
FAT 16/32 File System Driver for ATMEL AVR – Page 1 of 25

FAT 16/32 File System Driver for ATMEL AVR

Version 1.00, April 26, 2004
Developed by Angelo Bannack and Giordano Bruno Wolaniuk
{angelo@earmazem.com.br}, {giordano@earmazem.com.br}

This document describes the FAT16/32 File System Driver for ATMEL AVR. This
file system driver was written because our needs to read and write a hard drive
using a microcontroller. We look at Internet but we don’t found a good code to do
this, specifically in ATMEL AVR microcontroller series. The mostly codes found
were written to mp3 players, and only read data (don’t write) from FAT file system
and mix mp3 specific functions with printf functions. We found a few companies
that have some FAT codes to microcontrollers but with expensive prices. So we
decide to do our own code and share it to all community. It’s a real generic library.
You can use this to do an mp3 player, or a data logger, or anything else your mind
tells you. All the code was written following the Microsoft Specification in their
document “Microsoft Extensible Firmware Initiative FAT32 File System
Specification1” and there are some limitation because the nature of
microcontrollers and their limitations about memory and speed. Use this code at
your own risk. If you find any problems in this code, feel free to tell us. We
reminder you that it’s distributed under the GNU Public License, so you can use
and distribute it to anyone, provided that you conspicuously and appropriately
publish on each copy an appropriate copyright notice and disclaimer of warranty.

1 See the original document at http://www.microsoft.com/hwdev/download/hardware/fatgen103.doc

FAT 16/32 File System Driver for ATMEL AVR – Page 2 of 25

Developed by Angelo Bannack and Giordano Bruno Wolaniuk

Contents

Notational Conventions in this Document .. 3
General Comments ... 4
Requirements .. 5
Specifications.. 6

Ata Files.. 6
Ataconf.h... 6
Ata.c and Ata.h ... 7
Comments... 7

Fat Files .. 9
Fatconf.h... 9
Fat.c and Fat.h ... 9
FatTime.c and FatTime.h ... 13

Other Files .. 15
Limitations .. 16
Performance .. 17
Hardware Schematic ... 18
How to Test... 21
GNU GENERAL PUBLIC LICENSE.. 22

FAT 16/32 File System Driver for ATMEL AVR – Page 3 of 25

Developed by Angelo Bannack and Giordano Bruno Wolaniuk

Notational Conventions in this Document

Numbers that have the characters “0x” at the beginning of them are hexadecimal (base 16)
numbers.

Any numbers that do not have the characters “0x” at the beginning are decimal (base 10)
numbers.

The code fragments in this document are written in the ‘C’ programming language.

FAT 16/32 File System Driver for ATMEL AVR – Page 4 of 25

Developed by Angelo Bannack and Giordano Bruno Wolaniuk

General Comments

All of the FAT file systems were originally developed for the IBM PC machine
architecture. The importance of this is that FAT file system on disk data structure is all
“little endian.” If we look at one 32-bit FAT entry stored on disk as a series of four 8-bit
bytes—the first being byte[0] and the last being byte[4]—here is where the 32 bits
numbered 00 through 31 are (00 being the least significant bit):

byte[3] 3 3 2 2 2 2 2 2
 1 0 9 8 7 6 5 4

byte[2] 2 2 2 2 1 1 1 1
 3 2 1 0 9 8 7 6

byte[1] 1 1 1 1 1 1 0 0
 5 4 3 2 1 0 9 8

byte[0] 0 0 0 0 0 0 0 0

7 6 5 4 3 2 1 0

This is important if your machine is a “big endian” machine, because you will have to
translate between big and little endian as you move data to and from the disk. Note that
ATMEL AVR series are 8 bits microcontrollers so the compiler is responsible for use little
or big endian. The WinAVR is little endian by default. If you want to use another kind of
compiler, make sure that it’s compiling like a little endian mode.

FAT 16/32 File System Driver for ATMEL AVR – Page 5 of 25

Developed by Angelo Bannack and Giordano Bruno Wolaniuk

Requirements

To use this library you will have to use an ATMEL2 AVR microcontroller with at least:
- 15 Kbytes FLASH Memory;
- 1.2 Kbytes RAM Memory (2 512Kbytes buffer + other variables);
- 3 eight bits PORTS to ATA interface (only 2 exclusive PINs – IDE_RD and IDE_WR);

The code was written in WinAVR C and compiled using the WinAVR3 20040404.

In our tests we use an ATMega1284 connected directly to the ATA dispositive.

If you want to use this library only for read files in the FAT file system, like in an mp3
player, for instance, you can remove the entire write and create files routines. You can do
this defining a constant ATA_READ_ONLY in ataconf.h, like the code below:

#define ATA_READ_ONLY

Then all the routines used to write files and create new files and directories will be removed
from the source code in compilation time. But, note that the RAM memory usage will be no
reduced significantly.

The most significant part of the RAM memory is used to 2 (two) buffers with 512 bytes
each, for keep data sector and fat sector caches. The fat sector cache could share the data
sector memory but with time restrictions and with a lot of modifications in the software.
We don’t recommend this modification.

2 ATMEL: www.atmel.com
3 WinAVR: http://winavr.sourceforge.net
4 ATMega128: See the specifications at http://www.atmel.com/dyn/products/product_card.asp?part_id=2018

FAT 16/32 File System Driver for ATMEL AVR – Page 6 of 25

Developed by Angelo Bannack and Giordano Bruno Wolaniuk

Specifications

The complete code has 9 files:

1. ata.c IDE-ATA interface driver for hard disks code
2. ata.h ATA specification include file
3. ataconf.h Configuration ATA file, memory sector buffer and PIN descriptions
4. fat.c FAT16/32 file system driver for ATMEL AVR code
5. fat.h FAT specification include file
6. fatconf.h Configuration FAT file, memory FAT cache buffer
7. fattime.c FAT time driver code, time functions
8. fattime.h FATTIME specification include file
9. global.h AVRlib project global include file

Ata Files
The ata.c, ata.h and ataconf.h files are responsible to interface the ATA dispositive.

