from the
options. In BASCOM-AVR the settings are also stored in the project.CFG file.

See also
CONFIG SCL »page 102 , CONFIG I2CDELAY »page 97

Example
CONFIG SDA = PORTB.7 'PORTB.7 is the SDA line

See I2C example for more details.

CONFIG SCL

Action
Overrides the SCL pin assignment from the Option Compiler Settings »page 27.

Syntax

CONFIG SCL = pin

Remarks
Pin The port pin to which the I2C-SCL line is connected.

When you use different pins in different projects, you can use this statement to override
the Options Compiler setting for the SCL pin. This way you will remember which pin you
used because it is in your code and you do not have to change the settings from the
options. Of course BASCOM-AVR also stores the settings in a project.CFG file.

See also
CONFIG SDA »page 101 , CONFIG I2CDELAY »page 97

Example
CONFIG SCL = PORTB.5 'PORTB.5 is the SCL line

BASCOM-AVR-HELPFILE page 103

CONFIG SPI

Action
Configures the SPI related statements.

Syntax
CONFIG SPI = SOFT, DIN = PIN, DOUT = PIN , SS = PIN, CLK = PIN

Remarks
SPI SOFT for software emulation of SPI, this lets you choose the PINS to

use.

HARD for the internal SPI hardware, that will use fixed pins.
Not implemented yet.

DIN Data input or MISO. Pin is the pin number to use such as PORTB.0

DOUT Data output or MOSI. Pin is the pin number to use such as PORTB.1

SS Slave Select. Pin is the pin number to use such as PORTB.2

CLK Clock. Pin is the pin number to use such as PORTB.3

See also
SPIIN »page 188 , SPIOUT »page 190 , SPIINIT »page 189

Example
Config SPI = SOFT, DIN = PORTB.0 , DOUT = PORTB.1, SS = PORTB.2, CLK = PORTB.3

Dim var As Byte

SPIINIT 'Init SPI state and pins.

SPIOUT var , 1 'send 1 byte

CONFIG TIMER0

Action
Configure TIMER0.

Syntax

CONFIG TIMER0 = COUNTER , EDGE=RISING/FALLING

CONFIG TIMER0 = TIMER , PRESCALE= 1|8|64|256|1024

Remarks
TIMER0 is a 8 bit counter. See the hardware description of TIMER0.

BASCOM-AVR-HELPFILE page 104

When configured as a COUNTER:

EDGE You can select whether the TIMER will count on the falling or rising
edge.

When configured as a TIMER:

PRESCALE The TIMER is connected to the system clock in this case. You can
select the division of the system clock with this parameter.
Valid values are 1 , 8, 64, 256 or 1024

When you use the CONFIG TIMER0 statement, the mode is remembered by the compiler
and the TCCRO register is set.

When you use the STOP TIMER0 statement, the TIMER is stopped.

When you use the START TIMER0 statement, the TIMER TCCR0 register is loaded with
the last value that was configured with the CONFIG TIMER0 statement.

So before using the START »page 190 and STOP »page 192 TIMER0 statements, use
the CONFIG statement first.

Example
'First you must configure the timer to operate as a counter or as a timer

'Lets configure it as a COUNTER now

'You must also specify if it will count on a rising or falling edge

Config Timer0 = Counter , Edge = Rising

'Config Timer0 = Counter , Edge = falling

'unremark the line above to use timer0 to count on falling edge

'To get/set the value from the timer access the timer/counter register

'let's reset it to 0

Tcnt0 = 0

Do

 Print Tcnt0

Loop Until Tcnt0 >= 10

'when 10 pulses are counter the loop is exited

'Now configure it as a TIMER

'The TIMER can have the system clock as an input or the system clock divided

'by 8,64,256 or 1024

BASCOM-AVR-HELPFILE page 105

'The prescale parameter acccepts 1,8,64,256 or 1024

Config Timer0 = Timer , Prescale = 1

'The TIMER is started now automatically

'You can STOP the timer with the following statement :

Stop Timer0

'Now the timer is stopped

'To START it again in the last configured mode, use :

Start Timer0

'Again you can access the value with the tcnt0 register

Print Tcnt0

'when the timer overflows, a flag named TOV0 in register TIFR is set

'You can use this to execute an ISR

'To reset the flag manual in non ISR mode you must write a 1 to the bit position

'in TIFR:

Set Tifr.1

'The following code shows how to use the TIMER0 in interrupt mode

'The code is block remarked with '(en ')

'(

'Configure the timer to use the clock divided by 1024

Config Timer0 = Timer , Prescale = 1024

'Define the ISR handler

On Ovf0 Tim0_isr

'you may also use TIMER0 for OVF0, it is the same

Do

 'your program goes here

Loop

'the following code is executed when the timer rolls over

Tim0_isr:

 Print "*";

Return

')

BASCOM-AVR-HELPFILE page 106

End

CONFIG TIMER1

Action
Configure TIMER1.

Syntax

CONFIG TIMER1 = COUNTER , EDGE=RISING/FALLING , NOICE CANCEL=0/1,
CAPTURE EDGE = RISING/FALLING

CONFIG TIMER1 = TIMER , PRESCALE= 1|8|64|256|1024

CONFIG TIMER1 = PWM , PWM = 8 , COMPARE A PWM = CLEAR UP/CLEAR
DOWN/DISCONNECT , COMPARE B PWM = (see A)

Remarks
The TIMER1 is a 16 bit counter. See the hardware description of TIMER1.

When configured as a COUNTER:

EDGE You can select whether the TIMER will count on the falling or
rising edge.

CAPTURE EDGE You can choose to capture the TIMER registers to the
INPUT CAPTURE registers
With the CAPTURE EDGE = FALLING/RISING, you can
specify to capture on the falling or rising edge of pin ICP

NOICE CANCELING To allow noise canceling you can provide a value of 1.

When configured as a TIMER:

PRESCALE The TIMER is connected to the system clock in this case. You can
select the division of the system clock with this parameter.
Valid values are 1 , 8, 64, 256 or 1024

The TIMER1 also has two compare registers A and B

When the timer value matches a compare register, an action can be performed

COMPARE A The action can be:
SET will set the OC1X pin
CLEAR will clear the OC1X pin
TOGGLE will toggle the OC1X pin
DISCONNECT will disconnect the TIMER from output pin
OC1X

BASCOM-AVR-HELPFILE page 107

And the TIMER can be used in PWM mode

You have the choice between 8, 9 or 10 bit PWM mode

Also you can specify if the counter must count UP or down after a match

to the compare registers

Note that there are two compare registers A and B

PWM Can be 8, 9 or 10.

COMPARE A PWM PWM compare mode. Can be CLEAR UP or CLEAR DOWN

Example
'---

' TIMER1.BAS

'---

Dim W As Word

'The TIMER1 is a versatile 16 bit TIMER.

'This example shows how to configure the TIMER

'First like TIMER0 , it can be set to act as a TIMER or COUNTER

'Lets configure it as a TIMER that means that it will count and that

'the input is provided by the internal clock.

'The internal clock can be divided by 1,8,64,256 or 1024

Config Timer1 = Timer , Prescale = 1024

'You can read or write to the timer with the COUNTER1 or TIMER1 variable

W = Timer1

Timer1 = W

'To use it as a COUNTER, you can choose on which edge it is triggered

Config Timer1 = Counter , Edge = Falling

'Config Timer1 = Counter , Edge = Rising

'Also you can choose to capture the TIMER registers to the INPUT CAPTURE
registers

'With the CAPTURE EDGE = , you can specify to capture on the falling or rising
edge of pin ICP

Config Timer1 = Counter , Edge = Falling , Capture Edge = Falling

'Config Timer1 = Counter , Edge = Falling , Capture Edge = Rising

BASCOM-AVR-HELPFILE page 108

'To allow noise canceling you can also provide :

Config Timer1 = Counter , Edge = Falling , Capture Edge = Falling , Noice
Canceling = 1

'to read the input capture register :

W = Capture1

'to write to the capture register :

Capture1 = W

'The TIMER also has two compare registers A and B

'When the timer value matches a compare register, an action can be performed

Config Timer1 = Counter , Edge = Falling , Compare A = Set , Compare B = Toggle

'SET , will set the OC1X pin

'CLEAR, will clear the OC1X pin

'TOGGLE, will toggle the OC1X pin

'DISCONNECT, will disconnect the TIMER from output pin OC1X

'To read write the compare registers, you can use the COMPARE1A and COMPARE1B
variables

Compare1a = W

W = Compare1a

'And the TIMER can be used in PWM mode

'You have the choice between 8,9 or 10 bit PWM mode

'Also you can specify if the counter must count UP or down after a match

'to the compare registers

'Note that there are two compare registers A and B

Config Timer1 = Pwm , Pwm = 8 , Compare A Pwm = Clear Up , Compare B Pwm = Clear
Down

'to set the PWM registers, just assign a value to the compare A and B registers

Compare1a = 100

Compare1b = 200

'Or for better reading :

Pwm1a = 100

Pwm1b = 200

End

BASCOM-AVR-HELPFILE page 109

CONFIG WAITSUART

Action
Compiler directive that specifies that software UART waits after sending the last byte.

Syntax

CONFIG WAITSUART = value

Remarks
value A numeric value in the range of 1-255.

A higher value means a longer delay in mS.

When the software UART routine are used in combination with serial LCD displays it can
be convenient to specify a delay so the display can process the data.

See also

Example
See OPEN »page 169 example for more details.

CONFIG WATCHDOG

Action
Configures the watchdog timer.

Syntax

CONFIG WATCHDOG = time

Remarks
Time The interval constant in mS the watchdog timer will count to before it

will reset your program.

Possible settings :
16 , 32, 64 , 128 , 256 , 512 , 1024 and 2048.

When the WD is started, a reset will occur after the specified number of mS.

With 2048, a reset will occur after 2 seconds, so you need to reset the WD in your
programs periodically with the RESET WATCHDOG statement.

BASCOM-AVR-HELPFILE page 110

See also
START WATCHDOG »page 190 , STOP WATCHDOG »page 192 , RESET WATCHDOG
»page 179

Example
'---
' (c) 1999 MCS Electronics
' WATCHD.BAS demonstrates the watchdog timer
'---

Config Watchdog = 2048 'reset after 2048 mSec

Start Watchdog 'start the watchdog timer

Dim I As Word

For I = 1 To 10000

 Print I 'print value

 ' Reset Watchdog

 'you will notice that the for next doesnt finish because of the reset

 'when you unmark the RESET WATCHDOG statement it will finish because the

 'wd-timer is reset before it reaches 2048 msec

Next

End

CONFIG PORT

Action
Sets the port or a port pin to the right data direction.

Syntax

CONFIG PORTx = state

CONFIG PINx.y = state

Remarks
state A constant that can be INPUT or OUTPUT.

INPUT will set the data direction register to input for
port X.
OUTPUT will set the data direction to output for port
X.
You can also use a number for state. &B0001111,
will set the upper nibble to input and the lower nibble
to output.

You can also set one port pin with the CONFIG PIN
= state, statement.
Again, you can use INPUT, OUTPUT or a number.
In this case the number can be only zero or one.

BASCOM-AVR-HELPFILE page 111

state : Constant.

The best way to set the data direction for more than 1 pin, is to use the CONFIG PORT,
statement and not multiple lines with CONFIG PIN statements.

Example
'--

' (c) 1999 MCS Electronics

'--

' file: PORT.BAS

' demo: PortB and PortD

'--

Dim A As Byte , Count As Byte

'Use port B for OUTPUT

Config Portb = Output

A = Portb 'get inputvalue of
port 1

A = A And Portb

A = Pinb

Print A 'print it

Portb = 10 'set port1 to 10

Portb = Portb And 2

Set Portb.0 'set bit 0 of port
1 to 1

Bitwait Portb.0 , Set 'wait until bit is
set(1)

Incr Portb

Count = 0

Do

 Incr Count

 Portb = 1

 For A = 1 To 8

 Rotate Portb , Left 'rotate bits left

 Next

 'the following 2 lines do the same as the previous loop

 Portb = 1

BASCOM-AVR-HELPFILE page 112

 Rotate Portb , Left , 8

Loop Until Count = 10

Print "Ready"

'note that the AVR port pins have a data direction register

'when you want to use a pin as an input it must be set low first

'you can do this by writing zeros to the DDRx:

'DDRB =&B11110000 'this will set portb1.0,portb.1,portb.2 and portb.3 to use as
inputs.

'So : when you want to use a pin as an input set it low first in the DDRx!

' and when you want to use the pin as output, write a 1 first

End

COUNTER0 and COUNTER1

Action
Set or retrieve the internal 16 bit hardware register.

Syntax
COUNTER0 = var
var = COUNTER0

TIMER0 can also be used

COUNTER1 = var
var = COUNTER1

TIMER1 can also be used

CAPTURE1 = var
var = CAPTURE1

TIMER1 capture register

COMPARE1A = var
var = COMPARE1A

TIMER1 COMPARE A register

COMARE1B = var
var = COMPARE1B

TIMER1 COMPARE B register

PWM1A = var
var = PWM1A

TIMER1 COMPAREA register. (Is used for
PWM)

PWM1B = var
var = PRM1B

TIMER1 COMPARE B register. (Is used for
PWM)

Remarks
Var A byte, Integer/Word variable or constant that is assigned to the register

or is read from the register.

BASCOM-AVR-HELPFILE page 113

Because the above 16 bit register pairs must be accessed somewhat differently than you
may expect, they are implemented as variables.

The exception is TIMER0/COUNTER0, this is a normal 8 bit register and is supplied for
compatibility with the syntax.

When the CPU reads the low byte of the register, the data of the low byte is sent to the
CPU and the data of the high byte is placed in a temp register. When the CPU reads the
data in the high byte, the CPU receives the data in the temp register.

When the CPU writes to the high byte of the register pair, the written data is placed in a
temp register. Next when the CPU writes the low byte, this byte of data is combined with
the byte data in the temp register and all 16 bits are written to the register pairs. So the
MSB must be accessed first.

All of the above is handled automatically by BASCOM when accessing the above
registers.

Note that the available registers may vary from chip to chip.

The BASCOM documentation used the 8515 to describe the different hardware registers.

CPEEK

Action
Returns a byte stored in code memory.

Syntax

var = CPEEK(address)

Remarks
Var Numeric variable that is assigned with the content of the program

memory at address

Address Numeric variable or constant with the address location

There is no CPOKE statement because you can not write into program memory.

See also
PEEK »page 172 , POKE »page 172 , INP »page 150 , OUT »page 171

Example
'---

' (c) 1998-1999 MCS Electronics

' PEEK.BAS

BASCOM-AVR-HELPFILE page 114

' demonstrates PEEK, POKE, CPEEK, INP and OUT

'---

Dim I As Integer , B1 As Byte

'dump internal memory

For I = 0 To 31 'only 32 registers in AVR

 B1 = Peek(i) 'get byte from internal memory

 Print Hex(b1) ; " ";

 'Poke I , 1 'write a value into internal
memory(register)

Next

Print 'new line

'be careful when writing into internal memory !!

'now dump a part of the code-memory(program)

For I = 0 To 255

 B1 = Cpeek(i) 'get byte from internal code memory

 Print Hex(b1) ; " ";

Next

'note that you can not write into code memory!!

