
MultiMediaCard™

User’s Manual

ADE-603-002A
Rev. 2.0
9/6/01
Hitachi, Ltd.



Cautions

1. Hitachi neither warrants nor grants licenses of any rights of Hitachi’s or any third party’s
patent, copyright, trademark, or other intellectual property rights for information contained in
this document.  Hitachi bears no responsibility for problems that may arise with third party’s
rights, including intellectual property rights, in connection with use of the information
contained in this document.

2. Products and product specifications may be subject to change without notice. Confirm that you
have received the latest product standards or specifications before final design, purchase or
use.

3. Hitachi makes every attempt to ensure that its products are of high quality and reliability.
However, contact Hitachi’s sales office before using the product in an application that
demands especially high quality and reliability or where its failure or malfunction may directly
threaten human life or cause risk of bodily injury, such as aerospace, aeronautics, nuclear
power, combustion control, transportation, traffic, safety equipment or medical equipment for
life support.

4. Design your application so that the product is used within the ranges guaranteed by Hitachi
particularly for maximum rating, operating supply voltage range, heat radiation characteristics,
installation conditions and other characteristics.  Hitachi bears no responsibility for failure or
damage when used beyond the guaranteed ranges.  Even within the guaranteed ranges,
consider normally foreseeable failure rates or failure modes in semiconductor devices and
employ systemic measures such as fail-safes, so that the equipment incorporating Hitachi
product does not cause bodily injury, fire or other consequential damage due to operation of
the Hitachi product.

5. This product is not designed to be radiation resistant.

6. No one is permitted to reproduce or duplicate, in any form, the whole or part of this document
without written approval from Hitachi.

7. Contact Hitachi’s sales office for any questions regarding this document or Hitachi
semiconductor products.



i

Contents

Section 1   History and Features of MultiMediaCard™............................................. 1
1.1 History of Flash Cards....................................................................................................... 1
1.2 Features of MultiMediaCard™.......................................................................................... 2
1.3 MMCA Standard Ver. 3.1 ................................................................................................. 4

Section 2   Overview of Hitachi MultiMediaCard™................................................... 5
2.1 MultiMediaCard™ System Concept ................................................................................. 5
2.2 Bus Interface...................................................................................................................... 7

2.2.1 Interface................................................................................................................7
2.2.2 Identification of Multiple Cards ........................................................................... 8
2.2.3 Bus Protocol ......................................................................................................... 8
2.2.4 Transfer Modes .................................................................................................... 9

2.3 CRC ................................................................................................................................... 10
2.4 Registers ............................................................................................................................ 11

2.4.1 OCR (Operation Conditions Register) ................................................................. 11
2.4.2 CID (Card Identification Number: Card ID Register).......................................... 12
2.4.3 RCA (Relative Card Address: Relative Card Address Register) ......................... 13
2.4.4 CSD (Card Specific Data: Card Specific Data Register) ..................................... 13
2.4.5 DSR (Driver Specific Data: Driver Stage Register)............................................. 13
2.4.6 Status Register...................................................................................................... 13

2.5 Commands ......................................................................................................................... 14
2.5.1 Overview of Commands....................................................................................... 14
2.5.2 MMC Mode Commands....................................................................................... 17
2.5.3 SPI Mode Commands........................................................................................... 41

2.6 Responses .......................................................................................................................... 45
2.7 Read/Write Protocols......................................................................................................... 48

Section 3   Total System Support for Application Product Development............. 49
3.1 MultiMediaCard™ System Development ......................................................................... 49

3.1.1 Support Policy ...................................................................................................... 49
3.1.2 System Development Sequence ........................................................................... 50

3.2 Adapter Logic.................................................................................................................... 55
3.2.1 Port Control System ............................................................................................. 55
3.2.2 MMC Adapter ...................................................................................................... 57
3.2.3 SPI Adapter .......................................................................................................... 58
3.2.4 Host Microcomputer ............................................................................................ 58

3.3 Development Platform.......................................................................................................59
3.3.1 Microcomputer Selection ..................................................................................... 60
3.3.2 Control Adapter Circuit........................................................................................ 61



ii

3.3.3 MMC Bus Interface.............................................................................................. 61
3.3.4 Monitor Commands.............................................................................................. 61