Ataconf.h
In ataconf.h are defined the sector buffer with 512 bytes to keep the sector data read from
the ATA dispositive. This buffer can be addressed to an external memory buffer, changing
his address.

All the pins are defined in this file, and you can change it according to your hardware needs

#define DDR_DATAL DDRC // Define the Direction PORT to DATA High
#define DDR_DATAH DDRB // Define the Direction PORT to DATA Low
#define PORT_DATAL PORTC // Define the PORT to DATA High
#define PORT_DATAH PORTB // Define the PORT to DATA Low
#define PIN_DATAL PINC // Define the PIN to DATA High
#define PIN_DATAH PINB // Define the PIN to DATA Low

#define PORT_ADDR PORTA // Define the PORT to Address
#define DDR_ADDR DDRA // Define the PORT to Address

#define PORT_IDE_RD PORTA // Define the PORT to IDE_RD
#define PIN_IDE_RD 7 // Define the PIN number to IDE_RD

#define PORT_IDE_WR PORTA // Define the PORT to IDE_WR
#define PIN_IDE_WR 6 // Define the PIN number to IDE_WR

Don’t change the ATA Registers, only if you know the correspondent pin address in
PORT_ADDR.

FAT 16/32 File System Driver for ATMEL AVR – Page 7 of 25

Developed by Angelo Bannack and Giordano Bruno Wolaniuk

Ata.c and Ata.h
These files define and implement the ATA read and write routines. The main functions that
are used by fat.c file are:

unsigned char ataReadSectors
 (unsigned char Drive,
 unsigned long lba,
 unsigned char *Buffer,
 unsigned long *SectorInCache);

Read one sector (512 bytes) from the ATA
dispositive. It’s necessary to inform the Drive
number, the lba address to be read, the buffer address
to keep the readed data, and the variable address that
informs the sector address in buffer cache

unsigned char ataWriteSectors
 (unsigned char Drive,
 unsigned long lba,
 unsigned char *Buffer);

Write one sector (512 bytes) to the ATA dispositive.
It’s necessary to inform the Drive number, the lba
address to be write, the buffer address that have the
data to be written.

The routines below can be used by your source code:

void ataInit (void); Gives a software reset into the ATA dispositive and

gets all the hardware parameters from it. It’s
necessary to call this routine in the begging of main
software.

unsigned long ataGetSizeInSectors
 (void);

Returns the ATA dispositive number of sectors

unsigned long ataGetSize (void);

Returns the ATA dispositive size in bytes

char *ataGetModel (void); Returns the ATA dispositive model string

void ataSetDrivePowerMode
 (unsigned char DriveNo,
 unsigned char mode,
 unsigned char timeout);

Sets the Power Mode to the drive. It’s necessary to
inform the drive number, the mode, and the timeout.
To the hardware.
The possible modes are:
ATA_DISKMODE_SPINDOWN
ATA_DISKMODE_SPINUP
ATA_DISKMODE_SETTIMEOUT
ATA_DISKMODE_SLEEP

All the other functions are used internally only and don’t have to be called.

Comments
An important thing here is that the ATA access functions were optimized to an
ATMega128 with a 16MHz source clock and reading an ATA66 dispositive. So there are a
few “NOPs” that were used like a delay. If you use a slower source clock, this won’t be a
problem, but if the source clock were bigger than this, so you may need to put extras
“NOPs” in ataReadDataBuffer, ataWriteDataBuffer, ataReadByte and ataWriteByte

FAT 16/32 File System Driver for ATMEL AVR – Page 8 of 25

Developed by Angelo Bannack and Giordano Bruno Wolaniuk

functions defined in ata.c file. See the time diagram in the ATA specification5 to a correct
access time.

5 ATA 2 Specification: See the official document at http://www.t13.org/project/d0948r4c.pdf

FAT 16/32 File System Driver for ATMEL AVR – Page 9 of 25

Developed by Angelo Bannack and Giordano Bruno Wolaniuk

Fat Files
The fat.c, fat.h, fatconf.h, fattime.c and fattime.h files are responsible to the FAT file
system driver.

Fatconf.h
In fatconf.h are defined the sector buffer with 512 bytes to keep the sector data read from
the ATA dispositive. This buffer is defined like the buffer address defined in ataconf.h. In
this file is defined too the fat sector buffer with 512 bytes to keep the sector fat read from
the ATA dispositive. This buffer can be addressed to an external memory buffer, changing
his address.

Fat.c and Fat.h
These files define and implement the FAT file system driver.
There is an important structure defined in fat.h that is useful in a dir routine, it is the
direntry struct.

struct direntry {
 unsigned char deName[8]; // filename, blank filled
 #define SLOT_EMPTY 0x00 // slot has never been used
 #define SLOT_E5 0x05 // the real value is 0xe5
 #define SLOT_DELETED 0xe5 // file in this slot deleted
 unsigned char deExtension[3]; // extension, blank filled
 unsigned char deAttributes; // file attributes
 #define ATTR_NORMAL 0x00 // normal file
 #define ATTR_READONLY 0x01 // file is readonly
 #define ATTR_HIDDEN 0x02 // file is hidden
 #define ATTR_SYSTEM 0x04 // file is a system file
 #define ATTR_VOLUME 0x08 // entry is a volume label
 #define ATTR_LONG_FILENAME 0x0f // this is a long filename
 #define ATTR_DIRECTORY 0x10 // entry is a directory name
 #define ATTR_ARCHIVE 0x20 // file is new or modified
 unsigned char deLowerCase; // NT VFAT lower case flags
 #define LCASE_BASE 0x08 // filename in lower case
 #define LCASE_EXT 0x10 // extension in lower case
 unsigned char deCHundredth; // hundredth of seconds
 unsigned char deCTime[2]; // create time
 unsigned char deCDate[2]; // create date
 unsigned char deADate[2]; // access date
 unsigned int deHighClust; // high bytes of cluster
 unsigned char deMTime[2]; // last update time
 unsigned char deMDate[2]; // last update date
 unsigned int deStartCluster; // starting cluster of file
 unsigned long deFileSize; // size of file in bytes
};

You can do a loop reading the entire directory only checking the deName[0] to see if it is
equal to SLOT_EMPTY. The SLOT_EMPTY marks the end of the directory. You can use
this structure to print out all the needed information about the files.