Out &H8000 , 1 'write 1 into XRAM at address 8000

B1 = Inp(&H8000) 'return value from XRAM

Print B1

CRYSTAL

Action
Special byte variable that can be used with software UART routine to change the baudrate
during runtime.

Syntax

CRYSTAL = var

Remarks
With the software UART you can generate good baudrates. But chips such as the
ATtiny22 have an internal 1 MHz clock. The clock frequency can change during runtime by
infulence of temperature or voltage.

The crystal variable can be changed during runtime to change the baudrate.

You must DIM »page 125ension this special variable before you can use it!

Some values for 1 MHz internal clock :
Crystal = 66 'for 2400 baud

BASCOM-AVR-HELPFILE page 115

Crystal = 31 'for 4800 baud
Crystal = 14 'for 9600 baud

See also
OPEN »page 169 , CLOSE »page 169

Example
Dim crystal As Byte, B as byte

Open "comd.1:9600,8,n,1,inverted" For Output As #1

Print #1 , B

Print #1 , "serial output"

crystal = 16

Print #1, "serial output"

Close #1

End

CURSOR

Action
Set the LCD Cursor State.

Syntax

CURSOR ON / OFF BLINK / NOBLINK

Remarks
You can use both the ON or OFF and BLINK or NOBLINK parameters.

At power up the cursor state is ON and NOBLINK.

See also
DISPLAY »page 129 , LCD »page 154

Example
Dim a As Byte

a = 255

LCD a

CURSOR OFF 'hide cursor

Wait 1 'wait 1 second

CURSOR BLINK 'blink cursor

End

BASCOM-AVR-HELPFILE page 116

DATA

Action
Specifies constant values to be read by subsequent READ statements.

Syntax

DATA var [, varn]

Remarks
Var Numeric or string constant.

The DATA related statements use the internal registers pair R8 and R9 to store the data
pointer.

To store a " sign on the data line, you can use :

DATA $34

The $-sign tells the compiler that the ASCII value will follow of the character.

You can also use this to store special characters that can't be written by the editor such as
chr(7)

Because the DATA statements allows you to generate an EEP file to store in EEPROM,
the $DATA »page 65 and $EEPROM »page 67 directives have been added. Read the
description of these directives to learn more about the DATA statement.

The DATA statements must not be accessed by the flow of your program because the
DATA statements are converted to the byte representation of the DATA.

When your program flow enters the DATA lines, unpredictable results will occur.

So as in QB, the DATA statement is best be placed at the end of your program or in a
place that program flow will no enter.

For example this is fine:

Print "Hello"

Goto jump

DATA "test"

Jump:

'because we jump over the data lines there is no problem.

The following example will case some problems:

Dim S As String * 10

BASCOM-AVR-HELPFILE page 117

Print "Hello"

Restore lbl

Read S

DATA "test"

Print S

Difference with QB

Integer and Word constants must end with the % -sign.

Long constants must end with the &-sign.

Single constants must end with the !-sign.

See also
READ »page 176 , RESTORE »page 180 , $DATA »page 65 , $EEPROM »page 67

Example
'---

' READDATA.BAS

' Copyright 1999 MCS Electronics

'---

Dim A As Integer , B1 As Byte , Count As Byte

Dim S As String * 15

Dim L As Long

Restore Dta1 'point to stored data

For Count = 1 To 3 'for number of data items

 Read B1 : Print Count ; " " ; B1

Next

Restore Dta2 'point to stored data

For Count = 1 To 2 'for number of data items

 Read A : Print Count ; " " ; A

Next

Restore Dta3

Read S : Print S

Read S : Print S

Restore Dta4

Read L : Print L 'long type

BASCOM-AVR-HELPFILE page 118

End

Dta1:

Data &B10 , &HFF , 10

Dta2:

Data 1000% , -1%

Dta3:

Data "Hello" , "World"

'Note that integer values (>255 or <0) must end with the %-sign

'also note that the data type must match the variable type that is

'used for the READ statement

Dta4:

Data 123456789&

'Note that LONG values must end with the &-sign

'Also note that the data type must match the variable type that is used

'for the READ statement

DEBOUNCE

Action
Debounce a port pin connected to a switch.

Syntax

DEBOUNCE Px.y , state , label [, SUB]

Remarks
Px.y A port pin like PINB.0 , to examine.

state 0 for jumping when PINx.y is low , 1 for jumping when PINx.y is
high

label The label to GOTO when the specified state is detected

SUB The label to GOSUB when the specified state is detected

When you specify the optional parameter SUB, a GOSUB to label is performed instead of
a GOTO.

The DEBOUNCE statements wait for a port pin to get high(1) or low(0).

When it does it waits 25 mS and checks again (eliminating bounce of a switch)

BASCOM-AVR-HELPFILE page 119

When the condition is still true and there was no branch before, it branches to the label.

When DEBOUNCE is executed again, the state of the switch must have gone back in the
original position before it can perform another branch.

Each DEBOUNCE statement which use a different port uses 1 BIT of the internal memory
to hold its state.

See also
CONFIG DEBOUNCE »page 96

Example
'---

' DEBOUN.BAS

' Demonstrates DEBOUNCE

'---

CONFIG DEBOUNCE = 30 'when the config statement is not used a default of 25mS
will be used

 'Debounce Pind.0 , 1 , Pr 'try this for branching when high(1)

 Debounce Pind.0 , 0 , Pr , Sub

 Debounce Pind.0 , 0 , Pr , Sub

 ' ^----- label to branch to

 ' ^---------- Branch when P1.0 goes low(0)

 ' ^---------------- Examine P1.0

 'When Pind.0 goes low jump to subroutine Pr

 'Pind.0 must go high again before it jumps again

 'to the label Pr when Pind.0 is low

 Debounce Pind.0 , 1 , Pr 'no branch

 Debounce Pind.0 , 1 , Pr 'will result in a
return without gosub

End

Pr:

 Print "PIND.0 was/is low"

Return

DECR

Action
Decrements a variable by one.

BASCOM-AVR-HELPFILE page 120

Syntax

DECR var

Remarks
Var Variable to decrement.

var : Byte, Integer, Word, Long, Single.

There are often situations where you want a number to be decreased by 1.

The Decr statement is provided for compatibility with BASCOM-8051.

See also
INCR »page 149

Example
'--

' (c) 1997,1998 MCS Electronics

'--

' file: DECR.BAS

' demo: DECR

'--

Dim A As Byte

A = 5 'assign value to a

Decr A 'dec (by one)

Print A 'print it

End

DECLARE FUNCTION

Action
Declares a user function.

Syntax

DECLARE FUNCTION TEST[([BYREF/BYVAL] var as type)] As type

Remarks
test Name of the function.

BASCOM-AVR-HELPFILE page 121

Var Name of the variable(s).

Type Type of the variable(s) and of the result. Byte,Word/Integer, Long
or String.

When BYREF or BYVAL is not provided, the parameter will be passed by reference.

Use BYREF to pass a variable by reference with its address.

Use BYVAL to pass a copy of the variable.

See the CALL »page 90 statement for more details.

You must declare each function before writing the function or calling the function.

See also
CALL »page 90, SUB »page 194 , FUNCTION »page 120

Example
'--
' (c) 1999 MCS Electronics
' Demonstration of user function
'--

'A user function must be declare before it can be used.

'A function must return a type

Declare Function Myfunction(byval I As Integer , S As String) As Integer

'The byval paramter will pass the parameter by value so the original value

'will not be changed by the function

Dim K As Integer

Dim Z As String * 10

Dim T As Integer

'assign the values

K = 5

Z = "123"

T = Myfunction(k , Z)

Print T

End

Function Myfunction(byval I As Integer , S As String) As Integer

 'you can use local variables in subs and functions

 Local P As Integer

 P = I

BASCOM-AVR-HELPFILE page 122

 'because I is passed by value, altering will not change the original

 'variable named k

 I = 10

 P = Val(s) + I

 'finally assign result

 'Note that the same data type must be used !

 'So when declared as an Integer function, the result can only be

 'assigned with an Integer in this case.

 Myfunction = P

End Function

DECLARE SUB

Action
Declares a subroutine.

Syntax

DECLARE SUB TEST[([BYREF/BYVAL] var as type)]

Remarks
test Name of the procedure.

Var Name of the variable(s).

Type Type of the variable(s). Byte, Word/Integer, Long or String.

When BYREF or BYVAL is not provided, the parameter will be passed by reference.

Use BYREF to pass a variable by reference with its address.

Use BYVAL to pass a copy of the variable.

See the CALL »page 90 statement for more details.

You must declare each sub before writing or calling the sub procedure.

See also
CALL »page 90, SUB »page 194

Example
Dim a As Byte, b1 As Byte, c As Byte

Declare Sub Test(a As Byte)

a = 1 : b1 = 2: c = 3

BASCOM-AVR-HELPFILE page 123

Print a ; b1 ; c

Call Test(b1)

Print a ;b1 ; c

End

Sub Test(a as byte)

 Print a ; b1 ; c

End Sub

DEFxxx

Action
Declares all variables that are not dimensioned of the DefXXX type.

Syntax
DEFBIT b Define BIT

DEFBYTE c Define BYTE

DEFINT I Define INTEGER

DEFWORD xDefine WORD

DEFLNG l Define LONG

DEFSNG s Define SINGLE

Difference with QB

QB allows you to specify a range like DEFINT A - D. BASCOM doesn't support this.

Example
Defbit b : DefInt c 'default type for bit and integers

Set b1 'set bit to 1

c = 10 'let c = 10

DEFLCDCHAR

Action
Define a custom LCD character.

Syntax

DEFLCDCHAR char,r1,r2,r3,r4,r5,r6,r7,r8

BASCOM-AVR-HELPFILE page 124

Remarks
char Constant representing the character (0-7).

r1-r8 The row values for the character.

You can use the LCD designer »page 23 to build the characters.

It is important that a CLS follows the DEFLCDCHAR statement(s).

Special characters can be printed with the Chr »page 91() function.

See also
Tools LCD designer »page 23

Example
DefLCDchar 0,1,2,3,4,5,6,7,8 'define special character

Cls 'select LCD DATA RAM

LCD Chr(0) 'show the character

End

DELAY

Action
Delay program execution for a short time.

Syntax
DELAY

Remarks
Use DELAY to wait for a short time.

The delay time is ca. 1000 microseconds.

See also
WAIT , WAITMS

Example
P1 = 5 'write 5 to port 1

DELAY 'wait for hardware to be ready

BASCOM-AVR-HELPFILE page 125

DIM

Action
Dimension a variable.

Syntax

DIM var AS [XRAM/IRAM] type [AT location]

Remarks

var Any valid variable name such as b1, i or longname. var can
also be an array : ar(10) for example.

type Bit, Byte, Word, Integer, Long, Single or String

XRAM Specify XRAM to store variable into external memory

SRAM Specify SRAM to store variable into internal memory (default)

ERAM Specify ERAM to store the variable into EEPROM

A string variable needs an additional length parameter:

Dim s As XRAM String * 10

In this case, the string can have a maximum length of 10 characters.

Note that BITS can only be stored in internal memory.

The optional AT parameter lets you specify where in memory the variable must be stored.
When the memory location already is occupied, the first free memory location will be used.

Difference with QB

In QB you don't need to dimension each variable before you use it. In BASCOM you must
dimension each variable before you use it. This makes for safer code.

In addition, the XRAM/SRAM/ERAM options are not available in QB.

See Also
CONST »page 127 , LOCAL »page 159

Example

'--
' (c) 1999 MCS Electronics

BASCOM-AVR-HELPFILE page 126

'--
' file: DIM.BAS
' demo: DIM
'--

Dim B1 As Bit 'bit can be 0 or 1

Dim A As Byte 'byte range from
0-255

Dim C As Integer 'integer range
from -32767 - +32768

Dim L As Long

Dim W As Word

Dim S As String * 10 'length can be up
to 10 characters

'new feature : you can specify the address of the variable

Dim K As Integer At 120

'the next dimensioned variable will be placed after variable s

Dim Kk As Integer

'Assign bits

B1 = 1 'or

Set B1 'use set

'Assign bytes

A = 12

A = A + 1

'Assign integer

C = -12

C = C + 100

Print C

W = 50000

Print W

'Assign long

L = 12345678

Print L

'Assign string

S = "Hello world"

Print S

End

BASCOM-AVR-HELPFILE page 127

CONST

Action
Declares a symbolic constant.

Syntax
CONST symbol = numconst

CONST symbol = stringconst

Remarks
Symbol The name of the symbol.

Numconst The numeric value to assign to the symbol.

Stringconst The string to assign to the symbol

Assigned constants consume no program memory because they only serve as a reference
to the compiler.

The compiler will replace all occurrences of the symbol with the assigned value.

See also
ALIAS »page 84

Difference with BASCOM-8051
In BASCOM-8051 only numeric constants can be used.

The syntax is also different

Example
'--

' (c) 1997-1999 MCS Electronics

' CONST.BAS

'--

Const A = 5 'define numeric constant

Const B1 = &B1001

Const s = "Hello" 'define string constant

Waitms A 'wait for 5 milliseconds

Print A

Print B1

Print s

End

BASCOM-AVR-HELPFILE page 128

DISABLE

Action
Disable specified interrupt.

Syntax

DISABLE interrupt

Remarks

Interrupt Description

INT0 External Interrupt 0

INT1 External Interrupt 1

OVF0,TIMER0, COUNTER0 TIMER0 overflow interrupt

OVF1,TIMER1,
COUNTER1

TIMER1 overflow interrupt

CAPTURE1, ICP1 INPUT CAPTURE TIMER1 interrupt

COMPARE1A,OC1A TIMER1 OUTPUT COMPARE A interrupt

COMPARE1B,OC1B TIMER1 OUTPUT COMPARE B interrupt

SPI SPI interrupt

URXC Serial RX complete interrupt

UDRE Serial data register empty interrupt

UTXC Serial TX complete interrupt

SERIAL Disables URXC, UDRE and UTXC

ACI Analog comparator interrupt

ADC A/D converter interrupt

By default all interrupts are disabled.

To disable all interrupts specify INTERRUPTS.

To enable the enabling and disabling of individual interrupts use ENABLE INTERRUPTS.

See also
ENABLE »page 132

Example
'--

' SERINT.BAS

' serial interrupt example for AVR

'--

BASCOM-AVR-HELPFILE page 129

Dim B As Bit 'a flag for
signalling a received character

Dim Bc As Byte 'byte counter

Dim Buf As String * 20 'serial buffer

'Buf = Space(20)

'unremark line above for the MID() function in the ISR

'we need to fill the buffer with spaces otherwise it will contain garbage

On Urxc Rec_isr 'define serial
receive ISR

Enable Urxc 'enable receive
isr

Enable Interrupts 'enable interrupts
to occur

Do

 If B = 1 Then 'we received
something

 Disable Serial

 Print Buf

 Print Bc

 Reset B

 Enable Serial

 End If

Loop

Rec_isr:

 If Bc < 20 Then 'does it fit into
the buffer?

 Incr Bc 'increase buffer
counter

 Buf = Buf + Chr(udr) 'add to buffer

 ' Mid(buf , Bc , 1) = Udr

 'unremark line above and remark the line with Chr() to place

 'the character into a certain position

 B = 1 'set flag

 End If

Return

DISPLAY

Action
Turn LCD display on or off.

