
APPLICATION
NOTE

AP-440

February 1990

8XC51FA/FB/FC
PCA Cookbook

Order Number: 270851-001

Information in this document is provided in connection with Intel products. Intel assumes no liability whatsoev-
er, including infringement of any patent or copyright, for sale and use of Intel products except as provided in
Intel’s Terms and Conditions of Sale for such products.

Intel retains the right to make changes to these specifications at any time, without notice. Microcomputer
Products may have minor variations to this specification known as errata.

*Other brands and names are the property of their respective owners.

²Since publication of documents referenced in this document, registration of the Pentium, OverDrive and
iCOMP trademarks has been issued to Intel Corporation.

Contact your local Intel sales office or your distributor to obtain the latest specifications before placing your
product order.

Copies of documents which have an ordering number and are referenced in this document, or other Intel
literature, may be obtained from:

Intel Corporation
P.O. Box 7641
Mt. Prospect, IL 60056-7641

or call 1-800-879-4683

COPYRIGHT © INTEL CORPORATION, 1995

8XC51FA/FB/FC PCA
COOKBOOK

CONTENTS PAGE

PCA OVERVIEW ÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀ 1

PCA TIMER/COUNTER ÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀ 1

COMPARE/CAPTURE MODULES ÀÀÀÀÀÀÀÀÀ 3

CAPTURE MODE ÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀ 5

Measuring Pulse Widths ÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀ 5

Measuring Periods ÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀ 7

Measuring Frequencies ÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀ 7

Measuring Duty Cycles ÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀ 9

Measuring Phase Differences ÀÀÀÀÀÀÀÀÀÀÀÀÀ 10

Reading the PCA Timer ÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀ 13

COMPARE MODE ÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀ 13

SOFTWARE TIMER ÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀ 13

HIGH SPEED OUTPUT ÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀ 15

WATCHDOG TIMER ÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀ 18

PULSE WIDTH MODULATOR ÀÀÀÀÀÀÀÀÀÀÀÀ 19

CONCLUSION ÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀ 21

APPENDICES

A. Test Routines ÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀ A-1

B. Duty Cycle Calculation ÀÀÀÀÀÀÀÀÀÀÀÀ B-1

C. Special Function Registers ÀÀÀÀÀÀÀÀ C-1

FIGURES PAGE

1. PCA Timer/Counter and Compare/
Capture Modules ÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀ 1

2. PCA Interrupt ÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀ 4

3. PCA Capture Mode ÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀ 5

4. Measuring Pulse Width ÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀ 5

5. Measuring Period ÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀ 7

6. Measuring Frequency ÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀ 7

7. Measuring Duty Cycle ÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀ 9

8. Measuring Phase Differences ÀÀÀÀÀÀÀÀÀÀÀ 10

9. Software Timer Mode ÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀ 13

10. High Speed Output Mode ÀÀÀÀÀÀÀÀÀÀÀÀÀÀ 15

11. Watchdog Timer Mode ÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀ 18

12. PWM Mode ÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀ 19

13. CCAPnH Varies Duty Cycle ÀÀÀÀÀÀÀÀÀÀÀÀ 20

LISTINGS PAGE

1. Measuring Pulse Widths ÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀ 6

2. Measuring Frequencies ÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀ 8

3. Measuring Duty Cycle ÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀ 9

4. Measuring Phase Differences ÀÀÀÀÀÀÀÀÀÀÀ 11

5. Software Timer ÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀ 14

6. High Speed Output (Without
Interrupt) ÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀ 15

7. High Speed Output (With Interrupt) ÀÀÀÀÀÀ 16

8. High Speed Output (Single Pulse) ÀÀÀÀÀÀÀ 17

9. Watchdog Timer ÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀ 19

10. PWM ÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀ 21

TABLES PAGE

1. PCA Timer/Counter Inputs ÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀ 2

2. CMOD Values ÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀ 2

3. Compare/Capture Mode Values ÀÀÀÀÀÀÀÀÀÀ 3

4. PWM Frequencies ÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀ 20

AP-440

This application note illustrates the different functions
of the Programmable Counter Array (PCA) which are
available on the 8XC51FA/FB/FC. Included are cook-
book samples of code in typical applications to simplify
the use of the PCA. Since all the examples are written
in assembly language, it is assumed the reader is famil-
iar with ASM51. For further information on these
products or ASM51 refer to the Embedded Controller
Handbook (Vol. I).

PCA OVERVIEW

The major new feature on the 8XC51FA/FB/FC is the
Programmable Counter Array. The PCA provides
more timing capabilities with less CPU intervention
than the standard timer/counters. Its advantages in-
clude reduced software overhead and improved accura-
cy.

The PCA consists of a dedicated timer/counter which
serves as the time base for an array of five compare/
capture modules. Figure 1 shows a block diagram of
the PCA. Notice that the PCA timer and modules are
all 16-bits. If an external event is associated with a
module, that function is shared with the corresponding
Port 1 pin. If the module is not using the port pin, the
pin can still be used for standard I/O.

Each of the five modules can be programmed in any
one of the following modes:

- Rising and/or Falling Edge Capture

- Software Timer

- High Speed Output

- Watchdog Timer (Module 4 only)

- Pulse Width Modulator. (PWM)

All of these modes will be discussed later in detail.
However, let’s first look at how to set up the PCA
timer and modules.