FAT 16/32 File System Driver for ATMEL AVR – Page 10 of 25

Developed by Angelo Bannack and Giordano Bruno Wolaniuk

The date stamp is a 16-bit field that is basically a date relative to the MS-DOS epoch of
01/01/1980. here is the format (bit0 is the LSB of the 16-bit word, bit 15 is the MSB of the
16-bit word):

Bits 0–4: Day of month, valid value range 1-31 inclusive.
Bits 5–8: Month of year, 1 = January, valid value range 1–12 inclusive.
Bits 9–15: Count of years from 1980, valid value range 0–127 inclusive (1980–
2107).

The time stamp is a 16-bit field that has a granularity of 2 seconds. Here is the format (bit 0
is the LSB of the 16-bit word, bit 15 is the MSB of the 16-bit word).

Bits 0–4: 2-second count, valid value range 0–29 inclusive (0 – 58 seconds).
Bits 5–10: Minutes, valid value range 0–59 inclusive.
Bits 11–15: Hours, valid value range 0–23 inclusive.

The current directory is controlled by an internal variable currentDirCluster. When you call
the fatInit routine, this variable is started with the cluster address of the root directory in
FAT. If you want to change the current directory, do a fatCddir using a directory name in
the parameter field. The currentDirCluster variable will be changed to the cluster address
of this directory. You can use the fatGetCurDirCluster to get the actual cluster address.

This struct is used too to define the TFILE struct:

typedef struct{
 struct direntry de; // Information about the file opened
 unsigned int currentSector; // Actual sector address in memory
 unsigned char *buffer; // buffer pointer to memory (cache sector)
 unsigned long bytePointer; // byte pointer to the actual byte
 unsigned char sectorHasChanged; // TRUE if the sector has changed
}TFILE;

The TFILE struct is used to permit the read and write in files. When a file is opened with
the fatFopen function, this struct is filled with the direntry information about the file. This
struct keeps the current sector in memory; a pointer to the data sector in memory; a byte
pointer to the actual character, used by fatFgetc and fatFputc functions; and a flag to tell the
fClose function if the sector in memory has changed and needs to be writed in the FAT file
system before the file be closed.

Another important struct, used to read partition information, is the partrecord struct.

// Partition Type used in the partition record
#define PART_TYPE_UNKNOWN 0x00
#define PART_TYPE_FAT12 0x01
#define PART_TYPE_XENIX 0x02
#define PART_TYPE_DOSFAT16 0x04
#define PART_TYPE_EXTDOS 0x05
#define PART_TYPE_FAT16 0x06

FAT 16/32 File System Driver for ATMEL AVR – Page 11 of 25

Developed by Angelo Bannack and Giordano Bruno Wolaniuk

#define PART_TYPE_NTFS 0x07
#define PART_TYPE_FAT32 0x0B
#define PART_TYPE_FAT32LBA 0x0C
#define PART_TYPE_FAT16LBA 0x0E
#define PART_TYPE_EXTDOSLBA 0x0F
#define PART_TYPE_ONTRACK 0x33
#define PART_TYPE_NOVELL 0x40
#define PART_TYPE_PCIX 0x4B
#define PART_TYPE_PHOENIXSAVE 0xA0
#define PART_TYPE_CPM 0xDB
#define PART_TYPE_DBFS 0xE0
#define PART_TYPE_BBT 0xFF

struct partrecord // length 16 bytes
{
 unsigned char prIsActive; // 0x80 indicates active partition
 unsigned char prStartHead; // starting head for partition
 unsigned int prStartCylSect; // starting cylinder and sector
 unsigned char prPartType; // partition type (see above)
 unsigned char prEndHead; // ending head for this partition
 unsigned int prEndCylSect; // ending cylinder and sector
 unsigned long prStartLBA; // first LBA sector for this partition
 unsigned long prSize; // size of this partition
};

This struct is filled in fatInit routine, and show important information about the FAT file
system. The most important field in this struct is the prPartType, in wich we can discovery
if the ATA dispositive is formatted like a FAT16 or FAT32.

Functions
The main functions that can be used by your source code are:

unsigned char fatInit (void); Get FAT info from ATA dispositive and initialize

internal variables. It’s necessary to call this routine
on the begging of the main software.

unsigned int fatClusterSize (void); Return the number of sectors in a disk cluster.

unsigned long fatGetFirstDirCluster
 (void);

Return the first dir entry cluster in FAT. This is
useful when you want to do a fatDir in the root
directory.

unsigned char *fatDir
 (unsigned long cluster,
 unsigned long offset);

Return the sector with direntries info starting in the
parameter cluster, with offset sectors from the
begining cluster sector. You can do a dir in the entire
fat directory doing a loop in offset, started in 0, and
with no restrictions to end. In each offset read gives
a fatDir and if the direntry structure start with a
SLOT_EMPTY mark, so the entire directory was
returned.

struct direntry *fatGetFileInfo
(struct direntry *rde, char
*shortName);