BASCOM-AVR-HELPFILE page 130

Syntax

DISPLAY ON / OFF

Remarks
The display is turned on at power up.

See also
LCD »page 154

Example
Dim a as byte

a = 255

LCD a

DISPLAY OFF

Wait 1

DISPLAY ON

End

DO-LOOP

Action
Repeat a block of statements until condition is true.

Syntax

DO

 statements

LOOP [UNTIL expression]

Remarks
You can exit a DO..LOOP with the EXIT DO statement.

The DO-LOOP is always performed at least once.

See also
EXIT »page 133 , WHILE-WEND »page 200 , FOR-NEXT »page 134

Example
Dim A As Byte

BASCOM-AVR-HELPFILE page 131

DO 'start the loop

 A = A + 1 'increment A

 PRINT A 'print it

LOOP UNTIL A = 10 'Repeat loop until A = 10

Print A

ELSE

Action
Executed if the IF-THEN expression is false.

Syntax

ELSE

Remarks
You don't have to use the ELSE statement in an IF THEN .. END IF structure.

You can use the ELSEIF statement to test for another condition.

IF a = 1 THEN

 ...

ELSEIF a = 2 THEN

..

ELSEIF b1 > a THEN

...

ELSE

...

END IF

See also
IF , END IF , SELECT

Example
A = 10 'let a = 10

IF A > 10 THEN 'make a decision

 PRINT " A >10" 'this will not be printed

ELSE 'alternative

 PRINT " A not greater than 10" 'this will be printed

END IF

BASCOM-AVR-HELPFILE page 132

ENABLE

Action
Enable specified interrupt.

Syntax

ENABLE interrupt

Remarks

Interrupt Description

INT0 External Interrupt 0

INT1 External Interrupt 1

OVF0,TIMER0, COUNTER0 TIMER0 overflow interrupt

OVF1,TIMER1,
COUNTER1

TIMER1 overflow interrupt

CAPTURE1, ICP1 INPUT CAPTURE TIMER1 interrupt

COMPARE1A,OC1A TIMER1 OUTPUT COMPARE A interrupt

COMPARE1B,OC1B TIMER1 OUTPUT COMPARE B interrupt

SPI SPI interrupt

URXC Serial RX complete interrupt

UDRE Serial data register empty interrupt

UTXC Serial TX complete interrupt

SERIAL Disables URXC, UDRE and UTXC

ACI Analog comparator interrupt

ADC A/D converter interrupt

By default all interrupts are disabled.

To enable the enabling and disabling of interrupts use ENABLE INTERRUPTS.

See also
DISABLE »page 128

Example
ENABLE INTERRUPTS 'allow interrupts to be set

ENABLE TIMER1 'enables the TIMER1 interrupt

BASCOM-AVR-HELPFILE page 133

END

Action
Terminate program execution.

Syntax

END

Remarks

STOP can also be used to terminate a program.

When an END or STOP statement is encountered, all interrupts are disabled and a never-
ending loop is generated.

See also
STOP »page 192

Example
PRINT "Hello" 'print this

END 'end program execution

EXIT

Action
Exit a FOR..NEXT, DO..LOOP , WHILE ..WEND, SUB..END SUB or FUNCTION..END
FUNCTION.

Syntax

EXIT FOR

EXIT DO

EXIT WHILE

EXIT SUB

EXIT FUNCTION

Remarks
With the EXIT ... statement you can exit a structure at any time.

Example
IF a >= b1 THEN 'some silly code

 DO 'begin a DO..LOOP

BASCOM-AVR-HELPFILE page 134

A = A + 1 'incr a

IF A = 100 THEN 'test for a = 100

 EXIT DO 'exit the DO..LOOP

END IF 'end the IF..THEN

 LOOP 'end the DO

END IF 'end the IF..THEN

FOR-NEXT

Action
Execute a block of statements a number of times.

Syntax

FOR var = start TO/DOWNTO end [STEP value]

Remarks
var The variable counter to use

start The starting value of the variable var

end The ending value of the variable var

value The value var is increased/decreased with each time NEXT is
encountered.

For incremental loops, you must use TO.

For decremental loops, you must use DOWNTO.

You must end a FOR structure with the NEXT statement.

The use of STEP is optional. By default, a value of 1 is used.

See also
EXIT FOR »page 133

Example
'--
' (c) 1999 MCS Electronics
' file: FOR_NEXT.BAS
' demo: FOR, NEXT
'--

Dim A As Byte , B1 As Byte , C As Integer

For A = 1 To 10 Step 2

 Print "This is A " ; A

Next A

BASCOM-AVR-HELPFILE page 135

Print "Now lets try DOWNTO"

For C = 10 Downto -5

 Print "This is C " ; C

Next

Print "You can also nest FOR..NEXT statements."

For A = 1 To 10

 Print "This is A " ; A

 For B1 = 1 To 10

 Print "This is B1 " ; B1

 Next ' note that you do not have to specify
the parameter

Next A

End

FOURTHLINE

Action
Set LCD cursor to the start of the fourth line.

Syntax

FOURTHLINE

Remarks
Only valid for LCD displays with 4 lines.

See also
HOME »page 144 , UPPERLINE »page 196 , LOWERLINE »page 164 , THIRDLINE
»page 195 ,LOCATE »page 162

Example
Dim a as byte

a = 255

LCD a

Fourthline

LCD a

Upperline

END

BASCOM-AVR-HELPFILE page 136

FUSING

This statement is for the prof edition only and will be described later.

GETADC

Action
Retrieves the analog value from channel 0-7.

Syntax
var = GETADC(channel)

Remarks
var The variable that is assigned with the A/D value

channel The channel to measure

The GETADC() function is only intended for the AVR90S8535 or other chips that have a
built-in A/D converter.

See also

Example
'--

' ADC.BAS

' demonstration of GETADC() function for 8535 micro

'--

'configure single mode and auto prescaler setting

'The single mode must be used with the GETADC() function

'The prescaler divides the internal clock by 2,4,8,15,32,64 or 128

'Because the ADC needs a clock from 50-200 KHz

'The AUTO feature, will select the highest clockrate possible

Config Adc = Single , Prescaler = Auto

'Now give power to the chip

Start Adc

'With STOP ADC, you can remove the power from the chip

'Stop Adc

Dim W As Word , Channel As Byte

BASCOM-AVR-HELPFILE page 137

Channel = 0

'now read A/D value from channel 0

Do

 W = Getadc(channel)

 Print "Channel " ; Channel ; " value " ; W

 Incr Channel

 If Channel > 7 Then Channel = 0

Loop

End

GETKBD

Action
Scans a 4x4 matrix keyboard and return the value of the key pressed.

Syntax
var = GETKBD()

Remarks
var The variable that is assigned with the value read from

the keyboard

The GETKBD() function can be attached to a port of the uP.

You can define the port with the CONFIG KBD statement.

A schematic for PORTB is shown below

Note that the port pins can be used for other tasks as well.

BASCOM-AVR-HELPFILE page 138

See also
CONFIG KBD

Example
CONFIG KBD = PORTB

Dim B As Byte

Do

 B = KETKBD()

 Print B

Loop

End

GETRC0

This function has not been tested yet!

Action
Retrieves the value of a resistor or a capacitor.

Syntax
 var = GETRC0(pin)

Remarks
Var The variable that is assigned with the value.

Pin The port pin for the R/C is connection.

See also

Example

GETRC5

Action
Retrieves the RC5 remote code from a IR transmitter.

Syntax
GETRC5(address, command)

BASCOM-AVR-HELPFILE page 139

Uses
TIMER0

Remarks
address The RC5 address

command The RC5 command.

This statement used the AVR 410 application note. Since a timer is needed for accurate
delays and background processing TIMER0 is used by this statement.

Also the interrupt of TIMER0 is used by this statement.

TIMER0 can be used by your application since the values are preserved by the statement
but a delay can occur. The interrupt can not be reused.

The SFH506-36 is used from Siemens. Other types can be used as well.

For a good operation use the following values for the filter.

BASCOM-AVR-HELPFILE page 140

Most audio and video systems are equipped with an infra-red remote control.
The RC5 code is a 14-bit word bi-phase coded signal.
The two first bits are start bits, always having the value 1.
The next bit is a control bit or toggle bit, which is inverted every time a button is pressed
on the remote control transmitter.
Five system bits hold the system address so that only the right system responds to the
code.
Usually, TV sets have the system address 0, VCRs the address 5 and so on. The
command sequence is six bits long, allowing up to 64 different commands per address.
The bits are transmitted in bi-phase code (also known as Manchester code).

See also

Example
'---
' RC5.BAS
' (c) 1999 MCS Electronics
' based on Atmel AVR410 application note
'---
'This example shows how to decode RC5 remote control signals
'with a SFH506-35 IR receiver.

'Connect to input to PIND.2 for this example
'The GETRC5 function uses TIMER0 and the TIMER0 interrupt.
'The TIMER0 settings are restored however so only the interrupt can not
'be used anymore for other tasks

'tell the compiler which pin we want to use for the reciever input

Config Rc5 = Pind.2

'the interrupt routine is inserted automatic but we need to make it occur
'so enable the interrupts
Enable Interrupts

'reserve space for variables
Dim Address As Byte , Command As Byte

Do
 'now check if a key on the remote is pressed
 'Note that at startup all pins are set for INPUT
 'so we dont set the direction here
 'If the pins is used for other input just unremark the next line
 'Config Pind.2 = Input
 Getrc5(address , Command)

 'we check for the TV address and that is 0
 If Address = 0 Then
 'clear the toggle bit
 'the toggle bit toggles on each new received command
 Command = Command And &B10111111
 Print Address ; " " ; Command
 End If
Loop
End

BASCOM-AVR-HELPFILE page 141

GOSUB

Action
Branch to and execute subroutine.

Syntax

GOSUB label

Remarks
Label The name of the label where to branch to.

With GOSUB, your program jumps to the specified label, and continues execution at that
label.

When it encounters a RETURN statement, program execution will continue after the
GOSUB statement.

See also
GOTO »page 141 , CALL »page 90 , RETURN »page 180

Example
GOSUB Routine 'branch to routine

Print "Hello" 'after being at 'routine' print this

END 'terminate program

Routine: 'this is a subroutine

x = x + 2 'perform some math

PRINT X 'print result

RETURN 'return

GOTO

Action
Jump to the specified label.

Syntax

GOTO label

Remarks
Labels can be up to 32 characters long.

When you use duplicate labels, the compiler will give you a warning.

BASCOM-AVR-HELPFILE page 142

See also
GOSUB »page 141

Example
Start: 'a label must end with a colon

A = A + 1 'increment a

IF A < 10 THEN 'is it less than 10?

GOTO Start 'do it again

END IF 'close IF

PRINT " Ready" 'that is it

HEX

Action
Returns a string representation of a hexadecimal number.

Syntax
var = Hex(x)

Remarks
var A string variable.

X A numeric variable of data type Byte, Integer, Word or
Long.

See also
HEXVAL »page 143

Example
Dim a as Byte, S as String * 10

a = 123

s = Hex(a)

Print s

Print Hex(a)

End

BASCOM-AVR-HELPFILE page 143

HEXVAL

Action
Convert string representing a hexadecimal number into a numeric variable.

Syntax

var = HEXVAL(x)

Remarks
var The numeric variable that must be assigned.

X The hexadecimal string that must be converted.

Difference with QB
In QB you can use the VAL() function to convert hexadecimal strings.

But since that would require an extra test for the leading &H signs that are required in QB,
a separate function was designed.

See also
HEX »page 142 , VAL »page 197 , STR »page 193

Example
Dim a as Integer, s as string * 15

s = "A"

a = Hexval(s) : Print a

End

HIGH

Action
Retrieves the most significant byte of a variable.

Syntax
var = HIGH(s)

Remarks
Var The variable that is assigned with the MSB of var S.

S The source variable to get the MSB from.

BASCOM-AVR-HELPFILE page 144

See also
LOW »page 164

Example
Dim I As Integer , Z As Byte

I = &H1001

Z = High(I) ' is 16

HOME

Action
Place the cursor at the specified line at location 1.

Syntax

HOME UPPER / LOWER /THIRD / FOURTH

Remarks
If only HOME is used than the cursor will be set to the upperline.

You can also specify the first letter of the line like: HOME U

See also
CLS »page 92 , LOCATE »page 162

Example
Lowerline

LCD "Hello"

Home Upper

LCD "Upper"

I2CRECEIVE

Action
Receives data from an I2C serial device.

Syntax

I2CRECEIVE slave, var

I2CRECEIVE slave, var ,b2W, b2R

Remarks

BASCOM-AVR-HELPFILE page 145

Slave A byte, Word/Integer variable or constant with the slave
address from the I2C-device.

Var A byte or integer/word variable that will receive the information
from the I2C-device.

b2W The number of bytes to write.
Be cautious not to specify too many bytes!

b2R The number of bytes to receive.
Be cautious not to specify too many bytes!

You can specify the base address of the slave chip because the read/write bit is set/reset
by the software.

See also
I2CSEND »page 145

Example
x = 0 'reset variable

slave = &H40 'slave address of a PCF 8574 I/O IC

I2CRECEIVE slave, x 'get the value

PRINT x 'print it

Dim buf(10) as Byte

buf(1) = 1 : buf(2) = 2

I2CRECEIVE slave, buf(), 2, 1'send two bytes and receive one byte

Print buf(1) 'print the received byte

I2CSEND

Action
Send data to an I2C-device.

Syntax

I2CSEND slave, var

I2CSEND slave, var , bytes

Remarks
slave The slave address off the I2C-device.

var A byte, integer/word or numbers that holds the value, which will be,
send to the I2C-device.

bytes The number of bytes to send.

BASCOM-AVR-HELPFILE page 146

See also
I2CRECEIVE »page 144

Example
x = 5 'assign variable to 5

Dim ax(10) As Byte

Const slave = &H40 'slave address of a PCF 8574 I/O IC

I2CSEND slave, x 'send the value or

For a = 1 to 10

 ax(a) = a 'Fill dataspace

Next

bytes = 10

I2CSEND slave,ax(),bytes

END

I2START,I2CSTOP, I2CRBYTE, I2CWBYTE

Action
I2CSTART generates an I2C start condition.

I2CSTOP generates an I2C stop condition.

I2CRBYTE receives one byte from an I2C-device.

I2CWBYTE sends one byte to an I2C-device.

Syntax

I2CSTART

I2CSTOP

I2CRBYTE var, ack/nack

I2CWBYTE val

Remarks
var A variable that receives the value from the I2C-device.

ack/nack Specify ACK if there are more bytes to read.
Specify NACK if it is the last byte to read.

val A variable or constant to write to the I2C-device.

These statements are provided as an addition to the I2CSEND and I2CRECEIVE
functions.