3.4 Software for Products Incorporating MMCs ..................................................................... 62
3.4.1 Software Configuration ........................................................................................ 63
3.4.2 Interface to File System........................................................................................ 64
3.4.3 MMC Hot Insertion/Removal .............................................................................. 65
3.4.4 MMC Initialization............................................................................................... 66

3.5 MultiMediaCard™ Protocol Analyzer .............................................................................. 70
3.6 Example of Application System Development  (Music Player Prototype) ....................... 77

3.6.1 Adapter Logic between Microcomputer and MMC ............................................. 79
3.6.2 Microcomputer Used............................................................................................ 80
3.6.3 Audio Codec, etc. ................................................................................................. 80

Section 4   Notes on Design of a MultiMediaCard™ System.................................. 83
4.1 Introduction........................................................................................................................ 83
4.2 Operating Modes ............................................................................................................... 84
4.3 Bus Design......................................................................................................................... 85

4.3.1 Bus Wiring Design ............................................................................................... 85
4.3.2 Reducing Power Supply Noise............................................................................. 86

4.4 Cautions on Powering On, and Reset Operation ............................................................... 87
4.4.1 Powering On......................................................................................................... 87
4.4.2 Reset Operation .................................................................................................... 88

4.5 Initial Settings up to Data Transfer in MMC Mode .......................................................... 88
4.5.1 Acquisition and Specification of Operating Voltage Conditions ......................... 91
4.5.2 Acquisition of Card Attribute Information and Specification of Relative Card

Address on the Bus............................................................................................... 91
4.6 Initial Settings up to Data Transfer in SPI Mode .............................................................. 94
4.7 Timing Design ................................................................................................................... 95

Appendix
A. Development Support........................................................................................................ 97

MultiMediaCard™
The industry’s smallest flash/ROM card standard, developed by Infineon Technologies AG of Germany and
SanDisk Corporation of the USA. MultiMediaCard™ is a trademark of Infineon Technologies AG of
Germany, and is licensed to the MultiMediaCard™ Association (MMCA).
The MMCA is the standardization body for small Secure MultiMediaCard™ and MultiMediaCard™—
ranking among the smallest and lightest of such devices in the world—and currently counts some 80 member
companies.



1

Section 1   History and Features of MultiMediaCard™

1.1 History of Flash Cards

The history of cards using flash memory begins with the PC memory card whose standard was
decided by the PCMCIA in 1990. This implementation of a PC memory card by means of flash
memory is now generally called a linear flash memory card, and is mainly used as expansion
memory in small portable devices such as notebook personal computers.

Then, with the revision of the PC card standard in 1992, the PC-ATA card standard (PC Card
ATA specification) was born as an IDE/ATA-compatible I/O card using the same kind of interface
as a hard disk. This card has become so widely used that most notebook PCs currently on the
market include a slot for such cards.

From this point the trend was toward smaller flash cards, and 1995 saw the release of the
CompactFlash™ card offering the same functions as the PC-ATA card in a smaller package.
Production of CompactFlash™ cards grew at a rapid rate thanks to their use in products such as
digital cameras and handheld PCs. This same period saw the advent of Smart Media as cards
containing flash memory only, and together with CompactFlash™ cards, these have also come
into widespread use as a storage medium for digital cameras and the like. Then, in 1996, came the
announcement of the specifications of a new miniature card designed as a general-purpose
memory card.

In 1998, the MultiMediaCard™ (MMC) and Memory Stick were released, offering drastically
smaller size for use in small devices such as portable music players. The MultiMediaCard™
featured an amazing 80% reduction in cubic capacity compared with CompactFlash™, and has
brought a constant stream of new products such as MP3 players and video cameras designed for its
use.

As with CompactFlash™, the target for MultiMediaCard™ is to achieve industry standardization
by taking an open standard approach, and the MultiMediaCard™ Association (MMCA)*1 was
established in January 1998 to promote such standardization.