This routine is usefull if you know the filename and
you want to get information about it. This routine
will return a direntry struct filled with the file
information, and will return NULL if the file was not

FAT 16/32 File System Driver for ATMEL AVR – Page 12 of 25

Developed by Angelo Bannack and Giordano Bruno Wolaniuk

found in the current directory.

char *fatGetVolLabel (void); Return the FAT volume name read in fatInit

struct partrecord *fatGetPartInfo
 (void);

Return the partition information read in fatInit
routine. This routine returns a partrecord struct.

unsigned int fatGetSecPerClust (void); Return the number of Sectors per Cluster read in

fatInit. This is only for information.

unsigned long fatGetFirstFATSector
 (void);

Return the sector address of the first FAT in the
ATA dispositive. This is only for information.

unsigned long
fatGetFirstFAT2Sector (void);

Return the sector address of the second FAT in the
ATA dispositive. This is only for information.

unsigned long fatGetFirstDataSector
 (void);

Return the sector address of the data field in FAT.
This is only for information.

unsigned long fatGetNumClusters (void); Return the total number of clusters in the ATA

dispositive. This is only for information.

unsigned char fatCddir (char *path); Change the current directory. Only one level path,

For example, you can do fatCddir(“test”), but not
fatCddir(“\test\test2”). Use two calls to this function
in this case: fatCddir(“test”); fatCddir(“test2”);

TFILE *fatFopen (char *shortName); Open a file to read and write. The File struct is filled

and the Sector Buffer in memory is filled with the
first sector of the file opened. Remember that to read
one file you need to call this function first, and then
use the TFILE struct returned in fatFgetc, fatFputc,
fatFseek, fatFeof, fatFflush and fatFclose functions.

char fatFgetc (TFILE *fp); Get the next character from file, and actualize the

byte pointer in the TFILE struct.

unsigned int fatFseek
 (TFILE *fp,
 unsigned long offSet,
 unsigned char mode);

Find a byte position in the file and load the
corresponded sector in the buffer memory. The
possible modes are:
- SEEK_CUR: the offset is counted from the current
position of the file pointer;
- SEEK_SET: the offset is counted from the
beggining of the file;
- SEEK_END: the offset is counted from the end of
file to back.

unsigned char fatFeof (TFILE *fp); Return TRUE if the byte pointer points to the end of

the file. This is useful to do a loop to read an entire
file.

unsigned long fatGetCurDirCluster
 (void);

Return the current directory cluster number. This
function is useful to use like a parameter to do a
fatDir in the current directory. Example:
for (os=0; os++;)
 fatDir(fatGetCurDirCluster(),os);

FAT 16/32 File System Driver for ATMEL AVR – Page 13 of 25

Developed by Angelo Bannack and Giordano Bruno Wolaniuk

unsigned char fatMkdir (char *path); Create a new directory on the current directory. Only

creates the directory, don’t change the current dir.
This function will return TRUE if the directory was
successfully created, and FALSE otherwise.

unsigned char fatRename
 (char *oldShortName,
 char *newShortName);

Change the name of a directory or file. Gives the old
name and the new name of the file or directory. This
function will return TRUE if the file or directory was
successfully renamed, and FALSE otherwise.

unsigned char fatRemove
 (char *shortName);

Remove a file or directory. This function will look
for a file in the current directory. It will return TRUE
if the file or directory was successfully removed, and
FALSE otherwise. If a directory has any files, it
won’t be removed. Call fatRemoveAll in the current
directory before this operation.

TFILE *fatFcreate (char *shortName); Create a file and open it in the current directory. If

the file already exist this function will return NULL.
Otherwise this function will create the file in the
current directory and will call the fatFopen function,
returning a TFILE struct.

unsigned char fatFclose (TFILE *fp); Write the current file to the FAT file system and

refresh the file size, if necessary. You need to use
this function before open another file and before a
fatDir use.

unsigned char fatFflush (TFILE *fp); Write the current sector file to hard disk, if

necessary. This function is called by the fatFclose
function, and you can call it in any time to force a
buffer write to the disk.

unsigned char fatFputc
 (TFILE *fp, char c);

Write a character to the file. Return FALSE if the
disk is full, and TRUE otherwise. Note that this
function will only write the character in the internal
buffer, and won’t write it to the disk. The write is
executed only when the character belongs to a new
sector, or in a call to fatFflush or fatFclose.

void fatRemoveAll (void); Remove all files in the current directory. You can

use this function before a fatRemove in a directory.

All the other functions are used internally only and don’t have to be called.

FatTime.c and FatTime.h
These files define the data and time structures and only one function, fatGetCurTime, that
is used in a file create and close to update the current time in file. The programmer needs to
change this function to get the clock from your hardware project. If you don’t have a clock,
just set one unique time and data in the fatGetCurTime return, or let the default date an
time.

FAT 16/32 File System Driver for ATMEL AVR – Page 14 of 25

Developed by Angelo Bannack and Giordano Bruno Wolaniuk

The TTime struct is defined in fattime.h.

typedef struct
{
 unsigned char day;
 unsigned char month;
 unsigned int year;
 unsigned char hour;
 unsigned char minutes;
 unsigned char seconds;
}TTime;

The date is divided in three fields: day, month and year.
 Day: valid range from 1 to 31;
 Month: valid range from 1 to 12;
 Year: valid range from 0 to 65535.

Note that the year is an integer field that have to be filled with the correct year number. For
example, if the year is 2004, this field have to be filled with the integer 2004, or 0x07D4 in
hexadecimal format. The FAT file system only uses an eight bit field to the year, but the
internal fat functions will correct to this form.

The time is divided in three fields too: hour, minutes and seconds.
 Hour: valid range from 0 to 23;
 Minutes: valid range from 0 to 59;
 Seconds: valid range from 0 to 59;

In FAT file system, the seconds field is a five bit field, so they are divided by two before be
written into the disk. The programmer cannot be worried about this.