BASCOM-AVR-HELPFILE page 147

See also
I2CRECEIVE »page 144 , I2CSEND »page 145

Example
-------- Writing and reading a byte to an EEPROM 2404 -----------------

DIM a As Byte

Const adresW = 174 'write of 2404

Const adresR = 175 'read address of 2404

I2CSTART 'generate start

I2CWBYTE adresW 'send slave adsress

I2CWBYTE 1 'send address of EEPROM

I2CWBYTE 3 'send a value

I2CSTOP 'generate stop

WaitMS 10 'wait 10 mS because that is the time that the chip
needs to write the data

----------------now read the value back into the var a -------------------

I2CSTART 'generate start

I2CWBYTE adresW 'write slave address

I2CWBYTE 1 'write adres of EEPROM to read

I2CSTART 'generate repeated start

I2CWBYTE adresR 'write slave address of EEPROM

I2CRBYTE a,nack 'receive value into a. nack means last byte to receive

I2CSTOP 'generate stop

PRINT a 'print received value

END

IDLE

Action
Put the processor into the idle mode.

Syntax
IDLE

Remarks
In the idle mode, the system clock is removed from the CPU but not from the interrupt
logic, the serial port or the timers/counters.

The idle mode is terminated either when an interrupt is received or upon system reset
through the RESET pin.

BASCOM-AVR-HELPFILE page 148

See also
POWERDOWN »page 173

Example
IDLE

IF-THEN-ELSE-END IF

Action
Allows conditional execution or branching, based on the evaluation of a Boolean
expression.

Syntax

IF expression THEN

[ELSEIF expression THEN]

[ELSE]

 END IF

Remarks
Expression Any expression that evaluates to true or false.

The one line version of IF can be used :

IF expression THEN statement [ELSE statement]

The use of [ELSE] is optional.

Also new is the ability to test on bits :

IF var.bit = 1 THEN

See also
ELSE »page 131

Example
DIM A AS INTEGER

A = 10

IF A = 10 THEN 'test expression

PRINT "This part is executed." 'this will be printed

BASCOM-AVR-HELPFILE page 149

ELSE

PRINT "This will never be executed." 'this not

END IF

IF A = 10 THEN PRINT "New in BASCOM"

IF A = 10 THEN GOTO LABEL1 ELSE PRINT "A<>10"

LABEL1:

REM The following example shows enhanced use of IF THEN

IF A.15 = 1 THEN 'test for bit

 PRINT "BIT 15 IS SET"

END IF

REM the following example shows the 1 line use of IF THEN [ELSE]

IF A.15 = 0 THEN PRINT "BIT 15 is cleared" ELSE PRINT "BIT 15 is set"

INCR

Action
Increments a variable by one.

Syntax

INCR var

Remarks
Var Any numeric variable.

See also
DECR »page 119

Example
DO 'start loop

INCR a 'increment a by 1

PRINT a 'print a

LOOP UNTIL a > 10 'repeat until a is greater than 10

INKEY

Action
Returns the ASCII value of the first character in the serial input buffer.

BASCOM-AVR-HELPFILE page 150

Syntax

var = INKEY

Remarks
var Byte, Integer, Word, Long or String variable.

If there is no character waiting, a zero will be returned.

The INKEY routine can be used when you have a RS-232 interface on your uP.

The RS-232 interface can be connected to a comport of your computer.

See also
WAITKEY »page 199

Example
DO 'start loop

A = INKEY() 'look for character

IF A > 0 THEN 'is variable > 0?

 PRINT A 'yes , so print it

END IF

LOOP 'loop forever

INP

Action
Returns a byte read from a hardware port or any internal memory location.

Syntax

var = INP(address)

Remarks
var Numeric variable that receives the value.

address The address where to read the value from. (0- &HFFFF)

The PEEK() function will read only the lowest 32 memory locations (registers).

The INP() function can read from any memory location since the AVR has a linear
memory model.

BASCOM-AVR-HELPFILE page 151

See also
OUT »page 171

Example
Dim a As Byte

a = INP(&H8000) 'read value that is placed on databus(d0-d7) at

'hex address 8000

PRINT a

END

INPUTBIN

Action
Read binary values from the serial port.

Syntax
INPUTBIN var1 [,var2]

INPUTBIN #channel , var1 [,var2]

Remarks
var1 The variable that is assigned with the characters from the serial

port.

var2 An optional second (or more) variable that is assigned with the
characters from the serial.

The channel is for use with the software UART routine and must be use with OPEN and
CLOSE. »page 169

The number of bytes to read depends on the variable you use.

When you use a byte variable, 1 character is read from the serial port.

An integer will wait for 2 characters and an array will wait until the whole array is filled.

Note that the INPUTBIN statement doesn't wait for a <RETURN> but just for the number
of bytes.

See also
PRINTBIN »page 175

BASCOM-AVR-HELPFILE page 152

Example
Dim a as Byte, C as Integer

INPUTBIN a, c 'wait for 3 characters

End

INPUTHEX

Action
Allows input from the keyboard during program execution.

Syntax
INPUTHEX [" prompt"] , var [, varn] [NOECHO]

Remarks
prompt An optional string constant printed before the prompt character.

Var,varn A numeric variable to accept the input value.

NOECHO Disables input echoed back to the Comport.

The INPUTHEX routine can be used when you have a RS-232 interface on your uP.

The RS-232 interface can be connected to a serial communication port of your computer.

This way you can use a terminal emulator and the keyboard as input device.

You can also use the build in terminal emulator.

If var is a byte then the input can be maximum 2 characters long.

If var is an integer/word then the input can be maximum 4 characters long.

If var is a long then the input can be maximum 8 characters long.

Difference with QB
In QB you can specify &H with INPUT so QB will recognise that a hexadecimal string is
being used.

BASCOM implements a new statement: INPUTHEX.

See also
INPUT »page 153

Example
Dim x As Byte

INPUTHEX "Enter a number " , x 'ask for input

BASCOM-AVR-HELPFILE page 153

INPUT

Action
Allows input from the keyboard during program execution.

Syntax

INPUT [" prompt"] , var [, varn] [NOECHO]

Remarks
prompt An optional string constant printed before the prompt

character.

Var,varn A variable to accept the input value or a string.

NOECHO Disables input echoed back to the Comport.

The INPUT routine can be used when you have an RS-232 interface on your uP.

The RS-232 interface can be connected to a serial communication port of your computer.

This way you can use a terminal emulator and the keyboard as an input device.

You can also use the built-in terminal emulator.

Difference with QB
In QB you can specify &H with INPUT so QB will recognise that a hexadecimal string is
being used.

BASCOM implements a new statement : INPUTHEX.

See also
INPUTHEX »page 152 , PRINT »page 174

Example
'--

' (c) 1997,1998 MCS Electronics

'--

' file: INPUT.BAS

' demo: INPUT, INPUTHEX

'--

'To use another baudrate and crystalfrequency use the

'metastatements $BAUD = and $CRYSTAL =

$baud = 1200 'try 1200 baud for example

$crystal = 12000000 '12 MHz

BASCOM-AVR-HELPFILE page 154

Dim V As Byte , B1 As Byte

Dim C As Integer , D As Byte

Dim S As String * 15 'only for uP with XRAM support

Input "Use this to ask a question " , V

Input B1 'leave out for no question

Input "Enter integer " , C

Print C

Inputhex "Enter hex number (4 bytes) " , C

Print C

Inputhex "Enter hex byte (2 bytes) " , D

Print D

Input "More variables " , C , D

Print C ; " " ; D

Input C Noecho 'suppress echo

Input "Enter your name " , S

Print "Hello " ; S

Input S Noecho 'without echo

Print S

End

LCD

Action
Send constant or variable to LCD display.

Syntax

LCD x

Remarks
X Variable or constant to display.

BASCOM-AVR-HELPFILE page 155

More variables can be displayed separated by the ; -sign

LCD a ; b1 ; "constant"

The LCD statement behaves just like the PRINT statement.

See also
$LCD »page 70 , $LCDRS »page 72 , CONFIG LCD »page 99

Example
'--

' (c) 1999 MCS Electronics

'--

' file: LCD.BAS

' demo: LCD, CLS, LOWERLINE, SHIFTLCD, SHIFTCURSOR, HOME

' CURSOR, DISPLAY

'--

'note : tested in bus mode with 4-bit

Config Lcdpin = Pin , Db4 = Portb.1 , Db5 = Portb.2 , Db6 = Portb.3 , Db7 =
Portb.4 , E = Portb.5 , Rs = Portb.6

Rem with the config lcdpin statement you can override the compiler settings

Dim A As Byte

Config Lcd = 16 * 2 'configure lcd screen

'other options are 16 * 4 and 20 * 4, 20 * 2 , 16 * 1a

'When you dont include this option 16 * 2 is assumed

'16 * 1a is intended for 16 character displays with split addresses over 2 lines

'$LCD = address will turn LCD into 8-bit databus mode

' use this with uP with external RAM and/or ROM

' because it aint need the port pins !

Cls 'clear the LCD display

Lcd "Hello world." 'display this at the top line

Wait 1

Lowerline 'select the lower line

Wait 1

Lcd "Shift this." 'display this at the lower line

Wait 1

For A = 1 To 10

BASCOM-AVR-HELPFILE page 156

 Shiftlcd Right 'shift the text to the right

 Wait 1 'wait a moment

Next

For A = 1 To 10

 Shiftlcd Left 'shift the text to the left

 Wait 1 'wait a moment

Next

Locate 2 , 1 'set cursor position

Lcd "*" 'display this

Wait 1 'wait a moment

Shiftcursor Right 'shift the cursor

Lcd "@" 'display this

Wait 1 'wait a moment

Home Upper 'select line 1 and return home

Lcd "Replaced." 'replace the text

Wait 1 'wait a moment

Cursor Off Noblink 'hide cursor

Wait 1 'wait a moment

Cursor On Blink 'show cursor

Wait 1 'wait a moment

Display Off 'turn display off

Wait 1 'wait a moment

Display On 'turn display on

'-----------------NEW support for 4-line LCD------

Thirdline

Lcd "Line 3"

Fourthline

Lcd "Line 4"

Home Third 'goto home on line three

Home Fourth

Home F 'first letteer also works

Locate 4 , 1 : Lcd "Line 4"

Wait 1

'Now lets build a special character

'the first number is the characternumber (0-7)

BASCOM-AVR-HELPFILE page 157

'The other numbers are the rowvalues

'Use the LCD tool to insert this line

Deflcdchar 1 , 225 , 227 , 226 , 226 , 226 , 242 , 234 , 228 ' replace ?
with number (0-7)

Deflcdchar 0 , 240 , 224 , 224 , 255 , 254 , 252 , 248 , 240 ' replace ?
with number (0-7)

Cls 'select data RAM

Rem it is important that a CLS is following the deflcdchar statements because it
will set the controller back in datamode

Lcd Chr(0) ; Chr(1) 'print the special character

'----------------- Now use an internal routine ------------

_temp1 = 1 'value into ACC

rCall _write_lcd 'put it on LCD

End

LEFT

Action
Return the specified number of leftmost characters in a string.

Syntax

var = Left(var1 , n)

Remarks
Var The string that is assigned.

Var1 The source string.

n The number of characters to get from the source string.

See also
RIGHT »page 181 , MID »page 167

Example
Dim s As XRAM String * 15, z As String * 15

s = "ABCDEFG"

z = Left(s,5)

Print z 'ABCDE

End

BASCOM-AVR-HELPFILE page 158

LEN

Action
Returns the length of a string.

Syntax

var = LEN(string)

Remarks
var A numeric variable that is assigned with the length of string.

string The string to calculate the length of.

Strings can be maximum 254 bytes long.

Example
Dim S As String * 12

Dim A As Byte

S = "test"

A = Len(s)

Print A ' prints 4

Print Len(s)

LTRIM

Action
Returns a copy of string with leading blanks removed

Syntax
var = LTRIM(org)

Remarks
var String that receives the result.

org The string to remove the leading spaces from

See also
RTRIM »page 182 , TRIM »page 196

ASM

BASCOM-AVR-HELPFILE page 159

Example
Dim S As String * 6

S = " AB "

Print Ltrim(s)

Print Rtrim(s)

Print Trim(s)

End

LOAD

Action
Load specified TIMER with a reload value.

Syntax

LOAD TIMER , value

Remarks
TIMER TIMER0

Value The variable or value to load.

The TIMER0 dos not have a reload mode. But when you want the timer to generate an
interrupt after 10 ticks for example, you can use the RELOAD statement.

It will do the calculation. (256-value)

So LOAD TIMER0, 10 will load the TIMER0 with a value of 246 so that it will overflow
after 10 ticks.

LOCAL

Action
Dimesions a variable LOCAL to the function or sub program.

Syntax

LOCAL var As Type

Remarks
var The name of the variable

type The data type of the variable.

There can be only LOCAL variables of the type BYTE, INTEGER, WORD, LONG,
SINGLE or STRING.

BASCOM-AVR-HELPFILE page 160

A LOCAL variable is a temporary variable that is stored on the frame.

When the SUB or FUNCTION is terminated, the memory will be released back to the
frame.

BIT variables are not possible because they are GLOBAL to the system.

The AT , ERAM, SRAM, XRAM directives can not be used with a local DIM statement.
Also arrays are not possible with LOCAL's.

See also
DIM »page 125

ASM

Example
'--

' (c) 1999 MCS Electronics

' DECLARE.BAS

' Note that the usage of SUBS works different in BASCOM-8051

'--

' First the SUB programs must be declared

'Try a SUB without parameters

Declare Sub Test2

'SUB with variable that cant be changed(A) and

'a variable that can be changed(B1), by the sub program

'When BYVAL is specified, the value is passed to the subprogram

'When BYREF is specified or nothing is specified, the address is passed to

'the subprogram

Declare Sub Test(byval A As Byte , B1 As Byte)

'All variable types that can be passed

'Notice that BIT variables cant be passed.

'BIT variables are GLOBAL to the application

Declare Sub Testvar(b As Byte , I As Integer , W As Word , L As Long , S As
String)

BASCOM-AVR-HELPFILE page 161

Dim Bb As Byte , I As Integer , W As Word , L As Long , S As String * 10
'dim used variables

Dim Ar(10) As Byte

Call Test2 'call sub

Test2 'or use without
CALL

'Note that when calling a sub without the statement CALL, the enclosing
parentheses must be left out

Bb = 1

Call Test(1 , Bb) 'call sub with
parameters

Print Bb 'print value that
is changed

'now test all the variable types

Call Testvar(bb , I , W , L , S)

Print Bb ; I ; W ; L ; S

'now pass an array

'note that it must be passed by reference

Test 2 , Ar(1)

Print "ar(1) = " ; Ar(1)

End

'End your code with the subprograms

'Note that the same variables and names must be used as the declared ones

Sub Test(byval A As Byte , B1 As Byte) 'start sub

 Print A ; " " ; B1 'print passed variables

 B1 = 3 'change value

 'You can change A, but since a copy is passed to the SUB,

 'the change will not reflect to the calling variable

End Sub

Sub Test2 'sub without parameters

 Print "No parameters"

End Sub

Sub Testvar(b As Byte , I As Integer , W As Word , L As Long , S As String)

 Local X As Byte

 X = 5 'assign local

BASCOM-AVR-HELPFILE page 162

 B = X

 I = -1

 W = 40000

 L = 20000

 S = "test"

End Sub

LOCATE

Action
Moves the LCD cursor to the specified position.

Syntax

LOCATE y , x

Remarks
X Constant or variable with the position. (1-64*)

y Constant or variable with the line (1 - 4*)

* Depending on the used display

See also
CONFIG LCD »page 99 , LCD »page 154 , HOME »page 144 , CLS »page 92

Example
LCD "Hello"

Locate 1,10

LCD "*"

LOOKUP

Action
Returns a value from a table.

