
hybris Architecture
and Technology

2hybris Architecture and Technology

Abstract

Changing customer behavior, rising competitive pressures, emerging techno-
logies and globalization are all forcing organizations to rethink how they serve
their customers and do business. Consequently they must adopt more flexible
business models, add new sales channels and interact with customers in new
ways – all of which increase the complexity and demands of managing busines-
ses successfully1.

In order to be able to handle this complexity while at the same time lowering
costs, improving customer service and increasing sales, different departments
and subsidiaries often start implementing ad-hoc disparate IT solutions.
These provide no single view of customers, products, inventories or marketing
information, which is scattered across organizations and systems. Missing
data, insufficient collaboration, duplications and uncoordinated activities lead
to inefficient marketing and revenue losses. The organization struggles to ma-
nage their multiple business models, sales channels, customer interactions,
transactions and processes. Additionally, their systems are often rigid, preven-
ting customers from quickly delivering innovative features to gain competitive
advantage.

Due to the open and extensible architecture of the hybris Platform, customers
are able to easily extend and customize the data model and the business logic
to optimally fit their business requirements. Furthermore, using popular
technology standards, hybris enables you to shorten project ramp up times and
accelerate project implementations, as there is no need for extensive training
of your IT teams. The hybris Multichannel Commerce Solution uses the hybris
Platform to offer a single system for managing product content, commerce
operations and channels. Thus helping retailers, manufacturers and others to
create a unified and seamless cross-channel experience for their customers –
from online, to in-store, to mobile and beyond.

Relying on the hybris Platform our customers are able to support their busi-
nesses and easily integrate with their existing systems; they are able to impro-
ve functional productivitiy, reduce costs and increase revenues. Also they have
a future-proof technical foundation for growth which helps them in gaining
competitive advantage and delivering even more innovative capabilities.

This document will give you a technical overview of the hybris Platform. We
first discuss the key software layers and architecture. Next, we show you how
easy it is to get started with our software and what standard software libraries
we chose to use. We then introduce the various options for customization. For
example, this includes our MDA-approach for the data model and the usage
of the Spring Framework for extending or replacing core business services.
Integration options with external systems are discussed next. We cover our
built-in options such as automatically generated RESTful web services for the
data model as well as custom integration options. Finally, we provide several
insights into managing operations and securing the hybris Platform.

1 Trend zum Multi-Channel, ChannelPartner.de,
March 24, 2011, http://www.channelpartner.de/
handel/ecommerce/2383684/index.html

3hybris Architecture and Technology

Table of Contents
Overview 4
Architecture Overview 4
Frontend Layer 5
Business and Persistence Layer 6
Database & Application Server Environment 7
hybris: best of both worlds 7

Development 9
Easy to install and run 9
Easy to develop for 9
Easy to configure 9
Java Frameworks, Libraries and Standards 10

Customization 11
Flexible Business Objects using an MDA approach 11
Adding or Replacing Services in the Service Layer 12
Creating new Extensions 12
hybris Multichannel Accelerator 13
Events 13
Internationalization 14
Multicatalog support 14
Multilanguage and Multicurrency support 14
Cockpit Customization 15

Integration 16
Data Validation 16
Data Integration 17
hybris Import Cockpit 17
3rd Party System Integration 18
Built-In RESTful Web Services 18
Spring Integration & Java Message Service 19

Operations 20
Minimal & Typical System Infrastructure 20
Persistence Cache 22
Typical Oracle RAC / MySQL Setup 22
Session Failover 23
Virtualization 23
hybris in the Cloud 24
Multicore Performance 25
Monitoring the Running System 25
Performance Monitoring using dynaTrace 26
Oracle Exadata Proof of Concept Test 26

Security 28
Role creation 28
Securing your web application 28
Securing your model 28
Securing your data 29
Audit Trails 29
Authentication and Authorization with LDAP 29
PCI Security 29

4hybris Architecture and Technology

Overview
This section will give you a broad overview of the hybris architecture. Later we will
dive into individual topics, but before we do this we would like you to understand
the lean and lightweight approach we have taken for the design of the hybris Mul-
tichannel Suite. You will find out that our architecture is based heavily on Spring2,
an open source framework primarily known for its dependency injection (DI) and
aspect-oriented programming (AOP) features. The hybris extension concept is
based on this Spring foundation and allows the hybris Platform to be highly exten-
sible and flexible as you will see.

Architecture Overview

The execution environment for the hybris Platform is a Java EE Servlet Container,
for example Tomcat3 6 or VMware vFabric tcServer4, which is also based on Tomcat
but provides commercial support.
The platform and all extensions to it are running within the Spring environment,
which allows easy wiring and configuration of each component. It provides generic
logic such as security, caching, clustering and persistence. A hybris Module, such
as the PCM Module, will typically result in one or more extensions being added
to the hybris Platform. Each extension may add additional services in the form of
Spring beans to the global application context or may also choose to overwrite exis-
ting functionality. Extensions are either provided by hybris as part of the purchase
of a module or written by yourself, in which case we call this extension a custom
extension. An extension may simply provide additional business logic without ex-
posing a visible UI or it may also contain a Java Web Application, that – for example
– exposes RESTful interfaces or a HTML-based UI that can be used via a standard
web browser.

Figure 1: Architecture
overview of the hybris

Multichannel Suite

Figure 2: The hybris Platform is
based on the Spring Framework

2 Spring Framework, http://www.springsource.org/about
3 Apache Tomcat, http://tomcat.apache.org/
4 VMware vFabric tcServer, http://www.vmware.com/
products/vfabric-tcserver/

5hybris Architecture and Technology

Frontend Layer

As we mentioned already, an extension may include a Java Web Application. A
natural framework choice to realize this web application in our Spring environ-
ment is to use the Spring MVC Framework, but technically any Java Web Frame-
work such as JSF or Struts may be used by our clients.