Comments

This library and specially the fatInit function were prepared to be used by hard disks that
have a MBR (Master Boot Record) in the first sector. Other types of media, like Memory
Disks, Memory Sticks and Compact Flash don’t have de MBR in the first sector. The first
sector in this case is the Boot Sector, and contains information about the FAT file System,
like size FAT, number of FATs, sectors per track and number of heads. To use this library
to read a media like this, you need to change the fatInit function to ignore the MBR and
read the BPB directly. To determine the FAT type, the library read a byte in the MBR. So
you have to change this to use the number of cluster informations to determine the FAT
type. See the “Microsoft Extensible Firmware Initiative FAT32 File System Specification6”
to more details. These implementations will be done in a new version of this library.

6 See the original document at http://www.microsoft.com/hwdev/download/hardware/fatgen103.doc

FAT 16/32 File System Driver for ATMEL AVR – Page 15 of 25

Developed by Angelo Bannack and Giordano Bruno Wolaniuk

Other Files
The complete library includes a global.h file, that is used to define de TRUE and FALSE
statements, and to configure the CPU clock speed (F_CPU).

The CPU clock speed is used in an internal ata.c delay function, to correct access the ATA
dispositive. You have to define your CPU clock speed here to guarantee the correct ATA
dispositive access. Read the ATA Comments chapter in page 7 to more details about this.

FAT 16/32 File System Driver for ATMEL AVR – Page 16 of 25

Developed by Angelo Bannack and Giordano Bruno Wolaniuk

Limitations

Because the restrictions of memory and speed, this FAT code have a little limitations:

- Only short names can be used: long names access was not implemented because they are
totally compatible with short names, and because the use in microcontrollers will
significantly decrease the speed performance and will increase the FLASH requirements.

- Only one file opened at same time: because the RAM memory limitations we limitate to
only one file opened. If you want to read another file, you will have to close the opened file
first. If a file is opened when another has no closed yet, the sector data in RAM will be
losted. The programmer needs to guarantee that two files were not opened in same time and
that the close file function has been called before a file opened to write was no more
necessary.

- No fatDir when a file is opened: when a file is opened, the programmer cannot call the
fatDir routine, because the sector buffer is filled with the file information, and the dir
routine will destroy the data file.

- Filenames in upper case mode: all the filenames are written in upper case mode in the
FAT file system.

- Only master dispositive: only the master dispositive will be interfaced with this code. If
you need to use the slave dispositive, change the DRIVE0 constant in ata.h file to 1

#define DRIVE0 1

The simultaneous use of master and slave ATA dispositives was note implemented.

- Low speed: the speed will be limited by your source clock. In our tests we could transfer
up to 800Kbytes/s in an ATMega128 with a 16MHz crystal oscillator.

FAT 16/32 File System Driver for ATMEL AVR – Page 17 of 25

Developed by Angelo Bannack and Giordano Bruno Wolaniuk

Performance

In our tests we could transfer up to 800 Kbytes/s using an ATMega128 with a 16MHz
crystal oscllator, and compiled with WinAVR 20040404 with optimize mode ‘s’.

The speed could be increased if you interface the ATA dispositive in 16 bits mode, like a
memory interface to the microcontroller, so the memory hardware inside the
microcontroller will do all the transfers and the microcontroller will be free to do all the
others operations. We don’t use it because it’s necessary to use some extra hardware latches
to do this, and for simplification purposes, because we have price restrictions in our project
and the speed was no problem. But it’s factible and simple to do it.

FAT 16/32 File System Driver for ATMEL AVR – Page 18 of 25

Developed by Angelo Bannack and Giordano Bruno Wolaniuk

Hardware Schematic

 In page 20 you can find the hardware schematic used to test this library. The hardware uses
only an ATMega128 microcontroller and an IDE/ATA connector. It’s included a serial port
to tests purposes.

The table below shows the entire signal interface to an IDE/ATA dispositive and the
ATMEL Pin used to interface it.

Table 1 – IDE/ATA Signal Interface
Description ATMEL Pin IDE Pin Acronym
Reset VDD 1 /IDE_RESET
Ground GND 2 GND
Data bus bit 7 PC7 3 IDE_D7
Data bus bit 8 PB0 4 IDE_D8
Data bus bit 6 PC6 5 IDE_D6
Data bus bit 9 PB1 6 IDE_D9
Data bus bit 5 PC5 7 IDE_D5
Data bus bit 10 PB2 8 IDE_D10
Data bus bit 4 PC4 9 IDE_D4
Data bus bit 11 PB3 10 IDE_D11
Data bus bit 3 PC3 11 IDE_D3
Data bus bit 12 PB4 12 IDE_D12
Data bus bit 2 PC2 13 IDE_D2
Data bus bit 13 PB5 14 IDE_D13
Data bus bit 1 PC1 15 IDE_D1
Data bus bit 14 PB6 16 IDE_D14
Data bus bit 0 PC0 17 IDE_D0
Data bus bit 15 PB7 18 IDE_D15
Ground GND 19 GND
(keypin) NC 20
DMA Request VDD 21 VDD
Ground GND 22 GND
I/O Write PA6 23 IDE_WR
Ground GND 24 GND
I/O Read PA7 25 IDE_RD
Ground GND 26 GND
I/O Ready NC 27
Spindle Sync or Cable Select NC 28
DMA Acknowledge VDD 29 VDD
Ground GND 30 GND
Interrupt Request PA5 31 IDE_IRQ
16 Bit I/O NC 32
Device Address Bit 1 PA1 33 IDE_A1
Passed Diagnostics NC 34
Device Address Bit 0 PA0 35 IDE_A0
Device Address Bit 2 PA2 36 IDE_A2
Chip Select 0 PA4 37 IDE_CS0
Chip Select 1 PA3 38 IDE_CS1
Device Active or Slave Present NC 39
Ground GND 40 GND

FAT 16/32 File System Driver for ATMEL AVR – Page 19 of 25

Developed by Angelo Bannack and Giordano Bruno Wolaniuk

Below you can see the power interface to an IDE/ATA dispositive. This is the hard disk
view.