PCA TIMER/COUNTER

The timer/counter for the PCA is a free-running 16-bit
timer consisting of registers CH and CL (the high and
low bytes of the count values). It is the only timer
which can service the PCA. The clock input can be
selected from the following four modes:

- oscillator frequency d 12 (Mode 0)

- oscillator frequency d 4 (Mode 1)

- Timer 0 overflows (Mode 2)

- external input on P1.2 (Mode 3)

270851–1

Figure 1. PCA Timer/Counter and Compare/Capture Modules

1

AP-440

The table below summarizes the various clock inputs for each mode at two common frequencies. In Mode 0, the
clock input is simply a machine cycle count, whereas in Mode 1 the input is clocked three times faster. In Mode 2,
Timer 0 overflows are counted allowing for a range of slower inputs to the timer. And finally, if the input is external
the PCA timer counts 1-to-0 transitions with the maximum clock frequency equal to (/8 x oscillator frequency.

Table 1. PCA Timer/Counter Inputs

PCA Timer/Counter Mode
Clock Increments

12 MHz 16 MHz

Mode 0: fosc / 12 1 msec 0.75 msec

Mode 1: fosc / 4 330 nsec 250 nsec

Mode 2*: Timer 0 Overflows

Timer 0 programmed in:

8-bit mode 256 msec 192 msec

16-bit mdoe 65 msec 49 msec

8-bit auto-reload 1 to 255 msec 0.75 to 191 msec

Mode 3: External Input MAX 0.66 msec 0.50 msec

*In Mode 2, the overflow interrupt for Timer 0 does not need to be enabled.

Special Function Register CMOD contains the Count Pulse Select bits (CPS1 and CPS0) to specify the PCA timer
input. This register also contains the ECF bit which enables an interrupt when the counter overflows. In addition,
the user has the option of turning off the PCA timer during Idle Mode by setting the Counter Idle bit (CIDL). This
can further reduce power consumption by an additional 30%.

CMOD: Counter Mode Register

CIDL WDTE Ð Ð Ð CPS1 CPS0 ECF

Address e 0D9H Reset Value e 00XX X000B

Not Bit Addressable

NOTE:
The user should write 0s to unimplemented bits. These bits may be used in future MCS-51 products to invoke new features,
and in that case the inactive value of the new bit will be 0. When read, these bits must be treated as don’t-cares.

Table 2 lists the values for CMOD in the four possible timer modes with and without the overflow interrupt enabled.
This list assumes that the PCA will be left running during Idle Mode.

Table 2. CMOD Values

PCA Count Pulse Selected
CMOD value

without interrupt enabled with interrupt enabled

Internal clock, Fosc/12 00 H 01 H

Internal clock, Fosc/ 4 02 H 03 H

Timer 0 overflow 04H 05 H

External clock at P1.2 06 H 07 H

2

AP-440

The CCON register shown below contains the Counter Run bit (CR) which turns the timer on or off. When the PCA
timer overflows, the Counter Overflow bit (CF) gets set. CCON also contains the five event flags for the PCA
modules. The purpose of these flags will be discussed in the next section.

CCON: Counter Control Register

CF CR Ð CCF4 CCF3 CCF2 CCF1 CCF0

Address e 0D8H Reset Value e 00X0 0000B

Bit Addressable

The PCA timer registers (CH and CL) can be read and written to at any time. However, to read the full 16-bit timer
value simultaneously requires using one of the PCA modules in the capture mode and toggling a port pin in software.
More information on reading the PCA timer is provided in the section on the Capture Mode.

COMPARE/CAPTURE MODULES

Each of the five compare/capture modules has a mode register called CCAPMn (n e 0,1,2,3,or 4) to select which
function it will perform. Note the ECCFn bit which enables an interrupt to occur when a module’s event flag is set.

CCAPMn: Compare/Capture Mode Register

Ð ECOMn CAPPn CAPNn MATn TOGn PWMn ECCFn

Address e 0DAH (ne0) Reset Value e X000 0000B

0DBH (ne1)

0DCH (ne2)

0DDH (ne3)

0DEH (ne4)

Table 3 lists the CCAPMn values for each different mode with and without the PCA interrupt enabled; that is, the
interrupt is optional for all modes. However, some of the PCA modes require software servicing. For example, the
Capture modes need an interrupt so that back-to-back events can be recognized. Also, in most applications the
purpose of the Software Timer mode is to generate interrupts in software so it would be useless not to have the
interrupt enabled. The PWM mode, on the other hand, does not require CPU intervention so the interrupt is
normally not enabled.

Table 3. Compare/Capture Mode Values

Module Function
CCAPMn Value

without interrupt enabled with interrupt enabled

Capture Positive only 20H 21 H

Capture Negative only 10H 11 H

Capture Pos. or Neg. 30H 31 H

Software Timer 48H 49 H

High Speed Output 4C H 4D H

Watchdog Timer 48 or 4C H Ð

Pulse Width Modulator 42 H 43H

3

AP-440

It should be mentioned that a particular module can change modes within the program. For example, a module
might be used to sample incoming data. Initially it could be set up to capture a falling edge transition. Then the same
module can be reconfigured as a software timer to interrupt the CPU at regular intervals and sample the pin.

Each module also has a pair of 8-bit compare/capture registers (CCAPnH, CCAPnL) associated with it. These
registers are used to store the time when a capture event occurred or when a compare event should occur. Remem-
ber, event times are based on the free-running PCA timer (CH and CL). For the PWM mode, the high byte register
CCAPnH controls the duty cycle of the waveform.