Syntax

var =LOOKUP(value, label)

BASCOM-AVR-HELPFILE page 163

Remarks
Var The returned value

Value A value with the index of the table

Label The label where the data starts

See also
LOOKUPSTR »page 163

Example
DIM b1 As Byte , I as Integer

b1 = Lookup(1, dta)

Print b1 ' Prints 2 (zero based)

I = Lookup(0,DTA2)

End

DTA:

DATA 1,2,3,4,5

DTA2: 'integer data

DATA 1000% , 2000%

LOOKUPSTR

Action
Returns a string from a table.

Syntax
var =LOOKUPSTR(value, label)

Remarks
var The string returned

value A value with the index of the table. The index is zero-based. That
is, 0 will return the first element of the table.

Label The label where the data starts

See also
LOOKUP »page 162

BASCOM-AVR-HELPFILE page 164

Example
Dim s as string, idx as Byte

idx = 0 : s = LookupStr(idx,Sdata)

Print s 'will print 'This'

End

Sdata:

Data "This" , "is" ,"a test"

LOW

Action
Retrieves the least significant byte of a variable.

Syntax

var = LOW(s)

Remarks
Var The variable that is assigned with the LSB of var S.

S The source variable to get the LSB from.

See also
HIGH »page 143

Example
Dim I As Integer , Z As Byte

I = &H1001

Z = Low(I) ' is 1

LOWERLINE

Action
Reset the LCD cursor to the lowerline.

Syntax

LOWERLINE

Remarks

-

BASCOM-AVR-HELPFILE page 165

See also
UPPERLINE, »page 196 THIRDLINE »page 195 , FOURTHLINE »page 135 , HOME
»page 144

Example
LCD "Test"

LOWERLINE

LCD "Hello"

End

MAKEBCD

Action
Convert a variable into its BCD value.

Syntax

var1 = MAKEBCD (var2)

Remarks
var1 Variable that will be assigned with the converted value.

Var2 Variable that holds the decimal value.

When you want to use an I2C clock device, which stores its values as BCD values you
can use this function to convert variables from decimal to BCD.

For printing the bcd value of a variable, you can use the BCD() function which converts a
BCD number into a BCD string.

See also
MAKEDEC »page 166 , BCD »page 87

Example
Dim a As Byte

a = 65

LCD a

Lowerline

LCD BCD(a)

a = MakeBCD(a)

BASCOM-AVR-HELPFILE page 166

LCD " " ; a

End

MAKEINT

Action
Compact two bytes into a word or integer.

Syntax
varn = MAKEINT(LSB , MSB)

Remarks
Varn Variable that will be assigned with the converted value.

LSB Variable or constant with the LS Byte.

MSB Variable or constant with the MS Byte.

The equivalent code is:

varn = (256 * MSB) + LSB

See also
LOW »page 164 , HIGH »page 143

Example
Dim a As Integer, I As Integer

a = 2

I = MakeINT(a , 1) 'I = (1 * 256) + 2 = 258

End

MAKEDEC

Action
Convert a BCD byte or Integer/Word variable to its DECIMAL value.

Syntax

var1 = MAKEDEC (var2)

Remarks
var1 Variable that will be assigned with the converted value.

var2 Variable that holds the BCD value.

BASCOM-AVR-HELPFILE page 167

When you want to use an I2C clock device, which stores its values as BCD values you
can use this function to convert variables from BCD to decimal.

See also
MAKEBCD »page 165

Example
Dim a As Byte

a = 65

LCD a

Lowerline

LCD BCD(a)

a = MakeDEC(a)

LCD " " ; a

End

MID

Action
The MID function returns part of a string (a sub string).

The MID statement replaces part of a string variable with another string.

Syntax

var = MID(var1 ,st [, l])

MID(var ,st [, l]) = var1

Remarks
var The string that is assigned.

Var1 The source string.

st The starting position.

l The number of characters to get/set.

See also
LEFT »page 157, RIGHT »page 181

Example
Dim s As XRAM String * 15, z As XRAM String * 15

BASCOM-AVR-HELPFILE page 168

s = "ABCDEFG"

z = Mid(s,2,3)

Print z 'BCD

z="12345"

Mid(s,2,2) = z

Print s 'A12DEFG

End

ON INTERRUPT

Action
Execute subroutine when specified interrupt occurs.

Syntax

ON interrupt label [NOSAVE]

Remarks
Interrupt INT0, INT1, INT2, INT3, INT4,INT5, TIMER0 ,TIMER1, TIMER2,

ADC , EEPROM , CAPTURE1, COMPARE1A,
COMPARE1B,COMPARE1. Or you can use the AVR name
convention :

OC2 , OVF2, ICP1, OC1A, OC1B, OVF1, OVF0, SPI, URXC,
UDRE, UTXC, ADCC, ERDY and ACI.

Label The label to jump to if the interrupt occurs.

NOSAVE When you specify NOSAVE, no registers are saved and
restored in the interrupt routine. So when you use this option be
sure to save and restore used registers.

You must return from the interrupt routine with the RETURN statement.

You may have only one RETURN statement in your interrupt routine because the compiler
restores the registers and generates a RETI instruction when it encounters a RETURN
statement in the ISR.

Example
ENABLE INTERRUPTS

ENABLE INT0 'enable the interrupt

ON INT0 Label2 nosave 'jump to label2 on INT0

DO 'endless loop

LOOP

END

BASCOM-AVR-HELPFILE page 169

ON VALUE

Action
Branch to one of several specified labels, depending on the value of a variable.

Syntax

ON var [GOTO] [GOSUB] label1 [, label2]

Remarks
var The numeric variable to test.

This can also be a SFR such as PORTB.

label1,
label2

The labels to jump to depending on the value of var.

Note that the value is zero based. So when var = 0, the first specified label is
jumped/branched.

Example
x = 2 'assign a variable interrupt

ON x GOSUB lbl1, lbl2,lbl3 'jump to label lbl3

x=0

ON x GOTO lbl1, lbl2 , lbl3

END

lbl3:

 PRINT " lbl3"

RETURN

Lbl1:

Lbl2:

OPEN

Action
Opens a device.

Syntax
OPEN "device" for MODE As #channel

CLOSE #channel

BASCOM-AVR-HELPFILE page 170

Remarks
device The default device is COM1 and you don't need to open a channel to

use INPUT/OUTPUT on this device.
With the implementation of the software UART, the compiler must know
to which pin/device you will send/receive the data.
So that is why the OPEN statement must be used. It tells the compiler
about the pin you use for the serial input or output and the baud rate you
want to use.
COMB.0:9600,8,N,2 will use PORT B.0 at 9600 baud with 2 stopbits.

The format for COM1 is : COM1:speed, where the speed is optional and
will override the compiler settings for the speed.

The format for the software UART is:
COMpin:speed,8,N,stopbits[,INVERTED]
Where pin is the name of the PORT-pin.
Speed must be specified and stop bits can be 1 or 2.
An optional parameter ,INVERTED can be specified to use inverted RS-
232.
Open "COMD.1:9600,8,N,1,INVERTED" For Output As #1 , will use pin
PORTD.1 for output with 9600 baud, 1 stop bit and with inverted RS-
232.

MODE You can use BINARY or RANDOM for COM1, but for the software UART
pins, you must specify INPUT or OUTPUT.

channel The number of the channel to open. Must be a positive constant >0.

The statements that support the device are PRINT »page 174 , INPUT »page 153 and
INPUTHEX »page 152

Every opened device must be closed using the CLOSE #channel statement. Of course,
you must use the same channel number.

The INPUT statement in combination with the software UART, will not echo characters
back because there is no default associated pin for this.

See also
CLOSE »page 94

Example
'---

' OPEN.BAS

' demonstrates software UART

'---

BASCOM-AVR-HELPFILE page 171

Dim B As Byte

'open channel for output and use inverted logic

Open "comd.1:9600,8,n,1,inverted" For Output As #1

Print #1 , B

Print #1 , "serial output"

Close #1

'Now open a pin for input and use inverted logic

Open "comd.2:9600,8,n,1,inverted" For Input As #2

Input #2 , B

Close #2

'use normal hardware UART for printing

Print B

End

OUT

Action
Sends a byte to a hardware port or external memory address.

Syntax

OUT address, value

Remarks
address The address where to send the byte to.

value The variable or value to send.

The OUT statement can write a value to any AVR memory location.

See also
INP »page 150

Example
Dim a as byte

OUT &H8000,1 'send 1 to the databus(d0-d7) at hex address 8000

END

BASCOM-AVR-HELPFILE page 172

PEEK

Action
Returns the content of a register.

Syntax

var = PEEK(address)

Remarks
Var Numeric variable that is assigned with the content of the memory

location address

Address Numeric variable or constant with the address location.(0-31)

Peek() will read the content of a register.

Inp() can read any memory location

See also
POKE »page 172 , CPEEK »page 113 , INP »page 150 , OUT »page 171

Example
DIM A As Byte

a = Peek(0) 'return the first byte of the internal memory (r0)

End

POKE

Action
Write a byte to an internal register.

Syntax

POKE address , value

Remarks
address Numeric variable with the address of the memory location

to set. (0-31)

value Value to assign. (0-255)

See also
PEEK »page 172 , CPEEK »page 113 , INP »page 150 , OUT »page 171

BASCOM-AVR-HELPFILE page 173

Example
POKE 1, 1 'write 1 to R1

End

POPALL

Action
Restores all registers that might be used by BASCOM.

Syntax

POPALL

Remarks
When you are writing your own ASM routines and mix them with BASIC you are unable to
tell which registers are used by BASCOM because it depends on the used statements and
interrupt routines that can run on the background.

That is why Pushall saves all registers and POPALL restores all registers.

See also
PUSHALL »page 176

POWERDOWN

Action
Put processor into power down mode.

Syntax
POWERDOWN

Remarks
In the power down mode, the external oscillator is stopped. Only a reset can wake up the
MCU. You can force the watchdog timer to generate this reset.

See also
IDLE »page 147 , POWERSAVE »page 174

Example
POWERDOWN

BASCOM-AVR-HELPFILE page 174

POWERSAVE

Action
Put processor into power save mode.

Syntax
POWERSAVE

Remarks
The POWERSAVE mode is only available on the 8535.

See also
IDLE »page 147, POWERDOWN »page 173

Example
POWERDOWN

PRINT

Action
Send output to the RS-232 port.

Syntax

PRINT var ; " constant"

Remarks
var The variable or constant to print.

You can use a semicolon (;) to print more than one variable at one line.

When you end a line with a semicolon, no linefeed will be added.

The PRINT routine can be used when you have a RS-232 interface on your uP.

The RS-232 interface can be connected to a serial communication port of your computer.

This way you can use a terminal emulator as an output device.

You can also use the build in terminal emulator.

See also
INPUT »page 153 ,OPEN »page 169 , CLOSE »page 94

BASCOM-AVR-HELPFILE page 175

Example
'--
' (c) 1999 MCS Electronics
'--
' file: PRINT.BAS
' demo: PRINT
'--

Dim A As Byte , B1 As Byte , C As Integer

A = 1

Print "print variable a " ; A

Print 'new line

Print "Text to print." 'constant to print

B1 = 10

Print Hex(B1) 'print in hexa notation

C = &HA000 'assign value to c%

Print Hex(C) 'print in hex notation

Print C 'print in decimal notation

C = -32000

Print C

Print Hex(C)

Rem Note That Integers Range From -32767 To 32768

End

PRINTBIN

Action
Print binary content of a variable to the serial port.

Syntax
PRINTBIN var [,varn]

PRINTBIN #channel , var [, varn]

Remarks
var The variable which value is send to the serial port.

varn Optional variables to send.

The channel is optional and for use with OPEN »page 169 and CLOSE »page 94
statements.

PRINTBIN is equivalent to PRINT CHR(var); but whole arrays can be printed this way.

BASCOM-AVR-HELPFILE page 176

When you use a Long for example, 4 bytes are printed.

See also
INPUTBIN »page 151

Example
Dim a(10) as Byte, c as Byte

For c = 1 To 10

 a(c) = a 'fill array

Next

PRINTBIN a(1) 'print content

PUSHALL

Action
Saves all registers that might be used by BASCOM.

Syntax

PUSHALL

Remarks
When you are writing your own ASM routines and mix them with BASIC you are unable to
tell which registers are used by BASCOM because it depends on the used statements and
interrupt routines that can run on the background.

That is why Pushall saves all registers. Use POPALL to restore the registers.

See also
POPALL »page 173

READ

Action
Reads those values and assigns them to variables.

Syntax

READ var

Remarks
Var Variable that is assigned data value.

BASCOM-AVR-HELPFILE page 177

It is best to place the DATA »page 116 lines at the end of your program.

Difference with QB
It is important that the variable is of the same type as the stored data.

See also
DATA »page 116 , RESTORE »page 180

Example
Dim A As Byte, I As Byte, C As Integer, S As String * 10

RESTORE dta

FOR a = 1 TO 3

 READ i : PRINT i

NEXT

RESTORE DTA2

READ C : PRINT C

READ C : PRINT C

Restore dta3 : Read s : Print s

END

dta:

Data 5,10,15

dta2:

Data 1000%, -2000%

dta3:

Data "hello"

READEEPROM

Action
Reads the content from the DATA EEPROM and stores it into a variable.

Syntax

READEEEPROM var , address

Remarks
var The name of the variable that must be stored

address The address in the EEPROM where the data must
be read from.

BASCOM-AVR-HELPFILE page 178

This statement is provided for compatibility with BASCOM-8051.

You can also use :

Dim V as Eram Byte 'store in EEPROM

Dim B As Byte 'normal variable

B = 10

V = B 'store variable in EEPROM

B = V 'read from EEPROM

When you use the assignment version, the datatypes must be equal!

According to a datasheet from ATMEL, the first location in the EEPROM with address 0,
can be overwritten during a reset.

See also
WRITEEEPROM »page 201

ASM

Example
Dim B As Byte

WriteEEPROM B ,0 'store at first position

ReadEEPROM B, 0 'read byte back

REM

Action
Instruct the compiler that comment will follow.

Syntax

REM or '

Remarks
You can and should comment your program for clarity and your later sanity.

You can use REM or ' followed by your comment.

All statements after REM or ' are treated as comments so you cannot

use statements on the same line after a REM statement.

Block comments can be used:

BASCOM-AVR-HELPFILE page 179

'(start block comment

print "This will not be compiled

') end block comment

Note that the starting ' sign will ensure compatibility with QB

Example
REM TEST.BAS version 1.00

PRINT a ' " this is comment : PRINT " hello"

 ^--- this will not be executed!

RESET

Action
Reset a bit to zero.

Syntax

RESET bit

RESET var.x

Remarks
bit Can be a SFR such as PORTB.x, or any bit variable where x=0-7.

var Can be a byte, integer word or long variable.

x Constant of variable to reset.(0-7) for bytes and (0-15) for
Integer/Word. For longs(0-31)

See also
SET »page 184

Example
Dim b1 as bit, b2 as byte, I as Integer

RESET PORTB.3 'reset bit 3 of port B

RESET b1 'bitvariable

RESET b2.0 'reset bit 0 of bytevariable b2

RESET I.15 'reset MS bit from I

BASCOM-AVR-HELPFILE page 180

RESTORE

Action
Allows READ to reread values in specified DATA statements by setting data pointer to
beginning of data statement.