.1

.40

. . . .

. . . .

 4 3 2 1
 +5VDC Ground Ground +12VDC

Figure 1 – IDE/ATA Interface

Table 2 – IDE/ATA Power Line
Power line designation Pin Number Default Color
+12 Volts 1 Yellow
Ground 2 Black
Ground 3 Black
+5 Volts 4 Red

1

1

2

2

3

3

4

4

5

5

6

6

7

7

8

8

D D

C C

B B

A A

Scale Sheet

Size FCSM No. DWG No. Rev
A3

(AD0) PA0 51

(AD1) PA1 50

(AD2) PA2 49

(AD3) PA3 48

(AD4) PA4 47

(AD5) PA5 46

(AD6) PA6 45

(AD7) PA7 44

(ALE) PG2 43

(A8) PC0 35

(A9) PC1 36

(A10) PC2 37

(A11) PC3 38

(A12) PC4 39

(A13) PC5 40

(A14) PC6 41

(A15) PC7 42

(RD) PG1 34

(WR) PG0 33

PF0 (ADC0)61

PF1 (ADC1)60

PF2 (ADC2)59

PF3 (ADC3)58

PF4 (ADC4 / TCK)57

PF5 (ADC5 / TMS)56

PF6 (ADC6 / TDO)55

PF7 (ADC7 / TDI)54

AREF62

AGND63

AVCC64

PE0 (PDI / RXD0)2

PE1 (PDO / TXD0)3

PE2 (AC+ / XCK0)4

PE3 (AC- / OC3A)5

PE4 (INT4 / OC3B)6

PE5 (INT5 / OC3C)7

PE6 (INT6 / T3)8

PE7 (INT7 / IC3)9

PB0 (SS)10

PB1 (SCK)11

PB2 (MOSI)12

PB3 (MISO)13

PB4 (OC0)14

PB5 (OC1A)15

PB6 (OC1B)16

PB7 (OC2 / OC1C)17

(INT0 / SCL) PDO 25

(INT1 / SDA) PD1 26

(INT2 / RXD1) PD2 27

(INT3 / TXD1) PD3 28

(IC1) PD4 29

(XCK1) PD5 30

(T1) PD6 31

(T2) PD7 32

XTAL2 23

XTAL1 24

G
N

D
53

G
N

D
22

VC
C

21
VC

C
52

PEN1

RESET20

PG4 (TOSC1)19

PG3 (TOSC2)18

ATMEGA128

U1

1 2
3 4
5 6

Header 3X2

ISP1

Vdd +5V
4k7

R1

16 MHz
XTAL1

27p
C9

27p
C10

PF0
PF1
PF2
PF3
PF4
PF5
PF6
PF7

RXD0
TXD0

Vdd +5V

100n
C1

1 2

JP1

/RESETMCU

PG4
PG3

PD7
PD6
PD5
PD4
PD3
PD2

PD0
PD1

PE0
PE1
PE2
PE3
PE4
PE5
PE6
PE7

PB0
PB1
PB2
PB3
PB4
PB5
PB6
PB7

PA0
PA1
PA2
PA3
PA4
PA5
PA6
PA7

PC0
PC1
PC2
PC3
PC4
PC5
PC6
PC7

Vdd +5V

PG0
PG1

PG2

RXD1
TXD1

100N
C2

100N
C3

100N
C4

Vdd +5V Vdd +5V

MCU

COUPLING

13

10

11

8

12

9

14

7

C1+1

C2+4

GND15

C1-3 VCC 16

R1

T1

T2

R2

C2-5

V- 6

V+ 2

MAX202

U2
100n
C5

100n
C6

100n
C8

100n
C7

Vdd +5V

TXD1

TXD0

RXD1

RXD0

RX0 RS232

RX1 RS232

TX0 RS232

TX1 RS232

1
2
3
4
5
6

CON1

RS 232

32kHz
XTAL2

1 2
3 4
5 6
7 8
9 10
11 12
13 14
15 16
17 18
19 20
21 22
23 24
25 26
27 28
29 30
31 32
33 34
35 36
37 38
39 40

Header 20X2

IDE1Vdd +5V
/IDE_RESET
IDE_D7
IDE_D6
IDE_D5
IDE_D4
IDE_D3
IDE_D2
IDE_D1
IDE_D0

IDE_WR
IDE_RD

IDE_IRQ

IDE_A0
IDE_A1

IDE_CS0 IDE_CS1

IDE_D8
IDE_D9
IDE_D10
IDE_D11
IDE_D12
IDE_D13
IDE_D14
IDE_D15

/IDE_DMAReq

IDE_A2

IDE_D8
IDE_D9
IDE_D10
IDE_D11
IDE_D12
IDE_D13
IDE_D14
IDE_D15

IDE_D7
IDE_D6
IDE_D5
IDE_D4
IDE_D3
IDE_D2
IDE_D1
IDE_D0

/IDE_DMAAck

GND

GND

GND
GND
GND

GND

GND

IDE_WR
IDE_RD

IDE_IRQ

IDE_A1
IDE_A2

IDE_CS0

IDE_A0

IDE_CS1

100nF

C11

10k

R2

Vdd +5V

/RESETMCU

Angelo Bannack, Giordano Bruno Wolaniuk

www.earmazem.com a1

26 april 2004

FAT 16/32 File System Driver for ATMEL AVR

/RESETMCU

ISP_MISO
ISP_MOSI

ISP_SCK

ISP_MISO
ISP_MOSIISP_SCK

1

2

3

4

5

6

7

8

9

11

10

DB9/F

CON2

TX0 RS232

RX0 RS232

FAT 16/32 File System Driver for ATMEL AVR – Page 21 of 25

Developed by Angelo Bannack and Giordano Bruno Wolaniuk

How to Test

In the package is included a main.c file. This file was written to be used with the hardware
described in the above page. To use it, you need to connect the hardware to a PC serial port,
and using your favorite serial program, configure the serial port to 115.200 bps, 8 bits, no
parity, 1 stop bit. Connect a FAT16 or FAT32 formatted hard disk to the ATA/IDE
interface. Write the file main.hex, included in the package, to the ATMega128, using a
STK500 hardware test or another hex programmer like Pony Prog7.