When an event occurs, a flag in CCON is set for the appropriate module. This register is bit addressable so that event
flags can be checked individually.

CCON: Counter Control Register

CF CR Ð CCF4 CCF3 CCF2 CCF1 CCF0

Address e 0D8H Reset Value e 00X0 0000B

Bit Addressable

These five event flags plus the PCA timer overflow flag share an interrupt vector as shown below. These flags are not
cleared when the hardware vectors to the PCA interrupt address (0033H) so that the user can determine which event
caused the interrupt. This also allows the user to define the priority of servicing each module.

270851–2

Figure 2. PCA Interrupt

An additional bit was added to the Interrupt Enable (IE) register for the PCA interrupt. Similarly, a high priority bit
was added to the Interrupt Priority (IP) register.

IE: Interrupt Enable Register

EA EC ET2 ES ET1 EX1 ET0 EX0

Address e 0A8H Reset Value e 0000 0000B

Bit Addressable

IP: Interrupt Priority Register

Ð PPC PT2 PS PT1 PX1 PT0 PX0

Address e 0B8H Reset Value e X000 0000B

Bit Addressable

Remember, each of the six possible sources for the PCA interrupt must be individually enabled as wellÐin the
CCAPMn register for the modules and in the CCON register for the timer.

4

AP-440

CAPTURE MODE

Both positive and negative transitions can trigger a cap-
ture with the PCA. This allows the PCA flexibility to
measure periods, pulse widths, duty cycles, and phase
differences on up to five separate inputs. This section
gives examples of all these different applications.

Figure 3 shows how the PCA handles a capture event.
Using Module 0 for this example, the signal is input to
P1.3. When a transition is detected on that pin, the 16-
bit value of the PCA timer (CH,CL) is loaded into the
capture registers (CCAP0H,CCAP0L). Module 0’s
event flag is set and an interrupt is flagged. The inter-
rupt will then be generated if it has been properly en-
abled.

In the interrupt service routine, the 16-bit capture value
must be saved in RAM before the next event capture
occurs; a subsequent capture will write over the first
capture value. Also, since the hardware does not clear
the event flag, it must be cleared in software.

The time it takes to service this interrupt routine deter-
mines the resolution of back-to-back events with the
same PCA module. To store two 8-bit registers and
clear the event flag takes at least 9 machine cycles. That
includes the call to the interrupt routine. At 12 MHz,
this routine would take less than 10 microseconds.
However, depending on the frequency and interrupt la-
tency, the resolution will vary with each application.

Measuring Pulse Widths

To measure the pulse width of a signal, the PCA mod-
ule must capture both rising and falling edges (see Fig-
ure 4). The module can be programmed to capture ei-
ther edge if it is known which edge will occur first.
However, if this is not known, the user can select which
edge will trigger the first capture by choosing the prop-
er mode for the module.

Listing 1 shows an example of measuring pulse widths.
(It’s assumed the incoming signal matches the one in
Figure 4.) In the interrupt routine the first set of cap-
ture values are stored in RAM. After the second cap-
ture, a subtraction routine calculates the pulse width in
units of PCA timer ticks. Note that the subtraction
does not have to be completed in the interrupt service
routine. Also, this example assumes that the two cap-
ture events will occur within 216 counts of the PCA
timer, i.e. rollovers of the PCA timer are not counted.

270851–4

Time (Capture 2) b Time (Capture 1) e Pulse Width

Figure 4. Measuring Pulse Width

270851–3

Figure 3. PCA Capture Mode (Module 0)

5

AP-440

Listing 1. Measuring Pulse Widths

; RAM locations to store capture values
CAPTURE DATA 30H
PULSE WIDTH DATA 32H
FLAG BIT 20H.0

;
ORG 0000H
JMP PCA INIT
ORG 0033H
JMP PCA INTERRUPT
;
PCA INIT: ; Initialize PCA timer

MOV CMOD, #00H ; Input to timer 4 1/12 X Fosc
MOV CH, #00H
MOV CL, #00H

;
; Initialize Module 0 in capture mode

MOV CCAPM0, #21H ; Capture positive edge first
; for measuring pulse width

;
SETB EC ; Enable PCA interrupt
SETB EA
SETB CR ; Turn PCA timer on
CLR FLAG ; clear test flag

;
; **
; Main program goes here
; **
;
; This example assumes Module 0 is the only PCA module
; being used. If other modules are used, software must
; check which module’s event caused the interrupt.
;
PCA INTERRUPT:

CLR CCF0 ; Clear Module 0’s event flag
JB FLAG, SECOND CAPTURE ; Check if this is the first

; capture or second
FIRST CAPTURE:

MOV CAPTURE, CCAP0L ; Save 16-bit capture value
MOV CAPTURE01, CCAP0H ; in RAM
MOV CCAPM0, #11H ; Change module to now capture

; falling edges
SETB FLAG ; Signify 1st capture complete
RETI

;
SECOND CAPTURE:

PUSH ACC
PUSH PSW
CLR C
MOV A, CCAP0L ; 16-bit subtract
SUBB A, CAPTURE
MOV PULSE WIDTH, A ; 16-bit result stored in
MOV A, CCAP0H ; two 8-bit RAM locations
SUBB A, CAPTURE01
MOV PULSE WIDTH01, A
;
MOV CCAPM0, #21H ; OptionalÐneeded if user wants to
CLR FLAG ; measure next pulse width
POP PSW
POP ACC
RETI

6

AP-440

Measuring Periods

Measuring the period of a signal with the PCA is simi-
lar to measuring the pulse width. The only difference
will be the trigger source for the capture mode. In Fig-
ure 5, rising edges are captured to calculate the period.
The code is identical to Listing 1 except that the cap-
ture mode should not be changed in the interrupt rou-
tine. The result of the subtraction will be the period.