We distinguish between two types of web applications:

 → Presentation-oriented web applications are geared towards web browsers and
will typically generate dynamic HTML markup. If you choose to offer a web-
based store, you will either adapt one of our templates (see for example
the Accelerator template) or create this web application from scratch. You
are free to use whatever markup and combination of technologies you like,
for example we recommend Spring MVC, HTML5, CSS3 and the jQuery
Javascript library. The client will later use a standard web browser (desk-
top or mobile) to interact with your web application. The hybris Administra-
tion Console, an extension used to administrate the hybris Platform, is a
good example of a presentation-oriented web application.

 → Service-oriented web applications typically implement web service end-
points. The clients of these web services are often mobile devices, but may
also be other presentation-oriented web applications (e.g. Ruby on Rails-
based web applications) or other 3rd party systems. The hybris Commerce
Web Services for example offer a RESTful web services API and therefore
can be considered a service-oriented web application.

hybris is completely open to whatever frontend technology you prefer. You may
choose any Java-based web application framework which will allow you to directly
interface with the business logic APIs (so-called hybris ServiceLayer API), or you
may choose to use a non-Java web technology, run your web application on remote
systems and integrate these web applications using web services. As Figure 3
shows, web applications can either be developed using Java (Spring MVC, JSF,
others) or any other non-Java technology like a Rails-based front end that commu-
nicates with hybris via web services can be used.

Figure 3: Each
extension to the

hybris Platform may
include a Java-based

web application

6hybris Architecture and Technology

Business and Persistence Layer
To interact with the hybris Platform and all services offered, an extension uses
the hybris ServiceLayer API. This API consists of a set of services, managed by the
Spring environment and includes all business logic that the hybris Platform and
extensions offer. The hybris Platform and each extension may add services to the
ServiceLayer, in which case all other extensions can use these services. Each ser-
vice has a clearly defined Java interface and custom extensions can easily add new
services to the ServiceLayer or customize and replace existing ones.

Another key feature of any extension is the ability to add or modify business objects
to the global hybris data model. The hybris data model is defined in XML and can
easily be adjusted to your specific needs. Using this Model Driven Architecture
(MDA) approach, our customers have full flexibility in designing their data model
and do not have the need to wrap meaningful properties of a business object in
general-purpose containers. All applications that are built on top of this flexible
data model, such as the hybris Product Cockpit that is used to manage product
data, automatically adjust to it.

The persistence layer offers a similar concept to Hibernate, in that the mapping
between business objects and database tables is taken care of behind the scenes
with an ORM (Object-Relational-Mapping) framework. However it is more flexible
as it seamlessly and immediately supports all new custom business models that
are created by our partners.

The clear separation of the Service Layer (hybris ServiceLayer API) and Persistence
Layer (hybris PersistenceLayer API) is very beneficial when it comes to testing.
Each layer can be tested in isolation, which significantly reduces the time and setup
cost for the tests.

If an extension also contains a web front end, the web front end will have its own
private Spring application context. This allows you to separate the specific con-
cerns of the web application from the rest of the business logic that your extension
provides. The web application context of a web application can still access the full
ServiceLayer API.

Figure 4: Two key parts of the
hybris Platform are the Service

Layer and Persistence Layer

7hybris Architecture and Technology

hybris: best of both worlds
You typically need to decide whether you want to realize your product using green
field development or want to buy an out of the box solution. Both choices have
advantages and disadvantages. Green field development typically involves high risk,
high cost and will take considerably longer than an out-of the box solution. Yet out
of the box solutions often are too inflexible and have limited extensibility. In addition,
out-of the box solutions tend to result in a lot of vendor lock-in.

hybris offers a solution, that tries to minimize the disadvantages of both solutions
while maximizing the advantages by using our carefully chosen design approach.
The hybris Platform and its modules are built for extensibility and flexibility. Exis-
ting features can easily be customized or completely replaced. Our solution offers
you a shorter time to market and is based on standard technologies for which it is
easy to find developer support.

hybris solution will finally result in a lower total cost of ownership (see Figure 6).
Compared to a project by one of our competitors, the implementation cost will
already be lower due to our highly flexible and extensible architecture. As our
software makes better use of the provided hardware, overall lower operational
costs occur over the years after implementation. Finally, upgrading to a new major
release with hybris is easier and can often be completed within days rather than
weeks.

Database & Application Server Environment

When it comes to the overall execution environment for the hybris Platform, hybris
ships with preconfigured Tomcat and tcServer servlet containers. This allows our
partners to quickly setup new systems and is often also the choice for production
systems. Besides running purely on a servlet engine, hybris can also be deployed
on Oracle WebLogic5 . The hybris build process will create the required Enterprise
Application Archice (EAR) for you.

The usage of Java and the JVM implies that these containers are able to run on any
operating system, such as Microsoft Windows, Apple Mac OS X Server or various
other Unix-based operating systems.

When it comes to the database management system (DBMS) hybris actively
supports Oracle7, MySQL8 or SQL Server9. The hybris persistence layer is designed
in a way that it does not use vendor-specific features such as triggers or stored
procedures. This is very beneficial in case a client would like to switch to another
supported database.

