Listings for 09di2198

Back.cpp

//background program

//developed with Turbo C++

//operating under DOS

#include "mem.h"

#include <conio.h>

#define RTS 0x2

//prototypes

void setupUART (void);

void deAssert (int ControlPin);

void Assert (int ControlPin);

unsigned char SerialIn(void);

void UARTrx(void);

void UARTtx(void);

unsigned char UART_TX_clear( void);

unsigned char SerialOut (void);

unsigned int checksum (unsigned char NumberOfBytes);

void main (void)

{

unsigned int j;

     comport=1;

     //setting to COM1

     module_address=0xa;

     //PC address=10 decimal

     //other transmission constants

     setupUART();

     //initialise the UART

     capture_enabled=0;

     rx_pnt=0;

     //initialise variables

     Assert(RTS);

     //turn the RS485 buffer to receive

     while (1)

     {

          /*the actions are divided into several states as indicated by the variable "phase".

          Phase=0- waiting for a complete serial message

          Phase=1- preparing a response

          Phase=2-wait for end of transmission

          Phase=3- wait for message to completely clear the UART (buffers empty) & then

               re-enable reception (turn RS485 buffer around)*/

          switch (phase)

          {

               case 0:

                    if (SerialIn())

                    //checking for complete message received

                    {

                         //now to process the input

                         phase++;

                         UARTtx();

                         //prepare UART to send

                    }

                    break;

               case 1:

                    //prepare to transmit

                    rx_buff[0]=0x0;     //destination address

                    rx_buff[1]=0x13;    //response

                    rx_buff[2]=0xff;

                    //set last byte.

                    number_of_characters=3;

                    //variable for transmit routine

                    rx_pnt=0;

                    //intitialise the fetch pointer

                    phase++;

                    break;

               case 2:

                    if (SerialOut())

                    {//at the end of the message

                     //bump on to wait for complete transmission

                         phase++;

                    }

                    break;

               case 3:

                    //wait for message to clear

                    if (UART_TX_clear())

                    {

                         UARTrx();

                         phase=0;

                    }

                    break;

               default:

                    break;

          }


  if (kbhit())

          {//terminate execution if any key pressed.

               break;

          }

     }

}

mem.cpp

unsigned int SerialPortBase;

//base address of the UART

unsigned int comport;

//setting for com1-4

unsigned char capture_enabled;

//flag that a capture is in process

//-public because the SerialIn routine would lose the info on exit

unsigned int rx_pnt;

//pointer to the serial buffer

int rx_buff[40];

//serial buffer

//rx_ is a misnomer, the buffer is used for reception and transmission

unsigned int module_address;

//the address of the PC on the network

unsigned int phase;

//current state of operations

int number_of_characters;

//number of characters to be transmitted

mem.h

extern unsigned int SerialPortBase;

//base address of the UART

extern unsigned int comport;

//setting for com1-4

extern unsigned char capture_enabled;

//flag that a capture is in process

//-public because the SerialIn routine would lose the info on exit

extern unsigned int rx_pnt;

//pointer to the serial buffer

extern int rx_buff[40];

//serial buffer

//rx_ is a misnomer, the buffer is used for reception and transmission

extern unsigned int module_address;

//the address of the PC on the network

extern unsigned int phase;

//current state of operations

extern int number_of_characters;

//number of characters to be transmitted

serial.cpp

/*serial communications- no interrupt facility

*/

#include <dos.h>

#include "mem.h"

               #define TXR 0  //transmit register (offset 0)

               #define RXR 0  //receive register (offset 0)

                    #define IER 1       //Interrupt Enable register (offset 1)

                    #define IIR 2       //Interrupt Identification register (offset 2)

               #define LCR 3  //Line Control Register

                                        #define DLAB 0x8              //Divisor Latch Bit

                                   #define EVEN_PARITY 0x18 //Enable parity and Even parity

                                        #define STICK 0x28            //Enable stick parity (and bit 9 =1)

                                        #define TB9_0 0x10            //transmit a 0 in bit 9

               #define MCR 4  //Modem Control Register

                                        #define RTS 0x2               //RTS line

                    #define LSR 5       //Line Status Register

                                   #define DR 0x1           //Data Ready

                                   #define OE 0x2           //Overrun error

                                   #define PE 0x4           //Parity error

                                   #define FE 0x8           //Framing error

                                        #define THRE 0x20             //Holding buffer empty

                                        #define TSRE 0x40             //Transmit buffer empty

                    #define DLL 0       //Divisor Latch (LSB)

               #define DLH 1  //Divisor Latch (MSB)

void Assert(int ControlLine)

{//USE TO SET CONTROL BITS IN MCR (Modem Control Register)

     int presentValue;

     presentValue = inp(SerialPortBase + MCR);

     //fetch the current settings of the Modem Control Register

          outp(SerialPortBase + MCR,(presentValue | ControlLine));

     //force the associated control line active

}

void deAssert (int ControlLine)

{//USE TO TURN OFF CONTROL BITS IN MCR (Modem Control Register)

          int presentValue;

     //fetch the current settings of the Modem Control Register

          presentValue = inp(SerialPortBase + MCR);

          outp(SerialPortBase + MCR,(presentValue & ~(ControlLine)));

     //force the associated control line inactive

}

void setupUART (void)

{//serial port setup

     long baud;

     unsigned char presentValue;

     int divisor;

     int setting;

     baud=10416;

     //the 8250/16450/16550 can handle almost any baud rate

     switch (comport)

     //set up the I/O port address based on the desired COM channel

     {

          case 1: //COM1:   