Measuring Frequencies

Measuring a frequency with the PCA capture mode
involves calculating a sample time for a known number
of samples. In Figure 6, the time between the first cap-
ture and the ‘‘Nth’’ capture equals the sample time T.
Listing 2 shows the code for N e 10 samples. It’s as-
sumed that the sample time is less than 216 counts of
the PCA timer.

270851–5

Time (Capture 2) b Time (Capture 1) e Period

Figure 5. Measuring Period

270851–6

Time (Capture N) b Time (Capture 1) e T

Frequency e

N

T
e

Ý of Samples

Sample Time

Figure 6. Measuring Frequency

7

AP-440

Listing 2. Measuring Frequencies

; RAM locations to store capture values
CAPTURE DATA 30H
PERIOD DATA 32H
SAMPLE COUNT DATA 34H
FLAG BIT 20H.0

;
ORG 0000H
JMP PCA INIT
ORG 0033H
JMP PCA INTERRUPT
;
PCA INIT:
; Initialization of PCA timer, Module 0, and interrupt is the
; same as in Listing 1. Also need to initialize the sample
; count.
;

MOV SAMPLE COUNT, #10D ; N 4 10 for this example
;
;***
; Main program goes here
;***
;
; This code assumes only Module 0 is being used.
PCA INTERRUPT:

CLR CCF0 ; Clear module 0’s event flag
JB FLAG, NEXT CAPTURE

;
FIRST CAPTURE:

MOV CAPTURE, CCAP0L
MOV CAPTURE01, CCAP0H
SETB FLAG ; Signify first capture complete
RETI

;
NEXT CAPTURE:

DJNZ SAMPLE COUNT, EXIT
PUSH ACC
PUSH PSW
CLR C
MOV A, CCAP0L ; 16-bit subtraction
SUBB A, CAPTURE
MOV PERIOD, A
MOV A, CCAP0H
SUBB A, CAPTURE01
MOV PERIOD01, A
;
MOV SAMPLE COUNT, #10D ; Reload for next period
CLR FLAG
POP PSW
POP ACC

EXIT:
RETI

8

AP-440

The user may instead want to measure frequency by
counting pulses for a known sample time. In this case,
one module is programmed in the capture mode to
count edges (either rising or falling), and a second mod-
ule is programmed as a software timer to mark the
sample time. An example of a software timer is given
later. For information on resolution in measuring fre-
quencies, refer to Article Reprint AR-517, ‘‘Using the
8051 Microcontroller with Resonant Transducers,’’ in
the Embedded Controller Handbook.

Measuring Duty Cycles

To measure the duty cycle of an incoming signal, both
rising and falling edges need to be captured. Then the
duty cycle must be calculated based on three capture
values as seen in Figure 7. The same initialization rou-
tine is used from the previous example. Only the PCA
interrupt service routine is given in Listing 3.

270851–7

Time (Capture 2) b Time (Capture 1)

Time (Capture 3) b Time (Capture 1)
e

pulse width

period
e duty cycle

Figure 7. Measuring Duty Cycle

Listing 3. Measuring Duty Cycle

; RAM locations to store capture values
CAPTURE DATA 30H
PULSE WIDTH DATA 32H
PERIOD DATA 34H
FLAG 1 BIT 20H.0
FLAG 2 BIT 20H.1

;
ORG 0000H
JMP PCA INIT
ORG 0033H
JMP PCA INTERRUPT
;
PCA INIT:
; Initialization for PCA timer, module, and interrupt the same
; as in Listing 1. Capture positive edge first, then either
; edge.
;
;**
; Main program goes here
;**
;
; This code assumes only Module 0 is being used.
PCA INTERRUPT:

CLR CCF0 ; Clear Module 0’s event flag
JB FLAG 1, SECOND CAPTURE

;
FIRST CAPTURE:

MOV CAPTURE, CCAP0L
MOV CAPTURE01, CCAP0H
SETB FLAG 1 ; Signify first capture complete
MOV CCAPM0, #31H ; Capture either edge now
RETI

9

AP-440

Listing 3. Measuring Duty Cycle (Continued)

;
SECOND CAPTURE:

PUSH ACC
PUSH PSW
JB FLAG 2, THIRD CAPTURE
CLR C ; Calculate pulse width
MOV A, CCAP0L ; 16-bit subtract
SUBB A, CAPTURE
MOV PULSE WIDTH, A
MOV A, CCAP0H
SUBB A, CAPTURE01
MOV PULSE WIDTH01, A
SETB FLAG 2 ; Signify second capture complete
POP PSW
POP ACC
RETI

;
THIRD CAPTURE:

CLR C ; Calculate period
MOV A, CCAP0L ; 16-bit subtract
SUBB A, CAPTURE
MOV PERIOD, A
MOV A, CCAP0H
SUBB A, CAPTURE01
MOV PERIOD01, A
MOV CCAPM0, #21H ; Optional – reconfigure module to
CLR FLAG 1 ; capture positive edges for next
CLR FLAG 2 ; cycle
POP PSW
POP ACC
RETI

After the third capture, a 16-bit by 16-bit divide routine
needs to be executed. This routine is located in Appen-
dix B. Due to its length, it’s up to the user whether the
divide routine should be completed in the interrupt rou-
tine or be called as a subroutine from the main pro-
gram.