Figure 5: hybris
supports popular

databases and servlet
containers

5 Oracle WebLogic, http://www.oracle.com/de/products/
middleware/appserver/index.html
6 IBM WebSphere, http://www-01.ibm.com/software/
websphere/
7 Oracle Databases, http://www.oracle.com/us/products/
database/index.html
8 Oracle MySQL, http://mysql.com/
9 Microsoft SQL Server, http://www.microsoft.com/sql-
server/en/us/default.aspx

8hybris Architecture and Technology

Recently, hybris introduced the hybris Multichannel Accelerator, which helps our
partners to further reduce the time and cost required for ecommerce projects. The
hybris Multichannel Accelerator is a “best-practices” reference implementation
and allows our partners to reduce the implementation time to 3 – 4 months for a
typical client project.

Figure 6: Total cost
of ownership

9hybris Architecture and Technology

Development
Easy to install and run
hybris software is easy to install and run. The hybris Platform is a ~160MB down-
load. Once unzipped into a local directory, the only requirement to run our software
is an up-to-date Java installation (currently Java 6 is required). Without any other
confi guration, hybris will startup using a fi le-based DBMS (HSQLDB10), which is
great for the development phase. Later, in production, the same code that runs on
developer machines will also run on the server machines, but in this case of course
with a DBMS solution like Oracle RAC11. A typical startup of the preconfi gured
hybris Tomcat server takes less than 30 seconds.

Easy to develop for
We do not believe that special tools and IDEs should be required to customize our
software. Therefore, any Java IDE can be used for development. We recommend
the open source and free Eclipse IDE12, but developers are free to choose other
IDEs (IntelliJ IDEA, Netbeans, specialized versions of Eclipse like SpringSource
Tool Suite). If the easy installation and consistent confi guration of the developers’
IDEs is of concern to you, we also offer an Eclipse Pulse download, which sets up
an Eclipse Workspace for hybris development. Eclipse is also the IDE hybris has
chosen internally for all Java-related development tasks. We recommend to use
Eclipse or the Eclipse Pulse13 download as the provided project settings fi les can be
reused and the time spent to setup your IDE workspace is thereby reduced.

Easy to confi gure
Our platform and all extensions are confi gured via text-based properties fi les (one
main properties fi le for the platform and core extensions) and XML-based Spring
confi guration fi les. Instead of using XML-based Spring confi guration, you may
choose to use annotations for your custom extensions. One area where this is par-
ticularly well suited is the frontend layer of a Spring MVC-based web application.
While we encourage our partners to use annotation-based Spring confi guration,
the hybris Platform itself uses XML-based Spring confi guration. This provides be-
nefi ts for partners as the confi guration required is more centrally located and can
be identifi ed and changed more easily.

Figure 7: Java Frame-
works, Libraries and

Standards

10 HSQLDB, http://hsqldb.org/
11 Oracle RAC, http://www.oracle.com/technetwork/
database/clustering/overview/index.html
12 Eclipse IDE, http://www.eclipse.org/
13 Eclipse Pulse, http://www.poweredbypulse.com/

10hybris Architecture and Technology

Java Frameworks, Libraries and Standards
The hybris Multichannel Suite builds upon many well proven and widely adop-
ted frameworks most notably Spring 3.1, ZK Framework and JUnit. Basing our
architecture on such solid foundations brings several benefits: our partners are
already familiar with many of these and thus avoid steep learning curves, hybris
can focus on its areas of specialty rather than reinventing the wheel, hybris can
incorporate the numerous latest advances from each framework to bring the
best products quickly and efficiently to market.
Many of the frameworks, libraries and standards that we use can be seen in Fi-
gure 7. We are focused on adopting the latest but widely adopted languages and
protocols such as Java 7, Groovy 1.8, Spring 3, HTML5: we carefully balance the
adoption of latest practices and the learning curves they entail with optimizing
productivity and code stability.

11hybris Architecture and Technology

Customization
Many parts of the hybris Multichannel Suite can be deeply customized, if you wish to.
The business model for example is very flexible and can be tailored to your exact needs
using an MDA approach. Each service that is exposed in the hybris ServiceLayer can be
customized or even completely replaced. Our partners use the same extension concept
that we use internally to extend our platform to build the Multichannel solution for their
customers. Our own extensions make use the Spring Event System, which makes it
easy for partners’ extensions to be notified about what is happening in the platform.

For a partner, to create a new custom extension, hybris offers easy to use tools that
will generate all boilerplate code required for an extension.

Of course hybris is also strong in internationalization. The default business model
supports multiple languages, currencies and sites. Even our built-in backend UIs – the
hybris cockpits – can be customized to fit your own specific needs.

Flexible Business Objects using an MDA approach

hybris uses an MDA (Model Driven Architecture) approach when it comes to mo-
deling the business objects. The result is a business model that exactly fits your
needs and does not require you to wrap any relevant data in meaningless contai-
ner structures. According to the defined business model, the hybris platform will
automatically generate the business objects and any back-end application like the
hybris Product Cockpit will adjust to it.
The business objects can be specified either via UML or XML and will then be auto-
matically generated during the build process. All required ORM setup for managing
these objects is generated too, as well as the database schema needed to store it.
Business objects are simple POJOs which automatically benefit from the hybris
core services such as caching, clustering, personalization, and internationalization
support, and are accessible via the hybris back-end applications like hybris Admi-
nistration Cockpit or Product Cockpit.

The following code snippet is an excerpt of an items.xml file. It shows the XML-
based format in which business objects are defined.

<itemtype code="Product" extends="GenericItem">
 <deployment table="Products" propertytable="ProductProps"/>
 <attributes>
 <attribute qualifier="code" type="java.lang.String" generate="true">
 <persistence type="property" qualifier="Code"/>
 <modifiers read="true" write="true" search="true" initial="true"
 optional="false" unique="true"/>
</attribute>
 ...
 </attributes>
</itemtype>

12hybris Architecture and Technology

Adding or Replacing Services in the ServiceLayer

As hybris uses the Spring Application Framework, it is very easy to add or replace
existing services in the ServiceLayer. By replacing default services, you are free to use
any specifi c implementation.