Syntax

RESTORE label

Remarks
label The label of a DATA statement.

See also
DATA »page 116 , READ »page 176

Example
DIM a AS BYTE, I AS BYTE

RESTORE dta

FOR a = 1 TO 3

 READ a : PRINT a

NEXT

RESTORE DTA2

READ I : PRINT I

READ I : PRINT I

END

DTA1:

Data 5, 10, 100

DTA2:

Data -1%, 1000%

Integers must end with the %-sign. (Integer : <0 or >255)

RETURN

Action
Return from a subroutine.

Syntax

RETURN

BASCOM-AVR-HELPFILE page 181

Remarks
Subroutines must be ended with a related RETURN statement.

Interrupt subroutines must also be terminated with the Return statement.

See also
GOSUB »page 141

Example
GOSUB Pr 'jump to subroutine

PRINT result 'print result

END 'program ends

Pr: 'start subroutine with label

result = 5 * y 'do something stupid

 result = result + 100 'add something to it

RETURN 'return

RIGHT

Action
Return a specified number of rightmost characters in a string.

Syntax

var = RIGHT(var1 ,st)

Remarks
var The string that is assigned.

Var1 The source string.

st The starting position.

See also
LEFT »page 157 , MID »page 167

Example
Dim s As String * 15, z As String * 15

s = "ABCDEFG"

z = Right(s,2)

Print z 'FG

End

BASCOM-AVR-HELPFILE page 182

RTRIM

Action
Returns a copy of a string with trailing blanks removed

Syntax
var = RTRIM(org)

Remarks
var String that is assigned with the result.

org The string to remove the trailing spaces from

See also
TRIM »page 196 , LTRIM »page 158

ASM

Example
Dim S As String * 6

S = " AB "

Print Ltrim(s)

Print Rtrim(s)

Print Trim(s)

End

ROTATE

Action
Rotate all bits one place to the left or right.

Syntax

ROTATE var , LEFT/RIGHT [, shifts]

Remarks
Var Byte, Integer/Word or Long variable.

Shifts The number of shifts to perform.

The ROTATE statement rotates all the bits in the variable to the left or right. All bits are
preserved so no bits will be shifted out of the variable.

BASCOM-AVR-HELPFILE page 183

This means that after rotating a byte variable with a value of 1, eight times the variable will
be unchanged.

When you want to shift out the MS bit or LS bit, use the SHIFT statement.

See also
SHIFT »page 204 , SHIFTIN »page 185 , SHIFTOUT »page 186

Example
Dim a as Byte

a = 128

ROTATE a, LEFT , 2

Print a '2

SELECT-CASE-END SELECT

Action
Executes one of several statement blocks depending on the value of an expression.

Syntax

SELECT CASE var

 CASE test1 : statements
 [CASE test2 : statements]
 CASE ELSE : statements
END SELECT

Remarks
var Variable. to test

Test1 Value to test for.

Test2 Value to test for.

See also
-

Example
Dim b2 as byte

SELECT CASE b2 'set bit 1 of port 1

 CASE 2 : PRINT "2"

 CASE 4 : PRINT "4"

BASCOM-AVR-HELPFILE page 184

 CASE IS >5 : PRINT ">5" 'a test requires the IS keyword

 CASE ELSE

END SELECT

END

SET

Action
Set a bit to one.

Syntax

SET bit

SET var.x

Remarks
Bit Bitvariable.

Var A byte, integer, word or long variable.

X Bit of variable (0-7) to set. (0-15 for Integer/Word) and
(0-31) for Long

See also
RESET »page 179

Example
Dim b1 as Bit, b2 as byte, c as Word, L as Long

SET PORTB.1 'set bit 1 of port B

SET b1 'bit variable

SET b2.1 'set bit 1 of var b2

SET C.15 'set highest bit of Word

SET L.31 'set MS bit of LONG

SHIFTCURSOR

Action
Shift the cursor of the LCD display left or right by one position.

Syntax

SHIFTCURSOR LEFT / RIGHT

BASCOM-AVR-HELPFILE page 185

See also
SHIFTLCD »page 186

Example
LCD "Hello"

SHIFTCURSOR LEFT

End

SHIFTIN

Action
Shifts a bitstream into a variable.

Syntax
SHIFTIN pin , pclock , var , option [, bits , delay]

Remarks
Pin The port pin which serves as an input.

Pclock The port pin which generates the clock.

Var The variable that is assigned.

Option Option can be :
0 – MSB shifted in/out first when clock goes low
1 – MSB shifted in/out first when clock goes high
2 – LSB shifted in/out first when clock goes low
3 – LSB shifted in/out first when clock goes high
Adding 4 to the parameter ses an external clock signal for the shifting.

Bits Optional number of bits to shift in.

Delay Optional delay in uS. When you specify the delay, the number of bits
must also be specified.

If you do not specify the number of bits to shift, the number of shifts will depend on the
type of the variable.

When you use a byte, 8 shifts will occur and for an integer, 16 shifts will occur.

See also
SHIFTOUT »page 186 , SHIFT »page 204

Example
Dim a as byte

SHIFTIN PORTB.0, PORTB.1, A, 4, 4,10 'shiftin 4 bits and use external clock

BASCOM-AVR-HELPFILE page 186

SHIFT A, RIGHT,4 'adjust

SHIFTIN PORTB.0, PORTB.1 , A 'read 8 bits

SHIFTOUT

Action
Shifts a bitstream out of a variable into a port pin .

Syntax
SHIFTOUT pin , pclock , var , option [, bits , delay]

Remarks
Pin The port pin which serves as an input.

Pclock The port pin which generates the clock.

Var The variable that is assigned.

Option Option can be :
0 – MSB shifted in/out first when clock goes low
1 – MSB shifted in/out first when clock goes high
2 – LSB shifted in/out first when clock goes low
3 – LSB shifted in/out first when clock goes high

Bits Optional number of bits to shift in.

Delay Optional delay in uS. When you specify the delay, the
number of bits must also be specified.

If you do not specify the number of bits to shift, the number of shifts will depend on the
type of the variable.

When you use a byte, 8 shifts will occur and for an integer, 16 shifts will occur.

See also
SHIFTIN »page 185 , SHIFT »page 204

Example
Dim a as byte

SHIFTOUT PORTB.0, PORTB.1, A, 4, 4,10 'shiftout 4 bits

SHIFTIN PORTB.0, PORTB.1 , A 'shiftout 8 bits

SHIFTLCD

Action
Shift the LCD display left or right by one position.

BASCOM-AVR-HELPFILE page 187

Syntax

SHIFTLCD LEFT / RIGHT

Remarks

-

See also
SHIFTCURSOR »page 184

Example
LCD "Very long text"

SHIFTLCD LEFT

Wait 1

SHIFTLCD RIGHT

End

SOUND

Action
Sends pulses to a port pin.

Syntax

SOUND pin, duration, pulses

Remarks
Pin Any I/O pin such as PORTB.0 etc.

Duration The number of pulses to send. Byte, integer/word or constant.

Pulses The time the pin is pulled low and high.
This is the value for a loop counter.

When you connect a speaker or a buzzer to a port pin (see hardware) , you can use the
SOUND statement to generate some tones.

The port pin is switched high and low for pulses times.

This loop is executed duration times.

BASCOM-AVR-HELPFILE page 188

The SOUND statement is not intended to generate accurate fequencies. Use a TIMER to
do that.

See also

-

Example
SOUND PORTB.1 , 10000, 10 'BEEP

End

SPACE

Action
Returns a string that consists of spaces.

Syntax

var = SPACE(x)

Remarks
X The number of spaces.

Var The string that is assigned.

Using 0 for x will result in a string of 255 bytes because there is no check for a zero length
assign.

See also
STRING »page 194

Example
Dim s as String * 15, z as String * 15

s = Space(5)

Print " {" ;s ; " }" '{ }

Dim A as Byte

A = 3

S = Space(a)

SPIIN

Action
Reads a value from the SPI-bus.

BASCOM-AVR-HELPFILE page 189

Syntax
SPIIN var, bytes

Remarks
var The variable which receives the value read from the SPI-bus.

bytes The number of bytes to read.

See also
SPIOUT, »page 190 SPIINIT, »page 189 CONFIG SPI »page 103

Example
Dim a(10) as byte

CONFIG SPI = SOFT, DIN = PORTB.0, DOUT = PORTB.1, CS=PORTB.2, CLK = PORTB.3

INITSPI

SPIIN a(1) , 4 'read 4 bytes

SPIINIT

Action
Sets the SPI pins in the right mode.

Syntax

SPIINIT

Remarks
After the configuration of the SPI pins, you must initialize the SPI pins to set them for the
right data direction. When the pins are not used by other hardware/software, you only
need to use SPIINIT once.

When other routines change the state of the SPI pins, use SPIINIT again before using
SPIIN and SPIOUT.

See also
SPIIN »page 188 , SPIOUT »page 190

ASM
Calls _init_spi

BASCOM-AVR-HELPFILE page 190

Example
Dim a(10) as byte

CONFIG SPI = SOFT, DIN = PORTB.0, DOUT = PORTB.1, CS=PORTB.2, CLK = PORTB.3

INITSPI

SPIIN a(1) , 4 'read 4 bytes

SPIOUT

Action
Sends a value of a variable to the SPI-bus.

Syntax
SPIOUT var , bytes

Remarks
var The variable whose content must be send to the SPI-bus.

bytes The number of bytes to send.

See also
SPIIN »page 188 , SPIINIT »page 189 , CONFIG SPI »page 103

Example
CONFIG SPI = SOFT, DIN = P1.0, DOUT = P1.1, CS=P1.2, CLK = P1.3

INITSPI

Dim a(10) as Byte , X As Byte

SPIOUT a(1) , 5 'send 5 bytes

SPIOUT X , 1 'send 1 byte

START

Action
Start the specified device.

Syntax

START device

Remarks
Device TIMER0, TIMER1, COUNTER0 or COUNTER1, WATCHDOG,

AC (Analog comparator power) or ADC(A/D converter power)
.

BASCOM-AVR-HELPFILE page 191

You must start a timer/counter in order for an interrupt to occur (when the external gate is
disabled).

TIMER0 and COUNTER0 are the same device.

The AC and ADC parameters will switch power to the device and thus enabling it to work.

See also
STOP »page 192

Example
'--

' ADC.BAS

' demonstration of GETADC() function for 8535 micro

'--

'configure single mode and auto prescaler setting

'The single mode must be used with the GETADC() function

'The prescaler divides the internal clock by 2,4,8,15,32,64 or 128

'Because the ADC needs a clock from 50-200 KHz

'The AUTO feature, will select the highest clockrate possible

Config Adc = Single , Prescaler = Auto

'Now give power to the chip

Start Adc

'With STOP ADC, you can remove the power from the chip

'Stop Adc

Dim W As Word , Channel As Byte

Channel = 0

'now read A/D value from channel 0

Do

 W = Getadc(channel)

 Print "Channel " ; Channel ; " value " ; W

 Incr Channel

 If Channel > 7 Then Channel = 0

Loop

End

BASCOM-AVR-HELPFILE page 192

STOP

Action
Stop the specified device. Or stop the program

Syntax

STOP device

STOP

Remarks
Device TIMER0, TIMER1, COUNTER0 or COUNTER1, WATCHDOG,

AC (Analog comparator power) or ADC(A/D converter power)
.

The single STOP statement will end your program.

The STOP statement with one of the above parameters, will stop the specified device.

TIMER0 and COUNTER0 are the same device.

The AC and ADC parameters will switch power off the device to disable it and thus save
power.

See also
START »page 190

Example
'--
' ADC.BAS
' demonstration of GETADC() function for 8535 micro
'--

'configure single mode and auto prescaler setting

'The single mode must be used with the GETADC() function

'The prescaler divides the internal clock by 2,4,8,15,32,64 or 128

'Because the ADC needs a clock from 50-200 KHz

'The AUTO feature, will select the highest clockrate possible

Config Adc = Single , Prescaler = Auto

'Now give power to the chip

Start Adc

'With STOP ADC, you can remove the power from the chip

'Stop Adc

BASCOM-AVR-HELPFILE page 193

Dim W As Word , Channel As Byte

Channel = 0

'now read A/D value from channel 0

Do

 W = Getadc(channel)

 Print "Channel " ; Channel ; " value " ; W

 Incr Channel

 If Channel > 7 Then Channel = 0

Loop

End

STR

Action
Returns a string representation of a number.

Syntax

var = Str(x)

Remarks
var A string variable.

X A numeric variable.

The string must be big enough to store the result.

See also
VAL »page 197 , HEX »page 142 , HEXVAL »page 143

Difference with QB
In QB STR() returns a string with a leading space. BASCOM does not.

Example
Dim a as Byte, S as XRAM String * 10

a = 123

s = Str(a)

Print s

End

BASCOM-AVR-HELPFILE page 194

STRING

Action
Returns a string consisting of m repetitions of the character with ASCII

Code n.

Syntax

var = STRING(m ,n)

Remarks
var The string that is assigned.

n The ASCII-code that is assigned to the string.

m The number of characters to assign.

Since a string is terminated by a 0 byte, you can't use 0 for n.

Using 0 for m will result in a string of 255 bytes, because there is no check on a length
assign of 0.

See also
SPACE »page 188

Example
Dim s as String * 15

s = String(5,65)

Print s 'AAAAA

End

SUB

Action
Defines a Sub procedure.

Syntax

SUB Name[(var1)]

Remarks
Name Name of the sub procedure, can be any non-reserved word.

var1 The name of the parameter.

You must end each subroutine with the END SUB statement.

BASCOM-AVR-HELPFILE page 195

You can copy the DECLARE SUB line and remove the DECLARE statement. This
ensures that you have the right parameters.

See the DECLARE SUB »page 122 topic for more details.

SWAP

Action
Exchange two variables of the same type.

Syntax

SWAP var1, var2

Remarks
var1 A variable of type bit, byte, integer, word, long or

string.

var2 A variable of the same type as var1.

After the swap, var1 will hold the value of var2 and var2 will hold the value of var1.

Example
Dim a as integer,b1 as integer

a = 1 : b1 = 2 'assign two integers

SWAP a, b1 'swap them

PRINT a ; b1 'prints 21

THIRDLINE

Action
Reset LCD cursor to the third line.

Syntax

THIRDLINE

Remarks

-

See also
UPPERLINE »page 196 , LOWERLINE »page 164 , FOURTHLINE »page 135

BASCOM-AVR-HELPFILE page 196

Example
Dim a as byte

a = 255

LCD a

Thirdline

LCD a

Upperline

End

TRIM

Action
Returns a copy of a string with leading and trailing blanks removed

Syntax
var = TRIM(org)

Remarks
var String that receives the result.

org The string to remove the spaces from

See also
RTRIM »page 182 , LTRIM »page 158

ASM

Example
Dim S As String * 6

S = " AB "

Print Ltrim(s)

Print Rtrim(s)

Print Trim(s)

End

UPPERLINE

Action
Reset LCD cursor to the upperline.