Measuring Phase Differences

Because the PCA modules share the same time base,
the PCA is useful for measuring the phase difference

between two or more signals. For this example, two
signals are input to Modules 0 and 1 as seen in Figure
8. Both modules are programmed to capture rising edg-
es only. Listing 4 shows the code needed to measure the
difference between these two signals. This code does
not assume one signal is leading or lagging the other.

270851–8

ABS [Time (Capture 2) b Time (Capture 1)] e Phase Difference

Figure 8. Measuring Phase Differences

10

AP-440

Listing 4. Measuring Phase Differences

; RAM locations to store capture values
CAPTURE 0 DATA 30H
CAPTURE 1 DATA 32H
PHASE DATA 34H
FLAG 0 BIT 20H.0
FLAG 1 BIT 20H.1

;
ORG 0000H
JMP PCA INIT
ORG 0033H
JMP PCA INTERRUPT
;
PCA INIT:
; Same initialization for PCA timer, and interrupt as
; in Listing 1. Initialize two PCA modules as follows:
;

MOV CCAPM0, #21H ; Module 0 capture rising edges
MOV CCAPM1, #21H ; Module 1 same

;
;**
; Main program goes here
;**
; This code assumes only Modules 0 and 1 are being used.
PCA INTERRUPT:

JB CCF0, MODULE 0 ; Determine which module’s
JB CCF1, MODULE 1 ; event caused the interrupt

;
MODULE 0:

CLR CCF0 ; Clear Module 0’s event flag
MOV CAPTURE 0, CCAP0L ; Save 16-bit capture value
MOV CAPTURE 001, CCAP0H
JB FLAG 1, CALCULATE PHASE ; If capture complete on

; Module 1, go to calculation
SETB FLAG 0 ; Signify capture on Module 0
RETI

11

AP-440

Listing 4. Measuring Phase Differences (Continued)

MODULE 1:
CLR CCF 1 ; Clear Module 1’s event flag
MOV CAPTURE 1, CCAP1L
MOV CAPTURE 101, CCAP1H
JB FLAG 0, CALCULATE PHASE ; If capture complete on

; Module 0, go to calculation
SETB FLAG 1 ; Signify capture on Module 1
RETI

;
CALCULATE PHASE:

PUSH ACC ; This calculation does not
PUSH PSW ; have to be completed in the
CLR C ; interrupt service routine

;
JB FLAG 0, MOD0 LEADING
JB FLAG 1, MOD1 LEADING

;
MOD0 LEADING:

MOV A, CAPTURE 1
SUBB A, CAPTURE 0
MOV PHASE, A
MOV A, CAPTURE 101
SUBB A, CAPTURE 001
MOV PHASE01, A
CLR FLAG 0
JMP EXIT

;
MOD1 LEADING:

MOV A, CAPTURE 0
SUBB A, CAPTURE 1
MOV PHASE, A
MOV A, CAPTURE 001
SUBB A, CAPTURE 101
MOV PHASE01, A
CLR FLAG 1

EXIT:
POP PSW
POP ACC
RETI

12

AP-440

Reading the PCA Timer

Some applications may require that the PCA timer be
read instantaneously as a real-time event. Since the tim-
er consists of two 8-bit registers (CH,CL), it would nor-
mally take two MOV instructions to read the whole
timer. An invalid read could occur if the registers rolled
over in the middle of the two MOVs.

However, with the capture mode a 16-bit timer value
can be loaded into the capture registers by toggling a
port pin. For example, configure Module 0 to capture
falling edges and initialize P1.3 to be high. Then when
the user wants to read the PCA timer, clear P1.3 and
the full 16-bit timer value will be saved in the capture
registers. It’s still optional whether the user wants to
generate an interrupt with the capture.

COMPARE MODE

In this mode, the 16-bit value of the PCA timer is com-
pared with a 16-bit value pre-loaded in the module’s
compare registers. The comparison occurs three times
per machine cycle in order to recognize the fastest pos-
sible clock input, i.e. (/4 x oscillator frequency. When
there is a match, one of three events can happen:

(1) an interrupt Ð Software Timer mode

(2) toggle of a port pin Ð High Speed Output mode

(3) a reset Ð Watchdog Timer mode.

Examples of each compare mode will follow.

SOFTWARE TIMER

In most applications a software timer is used to trigger
interrupt routines which must occur at periodic inter-
vals. Figure 9 shows the sequence of events for the Soft-
ware Timer mode. The user preloads a 16-bit value in a
module’s compare registers. When a match occurs be-
tween this compare value and the PCA timer, an event
flag is set and an interrupt is flagged. An interrupt is
then generated if it has been enabled.

If necessary, a new 16-bit compare value can be loaded
into (CCAP0H, CCAP0L) during the interrupt rou-
tine. The user should be aware that the hardware tempo-
rarily disables the comparator function while these regis-
ters are being updated so that an invalid match will not
occur. That is, a write to the low byte (CCAPn0) dis-
ables the comparator while a write to the high byte
(CCAP0H) re-enables the comparator. For this reason,
user software must write to CCAP0L first, then
CCAP0H. The user may also want to hold off any in-
terrupts from occurring while these registers are being
updated. This can easily be done by clearing the EA bit.
See the code example in Listing 5.