All a developer needs to do is follow these easy steps to replace an existing service
in the hybris ServiceLayer:

1. Find the service interface and spring bean defi nition you wish to replace

2. Implement the new service using the same Java interface. Your new imple-
mentation can internally forward some of the method calls to the old, still
available service or replace the logic completely.

3. Replace the alias of the service in the spring confi guration fi le and point to
the new service implementation bean.

Creating new extensions

To create new extensions, hybris includes a command-line tool called extgen. It can
be used to create completely empty extensions or to create template extensions
that already offer certain functionality. These templates currently include:

 → yempty

 → storetemplate – a basic store template

 → springmvcstore – a basic store template realized using Spring MVC

 → fl exstore – a basic store template using Adobe Flex

 → ycockpit – a basic cockpit template

 → multichannel accelerator – a best practices reference implementation (see
below)

Once an extension has been created, it needs to be included into the hybris build
cycle and also loaded during server startup. To achieve this, the extension is simply
added to localextensions.xml fi le, which is part of the hybris Platform confi guration.

Figure 8 shows an example localextensions.xml fi le and how it maps to a directory
structure in the fi le system.

Figure 8: Each extension is refe-
renced from localextensions.xml

13hybris Architecture and Technology

hybris Multichannel Accelerator

The hybris Multichannel Accelerator is a standard solution that integrates best-
practice Multichannel Commerce capabilities. It is a ready-to-use framework built
on top of the hybris Platform and it includes numerous extension from the hybris
Multichannel Suite. It can easily be used by our partners using the extgen com-
mand-line tool. The hybris Multichannel Accelerator is a “best-practices” reference
implementation and allows our partners to reduce the implementation time to 3 – 4
months for a typical client project.

The Accelerator includes extensions that realize 2 storefronts out of the box and
uses state of the art web technologies such as Spring MVC 3, the Blueprint CSS
framework and the jQuery JavaScript library. The commercefacades extension that
is part of the Accelerator comes preconfigured with features such as internationa-
lization and SOLR Search. It provides a coarse-grained interface which is ideal for
creating custom web services on top, e.g. for mobile clients. Our partners have full
access to the source code to customize this template to achieve the final result.

Events

hybris uses Spring event handling support to publish and receive various Spring-rela-
ted and custom events. As each extension becomes part of a global application context,
an extension can easily listen to all these events or publish its own, custom events.

hybris uses this observer-style event handling throughout the platform, for examp-
le session or model lifecycle events are being published. In a cluster setup, these
events can be also propagated to other cluster nodes.
For your own extensions, the event handling support that hybris has built-in is a
powerful feature to react to activities happening in the system or to inform other
components via custom events.

Figure 9: One of the Multichannel
Accelerator store fronts

Figure 10: Spring events are used
throughout the hybris Platform

14hybris Architecture and Technology

Internationalization

The hybris Multichannel Suite provides numerous ways for you to localize and
personalize your application including:

 → multicatalog support,

 → multilanguage and multicurrency support,

 → and multisite support.

Multicatalog support

Many of hybris customers deal with multiple catalogs, which share much common
data yet have their own focus, target audience and language. The hybris Multi-
channel Suite provides powerful support for such cases by allowing customers to
specify multilevel hierarchies of catalogs in which the child catalog(s) will inherit
the parent’s settings by default, all of which can be overridden if desired (similar to
inheritance in Object Oriented Programming). This is a huge time saver in the con-
tent management domain as it allows our partners to specify shared or common
data in the ‘parent’ catalog, and specify just the changes in the child catalog(s). The
inheritance rules from a parent to child catalog are specified in hybris synchroni-
zation rules, which can also be used for synchronizing staged catalogs with their
online counterparts. A customer can for example update and modify a staged
catalog until it is ready for release, and then apply synchronization rules to update
its respective online version. It is also common for our customers to run these
synchronizations as cron jobs, an approach that is fully supported by hybris.

Multilanguage and Multicurrency support

The majority of hybris customers require extensive internationalization support,
not just for their presentation layer and printed products but also for their business
objects. At the last count more than 80% of our customers support more than one
language or currency in their hybris product. The hybris Multichannel Suite sup-
ports and extends the native Java internationalization framework allowing com-
plete control over the localization of business objects, currencies, numeric fields,
dates etc. Advanced options include language-fallback mechanisms, which offer
greater flexibility than Java’s own fallback logic. We can for example specify that if a
text variable is not available in German, then we should fallback to US English.

Internationalization has not been patched as an afterthought to our business
model design, rather it has been integrated from conception, and it is consequently
completely embedded into the business models. Each attribute of a business object
– be that one from hybris, or one added by a customer – is therefore localizable
should you wish. In conjunction with the synchronization rules mentioned earlier,
our customers can easily and effectively support and synchronize multiple catalogs
in multiple languages and locales.

15hybris Architecture and Technology

Cockpit Customization

Based on the hybris Modules you have purchased, your hybris Multichannel Suite
will include extensions that offer various front ends to the backend user. We will
introduce only some of them here to give you an idea:

 → The hybris Product Cockpit Module enables cockpit end users to manage
and structure product information and catalogs

 → The hybris WCMS Module enables the end users to manage website pages,
providing them with intuitive graphical way of data presentation and man-
agement.