The program will execute the following procedure:

1. All the information about the hard disk and the FAT file system will be showed;
2. The root directory will be listed;
3. A new DIR1 directory will be created;
4. The root directory will be listed;
5. The current directory will be changed to the new DIR1 created;
6. The DIR1 directory will be listed;
7. A readme.txt file with no content will be created;
8. The DIR1 directory will be listed;
9. The readme.txt file will be filled with the message “Testing 123”;
10. The readme.txt file will be entirely read;
11. The readme.txt file will be renamed to test.txt;
12. The DIR1 directory will be listed;
13. All the files in the DIR1 directory will be erased;
14. The DIR1 directory will be listed;
15. The current directory will be changed to the root directory;
16. The root directory will be listed;
17. The DIR1 directory will be removed;
18. The root directory will be listed.

7 Pony Prog: See more information about Pony Prog in http://www.lancos.com/prog.html

FAT 16/32 File System Driver for ATMEL AVR – Page 22 of 25

Developed by Angelo Bannack and Giordano Bruno Wolaniuk

 GNU GENERAL PUBLIC LICENSE
 TERMS AND CONDITIONS FOR COPYING, DISTRIBUTION AND MODIFICATION

 0. This License applies to any program or other work which contains a notice
placed by the copyright holder saying it may be distributed under the terms of
this General Public License. The "Program", below, refers to any such program or
work, and a "work based on the Program" means either the Program or any
derivative work under copyright law:
that is to say, a work containing the Program or a portion of it, either verbatim
or with modifications and/or translated into another language. (Hereinafter,
translation is included without limitation in the term "modification".) Each
licensee is addressed as "you".

Activities other than copying, distribution and modification are not covered by
this License; they are outside its scope. The act of running the Program is not
restricted, and the output from the Program is covered only if its contents
constitute a work based on the Program (independent of having been made by
running the Program). Whether that is true depends on what the Program does.

 1. You may copy and distribute verbatim copies of the Program's source code as
you receive it, in any medium, provided that you conspicuously and appropriately
publish on each copy an appropriate copyright notice and disclaimer of warranty;
keep intact all the notices that refer to this License and to the absence of any
warranty; and give any other recipients of the Program a copy of this License
along with the Program.

You may charge a fee for the physical act of transferring a copy, and you may at
your option offer warranty protection in exchange for a fee.

 2. You may modify your copy or copies of the Program or any portion of it, thus
forming a work based on the Program, and copy and distribute such modifications
or work under the terms of Section 1 above, provided that you also meet all of
these conditions:

 a) You must cause the modified files to carry prominent notices stating that
you changed the files and the date of any change.

 b) You must cause any work that you distribute or publish, that in whole or
in part contains or is derived from the Program or any part thereof, to be
licensed as a whole at no charge to all third parties under the terms of this
License.

 c) If the modified program normally reads commands interactively when run,
you must cause it, when started running for such interactive use in the most
ordinary way, to print or display an announcement including an appropriate
copyright notice and a notice that there is no warranty (or else, saying that you
provide a warranty) and that users may redistribute the program under these
conditions, and telling the user how to view a copy of this License. (Exception:
if the Program itself is interactive but does not normally print such an
announcement, your work based on the Program is not required to print an
announcement.)

These requirements apply to the modified work as a whole. If identifiable
sections of that work are not derived from the Program, and can be reasonably
considered independent and separate works in themselves, then this License, and
its terms, do not apply to those sections when you distribute them as separate
works. But when you distribute the same sections as part of a whole which is a
work based on the Program, the distribution of the whole must be on the terms of
this License, whose permissions for other licensees extend to the entire whole,
and thus to each and every part regardless of who wrote it.

FAT 16/32 File System Driver for ATMEL AVR – Page 23 of 25

Developed by Angelo Bannack and Giordano Bruno Wolaniuk

Thus, it is not the intent of this section to claim rights or contest your rights
to work written entirely by you; rather, the intent is to exercise the right to
control the distribution of derivative or collective works based on the Program.

In addition, mere aggregation of another work not based on the Program with the
Program (or with a work based on the Program) on a volume of a storage or
distribution medium does not bring the other work under the scope of this
License.

 3. You may copy and distribute the Program (or a work based on it, under
Section 2) in object code or executable form under the terms of Sections 1 and 2
above provided that you also do one of the following:

 a) Accompany it with the complete corresponding machine-readable source code,
which must be distributed under the terms of Sections 1 and 2 above on a medium
customarily used for software interchange; or,

 b) Accompany it with a written offer, valid for at least three years, to give
any third party, for a charge no more than your cost of physically performing
source distribution, a complete machine-readable copy of the corresponding source
code, to be distributed under the terms of Sections 1 and 2 above on a medium
customarily used for software interchange; or,

 c) Accompany it with the information you received as to the offer to
distribute corresponding source code. (This alternative is allowed only for
noncommercial distribution and only if you received the program in object code or
executable form with such an offer, in accord with Subsection b above.)