270851–9

Figure 9. Software Timer Mode (Module 0)

13

AP-440

Listing 5. Software Timer

; Generate an interrupt in software every 20 msec
;
;
; Frequency 4 12 MHz
; PCA clock input 4 1/12 x Fosc x 1 msec
;
; Calculate reload value for compare registers:
; 20 msec
; ------------- 4 20,000 counts
; 1 msec/count
;
ORG 0000H
JMP PCA INIT
ORG 0033H
JMP PCA INTERRUPT
;
PCA INIT:
; Initialize PCA timer same as in Listing 1
; MOV CCAPM0, #49H ; Module 0 in Software Timer mode

MOV CCAP0L, #LOW(20000) ; Write to low byte first
MOV CCAP0H, #HIGH(20000)

;
SETB EC ; Enable PCA interrupt
SETB EA
SETB CR ; Turn on PCA timer

;
; ***
; Main program goes here
; ***
;
PCA INTERRUPT:

CLR CCF0 ; Clear Module 0’s event flag
PUSH ACC
PUSH PSW
CLR EA ; Hold off interrupts
MOV A, #LOW(20000) ; 16-Bit Add
ADD A, CCAP0L ; Next match will occur
MOV CCAP0L, A ; 20,000 counts later
MOV A, #HIGH(20000)
ADDC A, CCAP0H
MOV CCAP0H, A
SETB EA

; .
; .
; Continue with routine
; .
; .

POP PSW
POP ACC
RETI

14

AP-440

HIGH SPEED OUTPUT

The High Speed Output (HSO) mode toggles a port pin when a match occurs between the PCA timer and the pre-
loaded value in the compare registers (see Figure 10). The HSO mode is more accurate than toggling pins in software
because the toggle occurs before branching to an interrupt, i.e. interrupt latency will not effect the accuracy of the
output. In fact, the interrupt is optional. Only if the user wants to change the time for the next toggle is it necessary
to update the compare registers. Otherwise, the next toggle will occur when the PCA timer rolls over and matches
the last compare value. Examples of both are shown.

270851–10

Figure 10. High Speed Output Mode (Module 0)

Without any CPU intervention, the fastest waveform the PCA can generate with the HSO mode is a 30.5 Hz signal
at 16 MHz. Refer to Listing 6. By changing the PCA clock input, slower waveforms can also be generated.

Listing 6. High Speed Output (Without Interrupt)

; Maximum output with HSO mode without interrupts 4 30.5 Hz signal
; Frequency 4 16 MHz
; PCA clock input 4 1/4 x Fosc x 250 nsec
;

MOV CMOD, #02H
MOV CL, #00H
MOV CH, #00H
MOV CCAPM0, #4CH ; HSO mode without interrupt enabled
MOV CCAP0L, #0FFH ; Write to low byte first
MOV CCAP0H, #0FFH ; P1.3 will toggle every 216 counts

; or 16.4 msec
; Period 4 30.5 Hz

SETB CR ; Turn on PCA timer

15

AP-440

In this next example, the PCA interrupt is used to change the compare value for each toggle. This way a variable
frequency output can be generated. Listing 7 shows an output of 1 KHz at 16 Mhz.

Listing 7. High Speed Output (With Interrupt)

270851–11

ORG 0000H
JMP PCA INIT
ORG 0033H
JMP PCA INTERRUPT

;
PCA INIT:

MOV CMOD, #02H ; Clock input 4 250 nsec
MOV CL, #00H ; at 16 MHz
MOV CH, #00H
MOV CCAPM0, #4DH ; Module 0 in HSO mode with
MOV CCAP0L, #LOW(1000) ; PCA interrupt enabled
MOV CCAP0H, #HIGH(1000) ; t 4 1000 (arbitrary)
CLR P1.3

;
SETB EC ; Enable PCA interrupt
SETB EA
SETB CR ; Turn on PCA timer

;
; ***
; Main program goes here
; ***
;
; This code assumes only Module 0 is being used.
PCA INTERRUPT:

CLR CCF0 ; Clear Module 0’s event flag
PUSH ACC
PUSH PSW
CLR EA ; Hold off interrupts
MOV A, #LOW(2000) ; 16-bit add
ADD A, CCAP0L ; 2000 counts later, P1.3
MOV CCAP0L, A ; will toggle
MOV A, #HIGH(2000)
ADDC A, CCAP0H
MOV CCAP0H, A
SETB EA
POP PSW
POP ACC
RETI

16

AP-440

Another option with the HSO mode is to generate a single pulse. Listing 8 shows the code for an output with a pulse
width of 20 msec. As in the previous example, the PCA interrupt will be used to change the time for the toggle. The
first toggle will occur at time ‘‘t’’. After 80 counts of the PCA timer, 20 msec will have expired, and the next toggle
will occur. Then the HSO mode will be disabled.