 → the hybris Administration Cockpit is the graphical user interface of the
hybris Multichannel Suite and offers fi ner-grained control over the user’s
data

The hybris Product Cockpit is shown below. All hybris cockpits are based on the ZK
framework and can be customized at various levels by our partners. The Product
Cockpit allows users to browse, modify and add products to the system. Should the
user be assigned administration rights, they are also able to modify the confi gura-
tion of the cockpit itself, changing for example the attribute groupings, allocating
new attributes to a group or reordering attribute lists directly within the cockpit.

While the hybris Product, WCMS, and Print Cockpits offer intuitive and high-level
control of their data within the system, the hybris Administration Cockpit offers
fi ner-grained control of all data and operations, relating to all areas of the hybris
Multichannel Suite. On the left of the hybris Administration Cockpit is an (XML-
confi gured) tree providing access to all areas of the hybris Multichannel Suite. One
can for example examine and modify cron jobs, import and export data, modify
facet searches, all from within the Administration Cockpit, and all in a consistent
and intuitive manner. Should a partner introduce their own cockpit, the Administra-
tion Cockpit provides complete control over its layout and functionality. Finally, the
layout of the Administration Cockpit itself is guided by an XML fi le, and by modifying
this (either within or outside of the Administration Cockpit) one can totally control
what should be displayed where and how within the Administration Cockpit itself.

Figure 11: The hybris
Product Cockpit

16hybris Architecture and Technology

Integration
Integration challenges typically include bulk data import/export operations and
3rd part/remote systems integration. In this section we will present how hybris
partners typically solve these integration challenges and what hybris offers out of
the box to enable integration.

Before we dive into these challenges though, we will explain hybris validation sup-
port. In the end, both data and process integration may change the data stored in
the hybris Multichannel Suite. It is of great importance to keep this data consistent
and valid, which is why the hybris ServiceLayer includes a customizable Validation-
Service.

Data Validation

Implicit data validation is built into any hybris business object via the ServiceLay-
er APIs. This validation support is based on JSR 303 (Bean Validation) but adds
run-time support for managing the validation constraints. This makes it possible to
defi ne the validation constraints for each business object in the hybris Administra-
tion Cockpit and have them immediately take effect in the hybris Product Cockpit
without restarting the hybris Platform. You can see how validation errors are visu-
ally highlighted in the hybris Product Cockpit in Figure 13.

Figure 12: Common integration
challenges include bulk data and

3rd party systems integration

Figure 13: Data Validation in the
hybris Administration Cockpit

17hybris Architecture and Technology

The validation constraints can be grouped into attribute-level, type-level and dyna-
mic constraints. Attribute-level constraints are attached to single attributes, such
as a credit card number field. Type-level constraints allow you to validate multiple
attributes at the same time; an example would be the validation of the postal code
and city field for a customer’s address business object. In this case a type-level
constraint can ensure the postal code entered fits to the city name and vice versa.
Finally, the dynamic constraints allow our partners to validate based on the out-
come of a BeanShell script which completely opens up the logic used.

Data Integration

To import and export data hybris offers the ImpEx engine. ImpEx is capable of
importing bulk text data files. If the format available differs from the CSV-based
ImpEx format, open source ETL tools such as Talend can be used to first transform
the data into ImpEx format. ImpEx will finally interact with the service and persis-
tence layer to write the data to the database. This workflow is shown in Figure 14.

hybris Import Cockpit

The hybris Import Cockpit (see Figure 15) allows the user to import data into the
hybris Multichannel Suite using the ImpEx Engine in a visual way and without the
need of specifying an ImpEx import script. As all hybris cockpits share the same
visual elements, a user quickly gets used to it. The Navigation area is used for
previewing the import jobs history. The Browser area in the center of the screen is
used for browsing import jobs and mappings. Finally, the Editor area on the right
side is used for editing the details of an import job. Using the hybris Import Cockpit,
you can now perform the import operations in the user-friendly interface of the
hybris Import Cockpit.

Figure 14: Common integration
challenges include bulk data and

3rd party systems integration

18hybris Architecture and Technology

3rd Party System Integration

To connect with external systems (e.g. ERP, PLM, CRM systems) there are 3 com-
mon options:

 → SOAP/RESTful web services

 → Spring Integration

 → Java Message Service

Spring Integration offers a wide array of integration options and is our preferred
solution when it comes to asynchronous integration. JMS is another popular solu-
tion for asynchronous integration and hybris offers a demo extension showcasing
how JMS can be used.

Synchronous integration is typically achieved via SOAP/RESTful web services.
While partners are free to build their own web services in custom extensions, the
hybris Platform automatically generates RESTful resources for each business
object, which is often an excellent integration option.

Built-In RESTful Web Services

The hybris built-in RESTful web services are generated transparently with each
build process. Each single business object defined in the XML-based definition
files (items.xml) can automatically be accessed via the hybris WebService API. Our
WebService API includes CRUD access for all business objects, support for coll-
ection paging and attribute selection. The API uses the standard Accept header to
enable content negotiation and uses XML and JSON resource representations. The
hybris role-based security mechanism is also used for the API access, which me-
ans that only API calls that adhere to a certain user group will be granted access.
To reduce bandwidth, the API also supports ETag-based caching.

Figure 15: hybris Import Cockpit

19hybris Architecture and Technology

The following simplified HTTP request and response shows how all User business
objects can be requested via the RESTful WebService API:

Spring Integration and Java Message Service

Spring Integration provides an extension to the Spring programming model to
support the well-known Enterprise Integration Patterns. It enables lightweight
messaging within Spring-based applications and supports integration with external
systems via declarative adapters. Those adapters provide a higher-level of abstrac-
tion over Spring support for remoting, messaging, and scheduling.

To make it as easy as possible to use Spring Integration, the hybris Platform already
includes all required libraries. In addition, hybris provides special support classes for
sending Spring events to integration channels and for triggering processes based on
incoming messages.