               SerialPortBase = 0x3f8;

               break;

          case 2: //COM2:   

               SerialPortBase =0x2f8;

                                        break;

          case 3: //COM3:   

               SerialPortBase =0x3e8;

                                        break;

          case 4: //COM4:   

               SerialPortBase =0x2e8;

               break;

     }

     divisor=(int)(115200L/baud);

     //calculate the divisor for the desired baud rate

     presentValue = inp(SerialPortBase + LCR);

     //fetch the current value in order to OR it with DLAB

     outp(SerialPortBase + LCR,(presentValue | DLAB));

     //and now for the divisors

     outp(SerialPortBase + DLL,(divisor & 0x00FF));

     outp(SerialPortBase + DLH,((divisor >> 8) & 0x00FF));

     //remove DLAB

     outp(SerialPortBase + LCR,presentValue);

      //now for the other bits

     setting = 0x3; //8 data bits, 1 stop bit

     setting |= EVEN_PARITY; //even parity

     outp(SerialPortBase + LCR,setting);

     //ensure interrupt is off

     outp(SerialPortBase + IER,0);

     //and fifo is off

     outp(SerialPortBase+IIR,0);

}

unsigned char even_parity (int check_byte)

{

     //checks the least significant 8 bits

     //if even number of ones then parity is even

     //returns 0 for even number of ones

     //returns 1 for odd number of ones

     unsigned char i,j;

     j=0;

     for (i=0;i<8;i++)

     {

          if (check_byte & 0x1)

               j++;

          check_byte=check_byte>>1;

     }

     return (j & 0x1);

     //odd or even is reflected in the LSB

}

unsigned char SerialIn (void)

{

//receives and buffers incoming data until the termination byte is received (0xff with TB9=1)

//returns with a "1" value if the message is complete.

     unsigned int lsr,received_byte;

     unsigned char bit9;

     unsigned char message_complete;

     unsigned char dummy;

     message_complete=0;

     lsr=inp(SerialPortBase+LSR);

     if ((lsr & DR) != 0)

     {

          received_byte = inp(SerialPortBase + RXR);

          rx_buff[rx_pnt]=received_byte;

          //check for errors

          if ((lsr & (OE | FE))!=0)

          {//if an error is detected then ..

               rx_pnt=0;

               //re-initiate data capture

          }

          else {

          //no framing or parity errors

               if (even_parity(received_byte))

               {

                    //here there is odd parity for the received byte

                    //if no error was detected then bit 9=1

                    if (lsr & PE)

                    {

                         bit9=0;

                    }

                    else {

                         bit9=1;

                    }

               }

               else {

                    //even parity for the received byte

                    //if no parity error detected, bit 9=0

                    if (lsr & PE)

                    {//error detected

                         bit9=1;

                    }

                    else {

                         bit9=0;

                    }

               }

               if (bit9)

               {

                    if (received_byte ==0xff)

                    {//0xff with bit 9=1 is EOT

                         if (capture_enabled)

                         {//had this reception been enabled

                          // by a previous \valid address

                         message_complete=1;

                         //flag end of message

                         }

                         else {

                              rx_pnt=0;

                              //ensure pointer is ready for next address

                         }

                    }

                    else {

                         if (received_byte==module_address)

                         {

                              //indicate that capture is enabled

                              capture_enabled=1;

                              rx_pnt++;

                         }

                         else {//address, but not for this address

                               //so restart.

                              capture_enabled=0;

                              rx_pnt=0;

                         }

                    }

               }

               else {// bit 9 is 0 so a data bit

                    if (capture_enabled)

                    {

                         rx_pnt++;

                    }

               }

          }

       }

            return (message_complete);

}

void UARTrx (void)

{

//prepares the UART to receive. i.e. with parity

int setting;

     Assert (RTS);

     //turn the RS485 buffer to receive

     setting = 0x3;

     setting |= EVEN_PARITY;

     outp(SerialPortBase + LCR,setting);

}

void UARTtx (void)

{

//prepares UART to transmit with STICK bit

int setting;

     deAssert(RTS);

     //turn the RS485 buffer to transmit

     setting = 0x3;

     setting |= STICK;

     //TB9_0, sets 1 in bit, must clear for 1

     outp(SerialPortBase + LCR,setting);

}

unsigned char SerialOut (void)

{//send a character onto the UART send register

//if first byte of last byte then 9th bit =1, else =0;

//routine returns non-zero if last byte sent.

int setting;

unsigned char k;

     k=0; //flag that process is incomplete

     setting = 0x3;

     setting |=STICK;

     if ((rx_pnt==0)|| (rx_pnt==(number_of_characters-1)))

     {

          //set 9th bit to 1 for first or last byte

          //(automatically done in STICK constant)

          ;

     }

     else {

          //set 9th bit to 0

          setting |=TB9_0;

     }

     outp(SerialPortBase + LCR,setting);

     if ((inp(SerialPortBase + LSR) &  (THRE | TSRE)) == (THRE | TSRE))

     {

          //wait for transmit registers to go empty

          outp(SerialPortBase + TXR,rx_buff[rx_pnt]);

          rx_pnt++;

          if (rx_pnt>=number_of_characters)

               k=1;

     }

     return k;

}

unsigned char UART_TX_clear( void)

{

//returns non-zero if there is no data left in either transmit buffer of the UART

//returns 0 if still waiting for characters to leave the UART

     unsigned char k;

     k=0;

     if ((inp(SerialPortBase + LSR) &  (THRE | TSRE)) == (THRE | TSRE))

          k=1;

     return k;

}