The source code for a work means the preferred form of the work for making
modifications to it. For an executable work, complete source code means all the
source code for all modules it contains, plus any associated interface definition
files, plus the scripts used to control compilation and installation of the
executable. However, as a special exception, the source code distributed need
not include anything that is normally distributed (in either source or binary
form) with the major components (compiler, kernel, and so on) of the operating
system on which the executable runs, unless that component itself accompanies the
executable.

If distribution of executable or object code is made by offering access to copy
from a designated place, then offering equivalent access to copy the source code
from the same place counts as distribution of the source code, even though third
parties are not compelled to copy the source along with the object code.

 4. You may not copy, modify, sublicense, or distribute the Program except as
expressly provided under this License. Any attempt otherwise to copy, modify,
sublicense or distribute the Program is void, and will automatically terminate
your rights under this License. However, parties who have received copies, or
rights, from you under this License will not have their licenses terminated so
long as such parties remain in full compliance.

 5. You are not required to accept this License, since you have not signed it.
However, nothing else grants you permission to modify or distribute the Program
or its derivative works. These actions are prohibited by law if you do not
accept this License. Therefore, by modifying or distributing the Program (or any
work based on the Program), you indicate your acceptance of this License to do
so, and all its terms and conditions for copying, distributing or modifying the
Program or works based on it.

 6. Each time you redistribute the Program (or any work based on the Program),
the recipient automatically receives a license from the original licensor to
copy, distribute or modify the Program subject to these terms and conditions.
You may not impose any further restrictions on the recipients' exercise of the

FAT 16/32 File System Driver for ATMEL AVR – Page 24 of 25

Developed by Angelo Bannack and Giordano Bruno Wolaniuk

rights granted herein. You are not responsible for enforcing compliance by third
parties to this License.

 7. If, as a consequence of a court judgment or allegation of patent
infringement or for any other reason (not limited to patent issues), conditions
are imposed on you (whether by court order, agreement or otherwise) that
contradict the conditions of this License, they do not excuse you from the
conditions of this License. If you cannot distribute so as to satisfy
simultaneously your obligations under this License and any other pertinent
obligations, then as a consequence you may not distribute the Program at all.
For example, if a patent license would not permit royalty-free redistribution of
the Program by all those who receive copies directly or indirectly through you,
then the only way you could satisfy both it and this License would be to refrain
entirely from distribution of the Program.

If any portion of this section is held invalid or unenforceable under any
particular circumstance, the balance of the section is intended to apply and the
section as a whole is intended to apply in other circumstances.

It is not the purpose of this section to induce you to infringe any patents or
other property right claims or to contest validity of any such claims; this
section has the sole purpose of protecting the integrity of the free software
distribution system, which is implemented by public license practices. Many
people have made generous contributions to the wide range of software distributed
through that system in reliance on consistent application of that system; it is
up to the author/donor to decide if he or she is willing to distribute software
through any other system and a licensee cannot impose that choice.

This section is intended to make thoroughly clear what is believed to be a
consequence of the rest of this License.

 8. If the distribution and/or use of the Program is restricted in certain
countries either by patents or by copyrighted interfaces, the original copyright
holder who places the Program under this License may add an explicit geographical
distribution limitation excluding those countries, so that distribution is
permitted only in or among countries not thus excluded. In such case, this
License incorporates the limitation as if written in the body of this License.

 9. The Free Software Foundation may publish revised and/or new versions of the
General Public License from time to time. Such new versions will be similar in
spirit to the present version, but may differ in detail to address new problems
or concerns.

Each version is given a distinguishing version number. If the Program specifies
a version number of this License which applies to it and "any later version", you
have the option of following the terms and conditions either of that version or
of any later version published by the Free Software Foundation. If the Program
does not specify a version number of this License, you may choose any version
ever published by the Free Software Foundation.

 10. If you wish to incorporate parts of the Program into other free programs
whose distribution conditions are different, write to the author to ask for
permission. For software which is copyrighted by the Free Software Foundation,
write to the Free Software Foundation; we sometimes make exceptions for this.
Our decision will be guided by the two goals of preserving the free status of all
derivatives of our free software and of promoting the sharing and reuse of
software generally.

 NO WARRANTY

 11. BECAUSE THE PROGRAM IS LICENSED FREE OF CHARGE, THERE IS NO WARRANTY FOR
THE PROGRAM, TO THE EXTENT PERMITTED BY APPLICABLE LAW. EXCEPT WHEN OTHERWISE
STATED IN WRITING THE COPYRIGHT HOLDERS AND/OR OTHER PARTIES PROVIDE THE PROGRAM

FAT 16/32 File System Driver for ATMEL AVR – Page 25 of 25

Developed by Angelo Bannack and Giordano Bruno Wolaniuk

"AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT
NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
PARTICULAR PURPOSE. THE ENTIRE RISK AS TO THE QUALITY AND PERFORMANCE OF THE
PROGRAM IS WITH YOU. SHOULD THE PROGRAM PROVE DEFECTIVE, YOU ASSUME THE COST OF
ALL NECESSARY SERVICING, REPAIR OR CORRECTION.

 12. IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRITING WILL
ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MAY MODIFY AND/OR REDISTRIBUTE THE
PROGRAM AS PERMITTED ABOVE, BE LIABLE TO YOU FOR DAMAGES, INCLUDING ANY GENERAL,
SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF THE USE OR INABILITY
TO USE THE PROGRAM (INCLUDING BUT NOT LIMITED TO LOSS OF DATA OR DATA BEING
RENDERED INACCURATE OR LOSSES SUSTAINED BY YOU OR THIRD PARTIES OR A FAILURE OF
THE PROGRAM TO OPERATE WITH ANY OTHER PROGRAMS), EVEN IF SUCH HOLDER OR OTHER
PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

 END OF TERMS AND CONDITIONS