In addition to Spring Integration, a hybris extension may also use Java Message Ser-
vice (JMS) to connect with external systems. JMS is a proven technology for sending
messages to one or multiple clients. A JMS extension is available, demonstrating
how JMS can be integrated.

GET /ws410/rest/users HTTP/1.1
HOST: localhost
Accept: application/json

{
 "uri" : "http://localhost:9001/ws410/rest/users",
 "user" : [{
 "type" : "employeeDTO",
 "uid" : "admin",
 "pk" : "8796093054980",
 "uri" : "http://localhost:9001/ws410/rest/employees/admin",
 "loginDisabled" : false
 }, {
 "type" : "customerDTO",
 "uid" : "anonymous",
 "pk" : "8796093087748",
 "uri" : "http://localhost:9001/ws410/rest/customers/anonymous",
 "loginDisabled" : false
 }]
}

Figure 15: Spring Integration offers many
integration options, among them message-

based, asynchronous channels

20hybris Architecture and Technology

Operations
In this section, we will discuss various topics that deal with or affect the running of
hybris software. We will fi rst outline typical system infrastructures. Next the hybris
persistence cache is explained. We present common database setups, including
MySQL and Oracle RACs. Further, we will discuss system failover behavior for
clustered infrastructures and the possibility to run hybris in the cloud as well as
virtualized environments. Finally we will look at performance benchmarks and
explain how a running hybris system can be monitored.

Minimal & Typical System Infrastructure

As seen in Figure 16, the minimal system infrastructure involves a web server,
application server and database engine. An appropriate fi rewall needs to be setup
to safeguard these systems from attacks.
The primary purpose of the web server (often Apache HTTPD) is to serve all static
content and redirect requests for dynamic content to the application server. Often,
the web server is also confi gured to provide other functionality such as logging.
Requests for dynamic content will be forwarded to the application server (e.g.
Apache Tomcat). It is the application server where the hybris Multichannel Suite is
being installed and where all business processes are running.
The persistence layer of hybris will use the confi gured DBMS to persist and retrieve
all data.

All these components (web server, application server and database) can initially be
executed on the same physical hardware. Of course, this setup would not include
any redundancy and is therefore not suitable for production but rather a theoretical
setup used to introduce the various system components. As with any multi-tier
architecture, it allows to scale in a relatively simple way. The components can be
split out to individual servers and later multiple instances of each component can
run in a clustered setup, which we will look at next (Figure 17).

Figure 16: Minimal
System Infrastructure

21hybris Architecture and Technology

The application servers are responsible for all dynamic content generation and
business processes and therefore consume most processing power. To enable the
hybris Platform to scale in such a scenario, hybris provides the Cluster Module.

Before new instances for web servers, application servers and database servers
are added, a load balancer needs to be confi gured and will later interface all web
request. The load balancer will use sticky sessions to direct all web traffi c of a user
session to the same set of web and application servers. This guarantees that the
in-memory state of each application server does not need to be persisted in the
database, which would result in signifi cant additional traffi c to the database.

The hybris Cluster setup is completely transparent to the developer and integrated
seamlessly with the hybris caching system. If the hybris instances are installed
in a local network, UDP broadcasts are used to communicate among the nodes.
If instances of hybris are run in the cloud, UDP broadcasts will be blocked and
therefore TCP will be used to communicate among the nodes. The information that
needs to be exchanged among the nodes is cache invalidations for business objects
that are stored in the local caches of each instance. Once data on one node has
changed, this information needs to be sent to all other nodes so their cache entries
can be invalidated and the data can be reloaded from the database once again
required.

The database setup for scalability depends on the DBMS chosen. For Oracle RAC
setups, the Oracle JDBC driver will transparently distribute the JDBC calls to the
cluster nodes and no special hybris Platform setup is required. In case of MySQL,
a master/slave approach is used and the master and slave databases need to be
confi gured in the hybris Platform.

Figure 17: Scaled
System Infrastructure

22hybris Architecture and Technology

Persistence Cache

The hybris Cache is part of the hybris persistence layer and reduces the amount
of database queries. Besides the overall lean and effi cient architecture, it is
another reason why hybris has greater performance per single server node than
our competitors. The persistence cache transparently caches search results and
business objects in memory. The hybris Cache can be split into multiple regions
and the exact business objects that are allowed to be cached for each region can
be specifi ed. This allows our partners to fi ne-tune a running system and to make
sure that certain business objects are cached for a longer time while other objects
will be removed more quickly due to a limited cache size. The eviction strategies
that we support include least recently used (LRU), least frequently used (LFU) and
fi rst in fi rst out (FIFO). The default cache implementation is using the open source
Ehcache project.

Typical Oracle RAC / MySQL Setup

A common database setup is the Oracle Real Application Clusters (Oracle RAC).
The JDBC URL that needs to be confi gured in hybris needs to include all RAC no-
des that should be used. The Oracle JDBC driver will then transparently distribute
all database calls (Figure 18).

Figure 18: hybris Cache regions
can be fl exibly confi gured

Figure 19: Oracle RAC setup

23hybris Architecture and Technology

If multiple database instances are required and MySQL is chosen as the DBMS,
both MySQL and the hybris Platform need to be confi gured in a master/slave mode.
The confi guration, which can be enabled with a couple of lines in the hybris text-
based confi guration fi les, will make sure that all write operations will be delivered
to the confi gured master database. The MySQL master will then propagate all
changes to the slave databases. The slave databases are only used for read ope-
rations, which for a typical application is the majority of all operations. Figure 20
shows the MySQL Master/Slave setup.