BASCOM-AVR-HELPFILE page 197

Syntax

UPPERLINE

Remarks

-

See also
LOWERLINE »page 164 , THIRDLINE »page 195 , FOURTHLINE »page 135

Example
Dim a as byte

a = 255

LCD a

Lowerline

LCD a

Upperline

End

VAL

Action
Converts a string representation of a number into a number.

Syntax

var = Val(s)

Remarks
Var A numeric variable that is assigned with the value of s.

S Variable of the string type.

See also
STR »page 193

Example
Dim a as byte, s As String * 10

s = "123"

a = Val(s) 'convert string

BASCOM-AVR-HELPFILE page 198

Print a

End

VARPTR

Action
Retrieves the memory-address of a variable.

Syntax
var = VARPTR(var2)

Remarks
Var The variable that receives the address of var2.

Var2 A variable to retrieve the address from.

See also
-

Example
Dim B As Xram Byte At &H300 , I As Integer , W As Word

W = Varptr(b)

Print Hex(w) 'Print &H0300

End

WAIT

Action
Suspends program execution for a given time.

Syntax
WAIT seconds

Remarks
seconds The number of seconds to wait.

No accurate timing is possible with this command.

When you use interrupts, the delay may be extended.

BASCOM-AVR-HELPFILE page 199

See also
DELAY »page 124 , WAITMS »page 199

Example
WAIT 3 'wait for three seconds

Print "*"

WAITKEY

Action
Wait until a character is received in the serial buffer.

Syntax

var = WAITKEY

Remarks
var Variable that receives the ASCII value of the serial buffer.

See also
INKEY »page 149

Example
Dim A As Byte

A = Waitkey() 'wait for character

Print A

WAITMS

Action
Suspends program execution for a given time in mS.

Syntax
WAITMS mS

Remarks
ms The number of milliseconds to wait. (1-255)

No accurate timing is possible with this command.

BASCOM-AVR-HELPFILE page 200

In addition, the use of interrupts can slow this routine.

This statement is provided for the I2C statements.

When you write to an EEPROM you must wait for 10 mS after the write instruction.

See also
DELAY »page 124 , WAIT »page 198 , WAITUS »page 200

Example
WAITMS 10 'wait for 10 mS

Print "*"

WAITUS

Action
Suspends program execution for a given time in uS.

Syntax
WAITUS uS

Remarks
uS The number of micriseconds to wait. (1-255)

This must be a constant. No variable!

No accurate timing is possible with this command.

In addition, the use of interrupts can slow this routine.

See also
DELAY »page 124 , WAIT »page 198 , WAITUS »page 200

Example
WAITUS 10 'wait for 10 uS

Print "*"

WHILE-WEND

Action
Executes a series of statements in a loop, as long as a given condition is true.

BASCOM-AVR-HELPFILE page 201

Syntax

WHILE condition

statements

WEND

Remarks
If the condition is true then any intervening statements are executed until the WEND
statement is encountered.

BASCOM then returns to the WHILE statement and checks the condition.

If it is still true, the process is repeated.

If it is not true, execution resumes with the statement following the WEND statement.

So in contrast with the DO-LOOP structure, a WHILE-WEND condition is tested first so
that if the condition fails, the statements in the WHILE-WEND structure are never
executed.

See also
DO-LOOP »page 130

Example
WHILE a <= 10 'if a is smaller or equal to 10

PRINT a 'print variable a

INCR a

WEND

WRITEEEPROM

Action
Write a variables content to the DATA EEPROM.

Syntax

WRITEEEPROM var , address

Remarks
var The name of the variable that must be stored

address The address in the EEPROM where the variable
must be stored.

This statement is provided for compatibility with BASCOM-8051.

You can also use :

BASCOM-AVR-HELPFILE page 202

Dim V as Eram Byte 'store in EEPROM

Dim B As Byte 'normal variable

B = 10

V = B 'store variable in EEPROM

When you use the assignment version, the data types must be the same!

According to a datasheet from ATMEL, the first location in the EEPROM with address 0,
can be overwritten during a reset.

See also
READEEPROM »page 177

ASM

Example
Dim B As Byte

WriteEEPROM B ,0 'store at first position

ReadEEPROM B, 0 'read byte back

Changes compared to BASCOM-8051

Changes compared to BASCOM-8051

The design goal was to make BASCOM-AVR compatible with BASCOM-8051.

The standard edition is intended as a replacement for BASCOM-LT.

The professional edition is intended as a replacement for BASCOM-8051.

For the AVR compilers I had to remove some statements.

New statements are also added. And some statements were changed.

They need specific attention, but the changes to the syntax will be made available to
BASCOM-8051 too in the future.

Statements that were removed

STATEMENT DESCRIPTION

$LARGE Not needed anymore.

$ROMSTART Code always starts at address 0 for the AVR.

$LCDHEX Use LCD Hex(var) instead.

$NOINIT Not needed anymore

BASCOM-AVR-HELPFILE page 203

$NOSP Not needed anymore

$NOBREAK Can't be used anymore because there is no object
code that can be used for it.

$SIM Removed because there is no simulator yet.

$OBJ Removed.

BREAK Can't be used anymore because there is no object
code that can be used for it.

PRIORITY AVR does no allow setting priority of interrupts

PRINTHEX You can use Print Hex(var) now

LCDHEX You can use Lcd Hex(var) now

Statements that were added

STATEMENT DESCRIPTION

FUNCTION Now you can define your own user FUNCTIONS.

LOCAL You can have LOCAL variables in SUB routines or
FUNCTIONS.

^ New math statement. Var = 2 ^ 3 will return 2*2*2

SHIFT Because ROTATE was changed, I added the SHIFT
statement. SHIFT works just like ROTATE, but when
shifted left, the LS BIT is cleared and the carry doesn't
go to the LS BIT.

LTRIM LTRIM, trims the leftmost spaces of a string.

RTRIM RTRIM, trims the rightmost spaces of a string.

TRIM TRIM, trims both the leftmost and rightmost spaces of a
string.

Statements that behave differently

STATEMENT DESCRIPTION

ROTATE Rotate now behaves like the ASM rotate, this means that
the carry will go to the most significant bit of a variable or
the least significant bit of a variable.

CONST String were added to the CONST statement. I also
changed it to be compatible with QB.

DECLARE BYVAL has been added since real subprograms are now
supported.

DIM You can now specify the location in memory of the
variable.
Dim v as byte AT 100, will use memory location 100.

GETRC Is named GETRC0 now to indicate that it works with
TIMER0.

BASCOM-AVR-HELPFILE page 204

SHIFT

Action
Shift all bits one place to the left or right.

Syntax

SHIFT var , LEFT/RIGHT [, shifts]

Remarks
Var Byte, Integer/Word or Long variable.

Shifts The number of shifts to perform.

The SHIFT statement rotates all the bits in the variable to the left or right.

When shifting LEFT the most significant bit, will be shifted out of the variable. The LS bit
becomes zero. Shifting a variable to the left, multiplies the variable with a value of two.

When shifting to the RIGHT, the least significant bit will be shifted out of the variable. The
MS bit becomes zero. Shifting a variable to the right, divides the variable by two.

See also
ROTATE »page 182 , SHIFTIN »page 185 , SHIFTOUT »page 186

Example
Dim a as Byte

a = 128

SHIFT a, LEFT , 2

Print a '0

LOADADR

Action
Loads the address of a variable into a register pair.

Syntax
LOADADR var , reg

Remarks
var A variable which address must be loaded into the register

painr X, Y or Z.

reg The register X, Y or Z.

BASCOM-AVR-HELPFILE page 205

The LOADADR statement serves as a assembly helper routine.

Example
Dim S As String * 12

Dim A As Byte

$ASM

 loadadr S , X 'load address into R26 and R27

 ld _temp1, X 'load value of location R26/R27 into R24(_temp1)

$END ASM

ISP programmer

BASCOM supports the STK200 ISP programmer from Kanda.

This is a very reliable parallel printer port programmer.

The STK200 ISP programmer is included in the STK200 starter kit.

All programs were tested with the STK200.

For those who don't have this kit and the programmer the following schematic shows how
to make your own programmer:

The dongle has a chip with no identification but since the schematic is all over the web, I
have included it. Kanda also sells a very cheap seperate programmer dongle. So I
suggest you buy this one!

BASCOM-AVR-HELPFILE page 206

Supported Programmers

BASCOM supports the following programmers

AVR ICP910 based on the AVR910.ASM application note

STK200 ISP programmer »page 205 from Atmel/Kanda

The PG302 programmer »page 206 from Iguana Labs

The simple cable programmer »page 213 from Sample Electronics.

Eddie McMullen's SPI programmer.

PG302 programmer

The PG302 is a serial programmer. It works and looks exactly as the original PG302
software.

Select the programmer from The Option Programmer menu or right click on the
button to show the Option Programmer »page 33 menu.

Assembler mnemonics
BASCOM supports the mnemonics as defined by Atmel.
The Assembler accepts mnemonic instructions from the instruction set.

BASCOM-AVR-HELPFILE page 207

A summary of the instruction set mnemonics and their parameters is given here. For a
detailed description of the Instruction set, refer to the AVR Data Book.

Mnemonics Operands Description Operation Flags Clock

ARITHMETIC AND
LOGIC
INSTRUCTIONS

ADD Rd, Rr Add without
Carry

Rd = Rd + Rr Z,C,N,V,H 1

ADC Rd, Rr Add with Carry Rd = Rd + Rr + C Z,C,N,V,H 1

SUB Rd, Rr Subtract without
Carry

Rd = Rd – Rr Z,C,N,V,H 1

SUBI Rd, K Subtract
Immediate

Rd = Rd – K Z,C,N,V,H 1

SBC Rd, Rr Subtract with
Carry

Rd = Rd - Rr - C Z,C,N,V,H 1

SBCI Rd, K Subtract
Immediate with
Carry

Rd = Rd - K - C Z,C,N,V,H 1

AND Rd, Rr Logical AND Rd = Rd · Rr Z,N,V 1

ANDI Rd, K Logical AND with
Immediate

Rd = Rd · K Z,N,V 1

OR Rd, Rr Logical OR Rd = Rd v Rr Z,N,V 1

ORI Rd, K Logical OR with
Immediate

Rd = Rd v K Z,N,V 1

EOR Rd, Rr Exclusive OR Rd = Rd Å Rr Z,N,V 1

COM Rd Ones
Complement

Rd = $FF - Rd Z,C,N,V 1

NEG Rd Twos
Complement

Rd = $00 - Rd Z,C,N,V,H 1

SBR Rd,K Set Bit(s) in
Register

Rd = Rd v K Z,N,V 1

CBR Rd,K Clear Bit(s) in
Register

Rd = Rd · ($FFh -
K)

Z,N,V 1

INC Rd Increment Rd = Rd + 1 Z,N,V 1

DEC Rd Decrement Rd = Rd - 1 Z,N,V 1

TST Rd Test for Zero or
Minus

Rd = Rd · Rd Z,N,V 1

CLR Rd Clear Register Rd = Rd Å Rd Z,N,V 1

SER Rd Set Register Rd = $FF None 1

ADIW Rdl, K Add Immediate
to Word

Rdh:Rdl =
Rdh:Rdl + K

None 1

SBIW Rdl, K Subtract
Immediate from
Word

Rdh:Rdl =
Rdh:Rdl - K

None 1

MUL Rd,Rr Multiply
Unsigned

R1, R0 = Rd * Rr C 2 *

BRANCH

BASCOM-AVR-HELPFILE page 208

INSTRUCTIONS

RJMP k Relative Jump PC = PC + k + 1 None 2

IJMP Indirect Jump to
(Z)

PC = Z None 2

JMP k Jump PC = k None 3

RCALL k Relative Call
Subroutine

PC = PC + k + 1 None 3

ICALL Indirect Call to
(Z)

PC = Z None 3

CALL k Call Subroutine PC = k None 4

RET Subroutine
Return

PC = STACK None 4

RETI Interrupt Return PC = STACK I 4

CPSE Rd,Rr Compare, Skip if
Equal

if (Rd = Rr) PC =
PC + 2 or 3

None 1 / 2

CP Rd,Rr Compare Rd - Rr Z,C,N,V,H, 1

CPC Rd,Rr Compare with
Carry

Rd - Rr - C Z,C,N,V,H 1

CPI Rd,K Compare with
Immediate

Rd - K Z,C,N,V,H 1

SBRC Rr, b Skip if Bit in
Register Cleared

If (Rr(b)=0) PC =
PC + 2 or 3

None 1 / 2

SBRS Rr, b Skip if Bit in
Register Set

If (Rr(b)=1) PC =
PC + 2 or 3

None 1 / 2

SBIC P, b Skip if Bit in I/O
Register Cleared

If(I/O(P,b)=0) PC
= PC + 2 or 3

None 2 / 3

SBIS P, b Skip if Bit in I/O
Register Set

If(I/O(P,b)=1) PC
= PC + 2 or 3

None 2 / 3

BRBS s, k Branch if Status
Flag Set

if (SREG(s) = 1)
then PC=PC+k +
1

None 1 / 2

BRBC s, k Branch if Status
Flag Cleared

if (SREG(s) = 0)
then PC=PC+k +
1

None 1 / 2

BREQ k Branch if Equal if (Z = 1) then PC
= PC + k + 1

None 1 / 2

BRNE k Branch if Not
Equal

if (Z = 0) then PC
= PC + k + 1

None 1 / 2

BRCS k Branch if Carry
Set

if (C = 1) then PC
= PC + k + 1

None 1 / 2

BRCC k Branch if Carry
Cleared

if (C = 0) then PC
= PC + k + 1

None 1 / 2

BRSH k Branch if Same
or Higher

if (C = 0) then PC
= PC + k + 1

None 1 / 2

BRLO k Branch if Lower if (C = 1) then PC
= PC + k + 1

None 1 / 2

BRMI k Branch if Minus if (N = 1) then PC
= PC + k + 1

None 1 / 2

BRPL k Branch if Plus if (N = 0) then PC
= PC + k + 1

None 1 / 2

BASCOM-AVR-HELPFILE page 209

BRGE k Branch if Greater
or Equal, Signed

if (N V= 0) then
PC = PC+ k + 1

None 1 / 2

BRLT k Branch if Less
Than, Signed

if (N V= 1) then
PC = PC + k + 1

None 1 / 2

BRHS k Branch if Half
Carry Flag Set

if (H = 1) then PC
= PC + k + 1

None 1 / 2

BRHC k Branch if Half
Carry Flag
Cleared

if (H = 0) then PC
= PC + k + 1

None 1 / 2

BRTS k Branch if T Flag
Set

if (T = 1) then PC
= PC + k + 1

None 1 / 2

BRTC k Branch if T Flag
Cleared

if (T = 0) then PC
= PC + k + 1

None 1 / 2

BRVS k Branch if
Overflow Flag is
Set

if (V = 1) then PC
= PC + k + 1

None 1 / 2

BRVC k Branch if
Overflow Flag is
Cleared

if (V = 0) then PC
= PC + k + 1

None 1 / 2

BRIE k Branch if
Interrupt Enabled

if (I = 1) then PC
= PC + k + 1

None 1 / 2

BRID k Branch if
Interrupt
Disabled

if (I = 0) then PC
= PC + k + 1

None 1 / 2

DATA TRANSFER
INSTRUCTIONS

MOV Rd, Rr Copy Register Rd = Rr None 1

LDI Rd, K Load Immediate Rd = K None 1

LDS Rd, k Load Direct Rd = (k) None 3

LD Rd, X Load Indirect Rd = (X) None 2

LD Rd, X+ Load Indirect and
Post-Increment

Rd = (X), X = X +
1

None 2

LD Rd, -X Load Indirect and
Pre-Decrement

X = X - 1, Rd
=(X)