Listing 8. High Speed Output (Single Pulse)

270851–12

ORG 0000H

JMP PCA INIT

ORG 0033H

JMP PCA INTERRUPT

;

PCA INIT:

MOV CMOD, #02H ; Clock input 4 250 nsec

MOV CL, #00H ; at 16 MHz

MOV CH, #00H

MOV CCAPM0, #4DH ; Module 0 in HSO mode with

MOV CCAP0L, #LOW(1000) ; PCA interrupt enabled

MOV CCAP0H, #HIGH(1000) ; t 4 1000 (arbitrary)

CLR P1.3

;

SETB EC ; Enable PCA interrupt

SETB EA

SETB CR ; Turn on PCA timer

;

; ***
; Main program goes here

; ***
;

; This code assumes only Module 0 is being used.

PCA INTERRUPT:

CLR CCF0 ; Clear Module 0’s event flag

JNB P1.3, DONE

;

PUSH ACC

PUSH PSW

CLR EA ; Hold off interrupts

MOV A, #LOW(80) ; 16-bit add

ADD A, CCAP0L ; 80 counts later, P1.3

MOV CCAP0L, A ; will toggle

MOV A, #HIGH(80)

ADDC A, CCAP0H

MOV CCAP0H, A

SETB EA

POP PSW

POP ACC

RETI

;

DONE:

MOV CCAPM0, #00H ; Disable HSO mode

RETI

17

AP-440

WATCHDOG TIMER

An on-board watchdog timer is available with the PCA
to improve the reliability of the system without increas-
ing chip count. Watchdog timers are useful for systems
which are susceptible to noise, power glitches, or elec-
trostatic discharge. Module 4 is the only PCA module
which can be programmed as a watchdog. However,
this module can still be used for other modes if the
watchdog is not needed.

Figure 11 shows a diagram of how the watchdog works.
The user pre-loads a 16-bit value in the compare regis-
ters. Just like the other compare modes, this 16-bit val-
ue is compared to the PCA timer value. If a match is
allowed to occur, an internal reset will be generated.
This will not cause the RST pin to be driven high.

In order to hold off the reset, the user has three options:

(1) periodically change the compare value so it will
never match the PCA timer,

(2) periodically change the PCA timer value so it will
never match the compare value, or

(3) disable the watchdog by clearing the WDTE bit be-
fore a match occurs and then re-enable it.

The first two options are more reliable because the
watchdog timer is never disabled as in option Ý3. If the
program counter ever goes astray, a match will eventu-
ally occur and cause an internal reset. The second op-
tion is also not recommended if other PCA modules are
being used. Remember, the PCA timer is the time base
for all modules; changing the time base for other mod-
ules would not be a good idea. Thus, in most applica-
tions the first solution is the best option.

Listing 9 shows the code for initializing the watchdog
timer. Module 4 can be configured in either compare
mode, and the WDTE bit in CMOD must also be set.
The user’s software then must periodically change
(CCAP4H,CCAP4L) to keep a match from occurring
with the PCA timer (CH,CL). This code is given in the
WATCHDOG routine.

This routine should not be part of an interrupt service
routine. Why? Because if the program counter goes as-
tray and gets stuck in an infinite loop, interrupts will
still be serviced and the watchdog will keep getting re-
set. Thus, the purpose of the watchdog would be defeat-
ed. Instead call this subroutine from the main program
within 216 count of the PCA timer.

270851–13

Figure 11. Watchdog Timer Mode (Module 4)

18

AP-440

Listing 9. Watchdog Timer

INIT WATCHDOG:
MOV CCAPM4, #4CH ; Module 4 in compare mode
MOV CCAP4L, #0FFH ; Write to low byte first
MOV CCAP4H, #0FFH ; Before PCA timer counts up to

; FFFF Hex, these compare values
; must be changed

ORL CMOD, #40H ; Set the WDTE bit to enable the
; watchdog timer without changing
; the other bits in CMOD

;
;**
;
; Main program goes here, but CALL WATCHDOG periodically.
;
;**
;
WATCHDOG:

CLR EA ; Hold off interrupts
MOV CCAP4L, #00 ; Next compare value is within
MOV CCAP4H, CH ; 255 counts of the current PCA
SETB EA ; timer value
RET

PULSE WIDTH MODULATOR

The PCA can generate 8-bit PWMs by comparing the
low byte of the PCA timer (CL) with the low byte of
the compare registers (CCAPnL). When
CL k CCAPnL the output is low. When
CL t CCAPnL the output is high.

To control the duty cycle of the output, the user actual-
ly loads a value into the high byte CCAPnH (see Figure
12). Since a write to this register is asynchronous, a new
value is not shifted into CCAPnL for comparison until

the next period of the output: that is, when CL rolls
over from 255 to 00. This mechanism provides ‘‘glitch-
free’’ writes to CCAPnH when the duty cycle of the
output is changed.

CCAPnH can contain any integer from 0 to 255, but
Figure 13 shows a few common duty cycles and the
corresponding values for CCAPnH. Note that a 0%
duty cycle can be obtained by writing to the port pin
directly with the CLR bit instruction. To calculate the
CCAPnH value for a given duty cycle, use the follow-
ing equation:

CCAPnH e 256 (1 - Duty Cycle)

where CCAPnH is an 8-bit integer and Duty Cycle is
expressed as a fraction.

270851–14

Figure 12. PWM Mode (Module 0)

19

AP-440

270851–15

Figure 13. CCAPnH Varies Duty Cycle

Table 4. PWM Frequencies.