Session Failover

hybris installations can be confi gured for partial or full session failover. The
result is that other cluster members will be able to serve data in the event that
the original cluster node fails. Partial session failover will use a persistent Cart
business object. In case of a failover, the cart and all associated business objects
(cart content, user object, etc.) can be restored from the database and another
cluster node can serve the requests. It is unlikely, that this failover behavior will be
recognized by the user, as other state such as the order progress cannot be stored
in the database.
To achieve full session failover, Oracle Coherence14 or Tomcat Session replication
must be used. For instance, Oracle Coherence will distribute all session informati-
on to the other nodes so that another node can fully take over after a failover. While
this represents the best behavior possible, it means additional hardware require-
ments (memory) and cost (license cost).

Virtualization

With the emergence and wide-scale adoption of infrastructure virtualization, hybris
has ensured that its solutions are fully compatible with this paradigm, and includes
for example tests against VMware and Microsoft HyperV in its continuous integrati-
on test suites.

By moving one’s infrastructure from real hardware to a virtual infrastructure,
partners can change infrastructure within minutes rather than days or weeks. This
proves invaluable for running and testing hybris in differing topologies quickly and
fl exibly.

Figure 20: MySQL Master/Slave setup

14 Oracle Coherence, http://www.poweredbypulse.com/

24hybris Architecture and Technology

hybris is actively testing and supporting the VMware (vSphere 5) and Microsoft
Hyper-V (2008 R2) virtualization environments. Based on our load tests, we recom-
mend to use VMware, which results in ~10% overhead.

hybris in the Cloud

The natural successor to virtualization on single computers has been the emer-
gence of the cloud paradigm – the offering of virtualized massively scalable and
complete infrastructures, by vendors such as VMWare, Amazon, Google and
Microsoft, confi gured and accessed over the internet. Amazon has adopted the
term “elastic compute cloud – EC2” to emphasize how easy and fast it is to grow or
shrink ones infrastructure in this fashion.

In a virtual cloud, one can easily scale the confi guration horizontally to cope for
example with heavy traffi c over Christmas, and then just as easily reduce it once
traffi c has again decreased. An increasing number of diverse pricing schemes
are also emerging for cloud usage, for example paying on an as-use basis, paying
to reserve computer space on the cloud for the next year, or bidding for computer
power on the cloud at some point in the next week.

Two main causes of concern among companies new to the cloud are security and
assurances of quality-of-service. As their existence depends on it, companies
that implement clouds have aggressively addressed the issue of security, and one
can now usually deploy to a cloud in the knowledge that their security is better
than your own. With regards to quality-of-service, Amazon EC2 for example has a
Service Level Agreement of 99.95%.

hybris is fully tested in cloud scenarios, and has Presales and Sales Demos for this
purpose, so partners can be assured that the journey to the cloud with hybris is
an easy and proven one. These demos are built using hybris “turn-key” cloud in-
stances, which can be quickly confi gured and deployed, thus setting up a complete
hybris confi guration in minutes.

hybris current cloud-based solutions see the cloud simply as a virtual infrastruc-
ture, an approach called IaaS – “Infrastructure as a service”, which is to be cont-
rasted with PaaS and Saas – “Platform as a service”, and “Software as a service”.
hybris will continue to expand its cloud-based solutions across all three areas.

Figure 21: Virtualization overheads

25hybris Architecture and Technology

Multicore Performance

Critical areas of hybris software are carefully designed to enable full use of multi
core systems. For example catalog synchronization or data import via the ImpEx
engine will automatically be run multithreaded. Multithreading is completely trans-
parent to the developer or system integrator. We have optimized and tested our
software to take best advantage of modern multi core CPUs.

Monitoring the Running System

To monitor a running system, hybris supports JMX (Java Management Extensions)
and exposes several beans by default. This includes beans to monitor the cache,
running cron jobs, data sources and sessions. You can use any standard JMX client
such as the Oracle JConsole to monitor the system.

Besides supporting JMX, we also recommend to use hyperic for infrastructure and
application monitoring.

Figure 22: Multicore performance

Figure 23: Java Monitoring
and Management Console

26hybris Architecture and Technology

Performance Monitoring using dynaTrace

Each hybris Platform ships with a limited license for dynaTrace15, which allows our
partners to make performance profi ling an essential part of their development pro-
cess and save time due to the early detection of performance issues. dynaTrace can
also be integrated when running continuous or nightly builds and is an excellent
solution for monitoring the running system.

Once activated in the hybris confi guration, you can directly launch dynaTrace dash-
boards from the hybris Administration Console. You can either view the reports in
the browser or start a Java Web Start client.

Oracle Exadata Proof of Concept Test

To proof the performance of using hybris with Oracle Exadata, hybris conducted a
test that included three scenarios:

1. Mostly read access: this is a common scenario for a typical B2C retail web-
site. Customers search and browse the catalog and fi nally order. There is a
lot of traffi c on the page but write access to the database is limited.

2. Mostly write access: this scenario is typical for marketplaces and B2B use
cases. Massive PIM data is imported, which causes millions of products
data affected.

3. A combination of read and write access: while running under read load,
parallel write operations were triggered to measure the effect on perfor-
mance.

While the full test report including the detailed system architecture is available on
our website16, we present the results of the latter scenario – both read and write
access (see Figure 25). While it was possible to write 4.823 articles/s in the write
scenario and deliver 1500 page impressions (PIs) in the read scenario, the com-
bined scenario still shows impressive results: while importing a massive amount
of data with 3.921 articles/s it was at the same time possible to deliver 1.184 PI/s.