In 1999, cards equipped with copyright protection functions made their appearance in rapid
succession—the Magic Gate Memory Stick, SD Memory Card, and Secure MultiMediaCard™.
The Secure MultiMediaCard™—the smallest of the three—is a MultiMediaCard™ with copyright
protection functions added, and maintains MultiMediaCard™ compatibility.



2

The brief history of flash cards given above is summarized in figure 1.1.

Hitachi has to date released PC-ATA cards, CompactFlash™*2 cards, and MultiMediaCard™, and
henceforth plans to undertake active marketing of Secure MultiMediaCard™.

Notes: 1. MMCA Home Page: http://www.mmca.org/

2. CompactFlash is a trademark of SanDisk Corporation of the USA, and is licensed to
the CFA (CompactFlash™ Association).

1989

•  PCMCIA established

•  PCMCIA/JEIDA common standard

•  CompactFlash™ specifications announced

•  SSFDC (Smart Media) commercial production

•  Miniature card specifications announced

•  MultiMediaCard™ specifications �
   announced

•  Memory Stick specifications announced

•  SD memory card �
   specifications announced

•  Secure MultiMediaCard™ �
   specifications announced

1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002

Figure 1.1   History of Flash Cards

1.2 Features of MultiMediaCard™

The important factors for future small flash cards will be size and weight, since major
considerations in selecting component parts for portable devices such as mobile phones are small
size and light weight. As shown in figure 1.2 and table 1.1, at 1.5 g the MultiMediaCard™ is the
lightest of the small flash cards, making it ideal for such products. And its postage-stamp size of
32 mm × 24 mm, and thickness of only 1.4 mm, allow it to be installed virtually anywhere.

With personal products such as audio players, ease of use is a major factor in achieving popularity.
A MultiMediaCard™ connects to the system via only seven pins and includes a mechanism to
prevent incorrect insertion, ensuring trouble-free use by the average user with no specialized
knowledge of such devices.

There are currently two kinds of MultiMediaCard™—flash cards and ROM cards. In the future,
we can expect to see the release of I/O cards as well.



3

Memory Stick

MultiMediaCard™

SD memory card

2.1mm 1.4mm

CompactFlash™ card

Memory Stick CompactFlash™

Surface area Thickness

Smart Media

Smart Media

MultiMediaCard™

SD memory card

Figure 1.2   Comparative Sizes of Small Flash Cards

Table 1.1 Small Flash Card Specifications

Card Type

Item
CompactFlash™
Card

Smart
Media MultiMediaCard™

Secure
MultiMediaCard™

Memory
Stick

Magic Gate
Memory
Stick

Secure
Digital

Size 42.8 × 36.4
× 3.3 mm

45.0 × 37.0
× 0.76 mm

32.0 × 24.0
× 1.4 mm

32.0 × 24.0
× 1.4 mm

50.0 × 21.5
× 2.8 mm

50.0 × 21.5
× 2.8 mm

32.0 × 24.0
× 2.1 mm

Weight 10 g 2 g 1.5 g 1.5 g 4 g 4 g Approx. 2 g

Pins 50 22 7 7 10 10 9

Data pins 16 8 1 1 1 1 4

Copyright
protection
functions

No No No Yes No Yes Yes



4

1.3 MMCA Standard Ver. 3.1

Ver. 2.11 was used until June 2001, when Ver. 3.1 was released.  The main differences between
these versions are summarized in table 1.2.

Table 1.2 Differences between MMCA Standard Ver. 2.11 and Ver. 3.1

No. Item v2.11 v3.1

1 Low voltage 2.0 V to 3.6 V 1.6 V to 3.6 V
(Not fully downward-compatible)

2 Forced erasure of locked
card in MMC mode

Undefined • When TMP_WRITE_PROTECT in
CSD is 1, forced erasure is
performed and
TMP_WRITE_PROTECT is
cleared to 0.

• When PERM_WRITE_PROTECT
in CSD is 1, erasure fails and the
LOCK_UNLOCK_FAILED bit is
set to 1.  (The card remains
locked.)

(The same applies to SPI mode.)