PCA Timer Mode
PWM Frequency

12 MHz 16 MHz

1/12 Osc. Frequency 3.9 KHz 5.2 KHz

(/4 Osc. Frequency 11.8 KHz 15.6 KHz

Timer 0 Overflow:

8-bit 15.5 Hz 20.3 Hz

16-bit 0.06 Hz 0.08 Hz

8-bit Auto-Reload 3.9 KHz to 15.3 Hz 5.2 KHz to 20.3 Hz

External Input (Max) 5.9 KHz 7.8 KHz

20

AP-440

Listing 10. PWM

INIT-PWM:
MOV CMOD, #02H ; Clock input 4 250 nsec at 16 MHz
MOV CL, #00H ; Frequency of output 4 15.6 KHz
MOV CH, #00H
MOV CCAPM0, #42H ; Module 0 in PWM mode
MOV CCAP0L, #00H
MOV CCAP0H, #128D ; 50 percent duty cycle

;
SETB CR ; Turn on PCA timer

The frequency of the PWM output will depend on
which of the four inputs is chosen for the PCA timer.
The maximum frequency is 15.6 KHz at 16 MHz. Re-
fer to Table 4 for a summary of the different PWM
frequencies possible with the PCA.

Listing 10 shows how to initialize Module 0 for a PWM
signal at 50% duty cycle. Notice that no PCA interrupt
is needed to generate the PWM (i.e no software over-
head!). To create a PWM output on the 8051 requires a
hardware timer plus software overhead to toggle the
port pin. The advantage of the PCA is obvious, not to
mention it can support up to 5 PWM outputs with just
one chip.

CONCLUSION

This list of examples with the PCA is by no means
exhaustive. However, the advantages of the PCA can
easily be seen from the given applications. For example,
the PCA can provide better resolution than Timers 0, 1
and 2 because the PCA clock rate can be three times
faster. The PCA can also perform many tasks that
these hardware timers can not, i.e. measure phase dif-
ferences between signals or generate PWMs. In a sense,
the PCA provides the user with five more timer/coun-
ters in addition to Timers 0, 1 and 2 on the
8XC51FA/FB.

Appendix A includes test routines for all the software
examples in this application note. The divide routine
for calculating duty cycles is in Appendix B. And final-
ly, Appendix C is a table of the Special Function Regis-
ters for the 8XC51FA/FB with the new or modified
registers boldfaced.

21

AP-440

APPENDIX A
TEST ROUTINES

270851–16

A-1

AP-440

270851–17

A-2

AP-440

270851–18

A-3

AP-440

270851–19

A-4

AP-440

270851–20

A-5

AP-440

270851–21

A-6

AP-440

270851–22

A-7

AP-440

270851–23

A-8

AP-440

270851–24

A-9

AP-440

270851–25

A-10

AP-440

270851–26

A-11

AP-440

270851–27

A-12

AP-440

270851–28

A-13

AP-440

270851–29

270851–30

A-14

AP-440

270851–31

270851–32

A-15

AP-440

270851–33

A-16

AP-440

270851–34

A-17

AP-440

APPENDIX B
Duty Cycle Calculation

270851–35

B-1

AP-440

270851–36

B-2

AP-440

270851–37

B-3

AP-440

APPENDIX C

A map of the Special Function Register (SFR) space is
shown in Table A1. Those registers which are new or
have new bits added for the 8XC51FA/FB/FC have
been boldfaced.

Note that not all of the addresses are occupied. Unoc-
cupied addresses are not implemented on the chip.

Read accesses to these addresses will in general return
random data, and write accesses will have no effect.

User software should not write 1s to these unimple-
mented locations, since they may be used in future 8051
family products to invoke new features. In that case the
reset or inactive values of the new bits will always be 0,
and their active values will be 1.

Table A1. Special Function Register Memory Map and Values After Reset

F8 CH CCAP0H CCAP1H CCAP2H CCAP3H CCAP4H FF
00000000 XXXXXXXX XXXXXXXX XXXXXXXX XXXXXXXX XXXXXXXX

F0 * B F7
00000000

E8 CL CCAP0L CCAP1L CCAP2L CCAP3L CCAP4L EF
00000000 XXXXXXXX XXXXXXXX XXXXXXXX XXXXXXXX XXXXXXXX

E0 * ACC E7
00000000

D8 CCON CMOD CCAPM0 CCAPM1 CCAPM2 CCAPM3 CCAPM4 DF
00X00000 00XXX000 X0000000 X0000000 X0000000 X0000000 X0000000

D0 * PSW D7
00000000

C8 T2CON T2MOD RCAP2L RCAP2H TL2 TH2 CF
00000000 XXXXXXX0 00000000 00000000 00000000 00000000

C0 C7

B8 * IP SADEN BF
X0000000 00000000

B0 * P3 B7
11111111

A8 * IE SADDR AF
00000000 00000000

A0 * P2 A7
11111111

98 * SCON * SBUF 9F
00000000 XXXXXXXX

90 * P1 97
11111111

88 * TCON * TMOD * TL0 * TL1 * TH0 * TH1 8F
00000000 00000000 00000000 00000000 00000000 00000000

80 * P0 * SP * DPL * DPH *PCON ** 87
11111111 00000111 00000000 00000000 00XX0000

* e Found in the 8051 core (See 8051 Hardware Description in the Embedded Controller Handbook for explanations of
these SFRs).
** e See description of PCON SFR. Bit PCON.4 is not affected by reset.
X e Undefined.

C-1