None 2

LD Rd, Y Load Indirect Rd = (Y) None 2

LD Rd, Y+ Load Indirect and
Post-Increment

Rd = (Y), Y = Y
+ 1

None 2

LD Rd, -Y Load Indirect and
Pre-Decrement

Y = Y - 1, Rd =
(Y)

None 2

LDD Rd,Y+q Load Indirect
with
Displacement

Rd = (Y + q) None 2

LD Rd, Z Load Indirect Rd = (Z) None 2

LD Rd, Z+ Load Indirect and
Post-Increment

Rd = (Z), Z = Z+1 None 2

LD Rd, -Z Load Indirect and
Pre-Decrement

Z = Z - 1, Rd =
(Z)

None 2

LDD Rd, Z+q Load Indirect
with
Displacement

Rd = (Z + q) None 2

STS k, Rr Store Direct (k) = Rr None 3

BASCOM-AVR-HELPFILE page 210

ST X, Rr Store Indirect (X) = Rr None 2

ST X+, Rr Store Indirect
and Post-
Increment

(X) = Rr, X = X +
1

None 2

ST -X, Rr Store Indirect
and Pre-
Decrement

X = X - 1, (X) =
Rr

None 2

ST Y, Rr Store Indirect (Y) = Rr None 2

ST Y+, Rr Store Indirect
and Post-
Increment

(Y) = Rr, Y = Y +
1

None 2

ST -Y, Rr Store Indirect
and Pre-
Decrement

Y = Y - 1, (Y) =
Rr

None 2

STD Y+q,Rr Store Indirect
with
Displacement

(Y + q) = Rr None 2

ST Z, Rr Store Indirect (Z) = Rr None 2

ST Z+, Rr Store Indirect
and Post-
Increment

(Z) = Rr, Z = Z +
1

None 2

ST -Z, Rr Store Indirect
and Pre-
Decrement

Z = Z - 1, (Z) =
Rr

None 2

STD Z+q,Rr Store Indirect
with
Displacement

(Z + q) = Rr None 2

LPM Load Program
Memory

R0 =(Z) None 3

IN Rd, P In Port Rd = P None 1

OUT P, Rr Out Port P = Rr None 1

PUSH Rr Push Register on
Stack

STACK = Rr None 2

POP Rd Pop Register
from Stack

Rd = STACK None 2

BIT AND BIT-
TEST
INSTRUCTIONS

LSL Rd Logical Shift Left Rd(n+1)
=Rd(n),Rd(0)=
0,C=Rd(7)

Z,C,N,V,H 1

LSR Rd Logical Shift
Right

Rd(n) = Rd(n+1),
Rd(7) =0,
C=Rd(0)

Z,C,N,V 1

ROL Rd Rotate Left
Through Carry

Rd(0) =C,
Rd(n+1)
=Rd(n),C=Rd(7)

Z,C,N,V,H 1

ROR Rd Rotate Right
Through Carry

Rd(7) =C,Rd(n)
=Rd(n+1),C¬Rd(
0)

Z,C,N,V 1

ASR Rd Arithmetic Shift
Right

Rd(n) = Rd(n+1),
n=0..6

Z,C,N,V 1

SWAP Rd Swap Nibbles Rd(3..0) « None 1

BASCOM-AVR-HELPFILE page 211

Rd(7..4)

BSET s Flag Set SREG(s) = 1 SREG(s) 1

BCLR s Flag Clear SREG(s) = 0 SREG(s) 1

SBI P, b Set Bit in I/O
Register

I/O(P, b) = 1 None 2

CBI P, b Clear Bit in I/O
Register

I/O(P, b) = 0 None 2

BST Rr, b Bit Store from
Register to T

T = Rr(b) T 1

BLD Rd, b Bit load from T to
Register

Rd(b) = T None 1

SEC Set Carry C = 1 C 1

CLC Clear Carry C = 0 C 1

SEN Set Negative
Flag

N = 1 N 1

CLN Clear Negative
Flag

N = 0 N 1

SEZ Set Zero Flag Z = 1 Z 1

CLZ Clear Zero Flag Z = 0 Z 1

SEI Global Interrupt
Enable

I = 1 I 1

CLI Global Interrupt
Disable

I = 0 I 1

SES Set Signed Test
Flag

S = 1 S 1

CLS Clear Signed
Test Flag

S = 0 S 1

SEV Set Twos
Complement
Overflow

V = 1 V 1

CLV Clear Twos
Complement
Overflow

V = 0 V 1

SET Set T in SREG T = 1 T 1

CLT Clear T in SREG T = 0 T 1

SHE Set Half Carry
Flag in SREG

H = 1 H 1

CLH Clear Half Carry
Flag in SREG

H = 0 H 1

NOP No Operation None 1

SLEEP Sleep None 1

WDR Watchdog Reset None 1

*) Not available in base-line microcontrollers

The Assembler is not case sensitive.

The operands have the following forms:

Rd: R0-R31 or R16-R31 (depending on instruction)

BASCOM-AVR-HELPFILE page 212

Rr: R0-R31

b: Constant (0-7)

s: Constant (0-7)

P: Constant (0-31/63)

K: Constant (0-255)

k: Constant, value range depending on instruction.

q: Constant (0-63)

Rdl: R24, R26, R28, R30. For ADIW and SBIW instructions

Mixing ASM and BASIC
BASCOM allows you to mix BASIC with assembly.
This can be very usefull in some situations when you need full control of the generated
code.

Almost all assembly mnemonics are recognized by the compiler. The exceptions are :
SUB, SWAP and OUT. These are BASIC reserved words and have priority over the ASM
mnemonics. To use these mnemonics precede them with the ! - sign.
For example :

Dim a As Byte At &H60 'A is stored at location &H60
Ldi R27 , $00 'Load R27 with MSB of address
Ldi R26 , $60 'Load R26 with LSB of address
Ld R1, X 'load memory location $60 into R1
!SWAP R1 'swap nibbles

As you can see the SWAP mnemonic is preceded by a ! sign.

Another option is to use the assembler block directives:
$ASM

Ldi R27 , $00 'Load R27 with MSB of address
Ldi R26 , $60 'Load R26 with LSB of address
Ld R1, X 'load memory location $60 into R1
SWAP R1 'swap nibbles

$END ASM

A special assembler helper function is provided to load the address in to the register X or
Z. Y can not be used because it is used as the stack pointer.

Dim A As Byte 'reserve space
LOADADR a, X 'load addres of variable named A into registerpair X

This has the same effect as :
Ldi R26 , $60 'for example !
Ldi R27, $00 'for example !

Some registers are used by BASCOM
R4 and R5 are used to point to the stack frame
R6 is used to store some bit variables:

R6 bit 0 = flag for int/word conversion
R6 bit 1 = temp bit space used for swapping bits
R6 bit 2 = error bit (ERR variable)
R6 bit 3 = show/noshow flag when using INPUT statement

R8 and R9 are used as a datapointer for the READ statement.

BASCOM-AVR-HELPFILE page 213

All other registers are used depending on the used statements.

To Load the address of a variable you must enclose them in brackets.
Dim B As Bit
Lds R16, {B} 'will replace {B} with the address of variable B

To refer to the bitnumber you must precede the variable name by BIT.
Sbrs R16 , BIT.B 'notice the point!
Since this was the first dimensioned bit the bitnumber is 7. Bits are stored in bytes and the
first dimensioned bit goes in the LS bit.

Sample Electronics cable programmer
The simple cable programmer was submitted by Sample Electronics.
The produce professional programmers too. This simple programmer you can make
yourself within a 20 minutes.

What you need is a DB25 centronics male connector, a flatcable and a connector that can
be connected on the target MCU board.

The connections to make are as following:

DB25 pin Target MCU pin(AT90S8535)
2, D0 MOSI, pin 6
4, D2 RESET, pin 9
5, D3 CLOCK, pin 8
11, BUSY MISO, pin 7
18-25,GND GROUND

The MCU pin numbers are shown for an 8535!

Note that 18-25 means pins 18,19,20,21,22,23,24 and 25
You can use a small resistor of 100 ohm in series with the D0, D2 and D3 line in order not
to short circuit your LPT port in the event the MCU pins are high.
But it was tested without these resistors and my PC still works :-)

Tip : when testing programmers etc. on the LPT it is best to buy a I/O card for your PC
that has a LPT port. This way you dont destroy your LPT port that is on the motherboard
in the event you make a mistake!

Dez.1999 Ma

BASCOM-AVR-HELPFILE page 214

—$—

$ASM 63
$BAUD 64
$CRYSTAL 64
$DATA 65
$DEFAULT 66
$EEPROM 67
$EXTERNAL 68
$INCLUDE 69
$LCD 70
$LCDPUTCTRL 70
$LCDPUTDATA 71
$LCDRS 72
$LIB 73
$REGFILE 75
$SERIALINPUT 75
$SERIALINPUT2LCD 77
$SERIALOUTPUT 77
$XRAMSIZE 78
$XRAMSTART 79

—1—

1WREAD 81
1WRESET 79
1WWRITE 82

—A—

A word of thank 12
ABS 84
Additional Hardware 42
ALIAS 84
ASC 85
Assembler mnemonics 206
Attaching an LCD Display 51
AVR Internal Hardware 43
AVR Internal Hardware Port B 48
AVR Internal Hardware Port D 49
AVR Internal Hardware TIMER1 46
AVR Internal Hardware Watchdog timer 48
AVR Internal Registers 44

—B—

BASCOM Editor Keys 35
BAUD 86
BCD 87
BITWAIT 88
BYVAL 89

—C—

CALL 90
CASE 183
Changes compared to BASCOM-8051 202
CHR 91
CLOCKDIVISION 93
CLOSE 94
CLS 92
CONFIG 95

CONFIG 1WIRE 96
CONFIG DEBOUNCE 96
CONFIG I2CDELAY 97
CONFIG INTx 98
CONFIG KBD 98
CONFIG LCD 99
CONFIG LCDBUS 99
CONFIG LCDMODE 100
CONFIG LCDPIN 101
CONFIG PORT 110
CONFIG SCL 102
CONFIG SDA 101
CONFIG SPI 103
CONFIG TIMER0 103
CONFIG TIMER1 106
CONFIG WAITSUART 109
CONFIG WATCHDOG 109
CONST 127
Constants 37
COUNTER0 and COUNTER1 112
CPEEK 113
CRYSTAL 114
CURSOR 115

—D—

DATA 116
DEBOUNCE 118
DECLARE FUNCTION 120
DECLARE SUB 122
DECR 119
DEFBIT 123
DEFINT 123
DEFLCDCHAR 123
DEFLNG 123
DEFSNG 123
DEFWORD 123
DEFxxx 123
DELAY 124
Developing Order 37
DIM 125
DISABLE 128
DISPLAY 129
DO 130
DOWNTO 134

—E—

Edit Copy 17
Edit Cut 17
Edit Find 18
Edit Find Next 18
Edit Goto 18
Edit Goto Bookmark 18
Edit Indent Block 18
Edit Paste 17
Edit Redo 17
Edit Replace 18
Edit Toggle Bookmark 18
Edit Undo 17
Edit Unindent Block 18
ELSE 131; 148
ENABLE 132
END 133
END IF 148
END SELECT 183
ERAM 37
Error Codes 39

BASCOM-AVR-HELPFILE page 215

EXIT 133

—F—

File Close 16
File Exit 17
File New 15
File Open 15
File Print 17
File Print Preview 16
File Save 16
File Save As 16
FOR 134
FOR-NEXT 134
FOURTHLINE 135
FUSING 136

—G—

GETAD 136
GETKBD 137
GETRC0 138
GETRC5 138
GOSUB 141
GOTO 141

—H—

Help About 34
Help Credits 35
Help Index 35
Help on Help 35
HEX 142
HEXVAL 143
HIGH 143
HOME 144

—I—

I2CRBYTE 146
I2CRECEIVE 144
I2CSEND 145
I2CSTART 146
I2CSTOP 146
I2CWBYTE 146
I2START,I2CSTOP, I2CRBYTE, I2CWBYTE 146
IDLE 147
IF 148
IF-THEN-ELSE-END IF 148
INCR 149
Index 1
INKEY 149
INP 150
INPUT 153
INPUTBIN 151
INPUTHEX 152
Installation 6
ISP programmer 205

—L—

Language Fundamentals 55
LCD 154
LEFT 157

LEN 158
LOAD 159
LOADADR 204
LOCAL 159
LOCATE 162
LOOKUP 162
LOOKUPSTR 163
LOOP 130
LOW 164
LOWERLINE 164
LTRIM 158

—M—

MAKEBCD 165
MAKEDEC 166
MAKEINT 166
Memory usage 37
MID 167
Mixing ASM and BASIC 212

—N—

NEXT 134

—O—

ON INTERRUPT 168
ON VALUE 169
OPEN 169
Options Communication 29
Options Compiler 24; 27
Options Compiler 1WIRE 27
Options Compiler Chip 24
Options Compiler Communication 26
Options Compiler I2C 27
Options Compiler LCD 28
Options Compiler Output 25
Options Compiler SPI 27
Options Environment 30
Options Monitor 33
Options Printer 34
Options Programmer 33
Options Simulator 32
OUT 171

—P—

PEEK 172
PG302 programmer 206
POKE 172
POPALL 173
Power Up 53
POWERDOWN 173
POWERSAVE 174
PRINT 174
PRINTBIN 175
Program Compile 19
Program Send to Chip 21
Program Show Result 19
Program Simulate 20
Program Syntax Check 19
PUSHALL 176

BASCOM-AVR-HELPFILE page 216

—R—

READ 176
READEEPROM 177
REM 178
Resellers 9
Reserved Words 53
RESET 179
RESTORE 180
RETURN 180
RIGHT 181
ROTATE 182
RTRIM 182
Running BASCOM-AVR 15

—S—

Sample Electronics cable programmer 213
SELECT 183
SELECT-CASE-END SELECT 183
SET 184
SETUP 6
SHIFT 204
SHIFTCURSOR 184
SHIFTIN 185
SHIFTLCD 186
SHIFTOUT 186
SOUND 187
SPACE 188
SPIIN 188
SPIINIT 189
SPIOUT 190
START 190
STEP 134
STOP 192
STR 193
STRING 194
SUB 194
Supported Programmers 206
SWAP 195

—T—

THEN 148
THIRDLINE 195
TIMER0 45
Tools LCD Designer 23
Tools Terminal Emulator 22
TRIM 196

—U—

UPPERLINE 196
Using the 1 WIRE protocol 53
Using the I2C protocol 52
Using the SPI protocol 53

—V—

VAL 197
VARPTR 198

—W—

WAIT 198
WAITKEY 199
WAITMS 199
WAITUS 200
WEND 200
WHILE 200
WHILE-WEND 200
Window Arrange Icons 34
Window Minimize All 34
Window Tile 34
Windows Cascade 34
WRITEEEPROM 201

—X—

XRAM 37