3 Multiple Read/Write in
SPI mode

Not supported The same transfer modes are
supported as for Multiple Read/Write
in MMC mode.

Applicable Hitachi MultiMedia
Cards

HB28xxxxMM1 Series* HB28xxxxMM2 Series*

Note: * See the respective Data Sheets for detailed specifications.



5

Section 2   Overview of Hitachi MultiMediaCard™

2.1 MultiMediaCard™ System Concept

As MultiMediaCard™ are intended for information and content storage in small information
devices such as mobile phones and portable audio players, their system concept is to offer ease of
use in the host system while reducing the load on the system.

Examples of system configurations using a MultiMediaCard™ are shown in figure 2.1.

1. Software control

With this method, MultiMediaCard™ signals are directly connected to a microcontroller port.
The MultiMediaCard™ protocol is emulated by means of software control of port signals. The
host system is extremely simple, but data transfer speed is low.

2. Adapter control

With this method, an adapter (hardware) is inserted between the microprocessor and the
MultiMediaCard™ to control the MultiMediaCard™.

3. Adapter control via simple bus

With this method, a MultiMediaCard™ adapter is connected to a simple bus via an application
adapter.

4. Adapter control via PC bus

With this method, a MultiMediaCard™ adapter is connected to the PC bus via a bus bridge.
The system is complex and expensive, but data transfer speed is increased.



6

Bus bridge

PC bus

Simple bus

Adapter�
interface bus

MMC serial�
bus

•  Hardware control�
•  High cost�
•  High speed

•  Software control�
•  Low cost�
•  Low speed

4.  Adapter Control via �
     PC Bus

Bus bridge

Application�
adapter

MultiMediaCardTM�
adapter

Simple bus

Adapter�
interface bus

MMC serial�
bus

3.  Adapter Control via �
     Simple Bus

Application�
adapter

MultiMediaCardTM�
adapter

Adapter�
interface bus

MMC serial�
bus

2.  Adapter Control

MultiMediaCardTM�
adapter

MicroprocessorMicroprocessor

MMC serial�
bus

1.  Software Control

Microcontroller Microprocessor

�

Figure 2.1   Sample MultiMediaCard™ System Configurations



7

2.2 Bus Interface

2.2.1 Interface

As shown in figure 2.2, the MultiMediaCard™ interface is a 7-pin serial interface, and there are
two communication protocol modes—MMC (MultiMediaCard™) mode and SPI mode. The
maximum clock operating frequency in both modes is 20 MHz. Although the interface method
differs in the two modes, data written in either mode can be read by a host in either mode.
Hitachi’s MultiMediaCard™ also allow operation with either an MMC or SPI host. Details of the
mode setting method are given later, but basically, SPI mode is entered if the CS pin is driven low
when command 0 is issued during the MultiMediaCard™ identification procedure.

(A)  MMC Mode

1 2 3 4 5 6 7

Pin No.�

1�

2�

3�

4�

5�

6�

7

Name�

RSV�

CMD�

VSS1�

VDD1�

CLK�

VSS2�

DAT

Type�

NC�

I/O, PP, OD�

S�

S�

I�

S�

I/O, PP

Pin Function�

Reserved pin�

Command/response�

GND�

VCC�

Clock�

GND�

Data input/output

�(B)  SPI Mode

Pin No.�

1�

2�

3�

4�

5�

6�

7

Name�

CS�

DI�

VSS�

VDD�

SCLK�

VSS2�

DO

Type�

I�

I�

S�

S�

I�

S�

O, PP

Pin Function�

Chip select�

Data input�

GND�

VCC�

Clock�

GND�

Data output

Note:� S = Power supply�
� I = Input�
� O = Output�
� PP = Push pull�
� OD = Open drain�
� NC = Not connected

Figure 2.2   MultiMediaCard™ Pin Assignments



8

2.2.2 Identification of Multiple Cards

Up to 30 MultiMediaCard™ can be used on the same bus. The method of selecting the card to be
accessed from among a number of cards is as follows for each mode.