Figure 24: dynaTrace
performance monitoring

15 dynaTrace for Java, http://www.dynatrace.com/en/
product-platform-java.aspx
16 hybris Oracle EXADATA report, http://www.hybris.com/
hybris/en/campaigns/Exadata.html

27hybris Architecture and Technology

The bottleneck that we found was the application server, not the database. The
database was still running at 56% CPU load and 550MB/s was transferred to/from
the database during this test.

Figure 25: The results of the Oracle
Exadata Proof of Concept Test

28hybris Architecture and Technology

Security
Security is of paramount importance for any software product and in particular for
web-based software that is available to anyone with an internet connection. hybris
places a huge emphasis on securing its software and addresses a number of areas
including those illustrated below:

Role creation

The foundation upon which all security decisions are made is user roles, one or
more of which can be assigned to each user to best match your business model
and business process. Roles can include for example “Sales department”, “Corpo-
rate marketing”, “Customer”. The role-user mapping is often stored on a partner’s
LDAP server but could also be contained for example in their hybris persistence
model or a service in their ServiceLayer. Using the hybris Management Console
(hMC), hybris partners can create a variety of hierarchical roles each with particu-
lar security clearance levels. The security framework will then check that a user/
entity is allowed to perform an operation before executing it, as described next.

Securing your web application

With a user’s role(s) in hand, Spring security framework can be used to determine
who is allowed what level of access to various parts of the web layer, and also to
control coarse and fi ne grained access to the web services. If you are using Spring
MVC you can easily control access to sub-sections of a web page with Spring
authorization tags.

Securing your model

Similarly once we have access to the user’s role(s), hybris will control the Crea-
te, Read, Update and Delete operations on the underlying data models. This is
performed not only by using Spring security mechanisms but also by using hybris
FlexibleSearch fi lters.

Figure 26:
Security Topics

29hybris Architecture and Technology

The FlexibleSearch service is a feature of hybris own ORM framework and can con-
vert a high-level query statement involving business objects to a lower level SQL
statement. It is possible to set up a so called FlexibleSearch filter that specifies
a predicate to be appended to the “WHERE” part of the resulting SQL statement
when executed by users with certain user roles. This then ensures that users be-
longing to those roles are incapable of retrieving, modifying or deleting any objects
in the database that do not satisfy that predicate.

Securing your data

Data such as credit card numbers and passwords should of course never be stored
in clear text in the database and hybris supports the standard hashing and encryp-
tion practices to avoid this. But in addition, hybris can transparently encode certain
highly-sensitive data before it even crosses the DAO layer to the database, with
hybris Advanced Data Security Option. This contains a feature called hybris Trans-
parent Attribute Encryption that encrypts and decrypts data between the database
and application server transparently, using keys up to 256 bits that are managed
from within the hybris Management Console. This is an option for partners who are
particularly concerned about securing data at the maximum level possible, and is a
necessary step towards PCI compliancy.

Audit Trails

Also related to security requirements is hybris support for Audit trails. All changes
to information in our system are recorded via our audit-trail functionality. This
includes the type of change, the user/entity that made this change, the time it
occurred, and the old and new values.

The audit trail also provides information that can be used to monitor resources,
system break-ins, failed logins and breach attempts. It also helps identify security
loopholes, violations, spoofing and those users who are attempting to circumvent
security, either intentionally or unintentionally.

Authentication and Authorization with LDAP

hybris has an optional LDAP extension that allows authentication of users listed in
LDAP and Active directories. In particular the hybris LDAP extension allows:

 → the hybris Multichannel Suite to verify the identity of user accounts against
an LDAP or active directory server,

 → the chance to implement a Single-Sign-On concept,

 → the ability to import LDIF (the LDAP query language) files and search
results.

PCI Security

While our partners are certainly able to create business models and logic to
support PCI (Payment Card Industry – i.e. credit card transactions), hybris recom-
mends strongly that you do not store credit card information on your own database.
To gain PCI compliance as a merchant, you must fulfill several rigorous require-
ments17. These are rather complex, time consuming and expensive, and conse-
quently hybris recommends that you use a Payment Service Provider (PSP) that is

17 http://www.pcicomplianceguide.org/

30hybris Architecture and Technology

already compliant to this standard. Many hybris installations are already running
with this kind of integration, which allows a comfortable one-click shopping experi-
ence. In this scenario, hybris stores a hash-code per user that is itself non-critical,
yet provides unique identification with which hybris and the PSP can handle a
user’s complete shopping experience.

However if our partner wishes to perform PCI within their system, the option for
added data encryption mentioned earlier (“Securing your data”) will prove useful.
This will ensure that sensitive data does not cross the DAO layer thus minimizing
risks of security leaks. However this is only the first of many obligatory steps that
must be followed should a partner wish to support PCI compliance themselves.

Version: November 2011 Subject to change without prior notice © hybris GmbH
hybris is a trademark of the hybris Group. Other brand names are trademarks and registered trademarks of the respective companies.

hybris Germany
Nymphenburger Str. 86
D-80636 München

hybris UK
hybris UK Ltd.
5th Floor, 2 Copthall
Avenue
London, EC2R 7DA

hybris (U.S.) Corp.
1 South Dearborn /
Suite 2100
Chicago, IL 60606

hybris Canada
999 de Maisonneuve
Blvd West, 3rd Floor
Montréal, Québec,
Canada H3A 3L4

hybris AG
Binzstrasse 23
8045 Zürich
Switzerland

hybris AG Office France
168 avenue Charles
de Gaulle
92200 Neuilly sur Seine

hybris Austria
Kirchengasse 48
1070 Wien

hybris Benelux
Herengracht 574
1017 CJ Amsterdam

hybris Italia
Piazzale Biancamano, 8
20121 Milano Brera (MI),
Italia

(y) Software AB
Fallhammargatan 8
72133 Västerås
Sweden