1. MMC mode

In MMC mode, in order to select a particular card for access from among a number of cards, a
relative address RCA (relative card address: see section 2.4, Registers) corresponding to a
unique name is assigned to each card during the identification procedure, and a card is selected
by specifying this relative address.

2. SPI mode

In SPI mode, a chip select signal (CS) is connected to each card, and the card to be accessed is
selected by asserting the chip select signal for that card to the low level.

2.2.3 Bus Protocol

Figure 2.2 shows the MultiMediaCard™ pin assignments, and figure 2.3 shows schematic
diagrams of the protocol in each mode. The MultiMediaCard™ operates when a command
corresponding to a particular function is issued to the card from the host.

1. MMC mode

In MMC mode, three signals are used to interface to the host system: clock, command, and
data. The clock signal is used to maintain synchronization between the system and the card.
The command signal is used to issue commands from the host to the card and to return
responses from the card to the host. The data signal is used to write and read data to and from
the card. The command and data signals are bidirectional bus signals.

2. SPI mode

In SPI mode, four signals are used to interface to the host system: clock, data in, data out, and
chip select. The clock signal is used to maintain synchronization between the system and the
card, as in MMC mode. The data in signal is used to issue commands from the host to the card
and to write data to the card, while the data out signal is used to return responses from the card
to the host and to read data from the card. The data in and data out signals are unidirectional
bus signals. The chip select signal is used to select a particular card to be accessed from among
any number of cards.



9

(1)  Command (2)  Response

(3)  Data block

CMD

DAT

CS

CMD

DAT

Host MMC(1)  CMD

(2)  RSP

(3)  DATA (Read)

(3")  DATA (Read)

(3)  DATA (Write)

•  Overview of MMC mode protocol 

(1)  Command

(2)  Response (3")  Data block

(3')  Data blockDI

DO

CS

DI

DO

Host MMC(1)  CMD

(2)  RSP

(3')  DATA (Write)

•  Overview of SPI mode protocol 

Low

(Write)

(Read)

Figure 2.3   Overview of MultiMediaCard™ Protocols

2.2.4 Transfer Modes

Figure 2.4 shows the MultiMediaCard™ transfer modes. There are three transfer modes: single
block transfer, multiple block transfer, and stream transfer.

1. MMC mode

MMC mode supports all three transfer methods: single block, multiple block, and stream. A
default block size is stipulated according to the card; one block can be transferred in response
to one command in single block transfer, and multiple blocks in multiple block transfer. The
default block size for Hitachi MultiMediaCard™ is 512 bytes, but this can be changed to a size
from 1 byte to 2048 bytes with the block size change command. In stream transfer there is no
concept of a block: any number of bytes of data can be transferred in byte units from any
address. However, since CRCs are not used, this method is not suitable for applications
requiring data reliability, and since transfer is not performed sector by sector, it is also
unsuitable for systems using a DOS-compatible FAT file system.

2. SPI mode

Starting with MMCA Standard Ver. 3.1 (released June 2001), SPI mode supports single block
transfer mode and multiple block transfer mode. The block size can be changed in the same
way as in MMC mode, with a setting range of 1 byte to 2048 bytes in the case of Hitachi
MultiMediaCard™.



10

CMD17/24 CMD17/24 CMD17/24 CMD17/24

Block 1 Block 2

Transfer Image DiagramTransfer Mode
Applicable�

Mode

MMC/�
SPI

(1) Single block�
Read/Write�
CMD17/CMD24

(2) Multiple block�
Read/Write�
CMD18/CMD25

(3) Stream�
Read/Write�
CMD11/CMD20

MMC

MMC

Block 3 Block 4 Block 5

CMD18/25 CMD12�
(STOP)

Block 1 Block 2 Block 3 Block 4 Block 5

CMD11/20 CMD12�
(STOP)

Block 1 Block 2 Block 3 Block 4 Block 5

Figure 2.4   Overview of Transfer Modes

2.3 CRC

CRCs (cycle redundancy codes) are added to MultiMediaCard™ commands, responses, and data
before they are transferred.

Checking the CRC enables erroneous transfer of data to be detected, and allows retransfer
processing to be carried out on the system side when an error is detected, for example, resulting in
a higher level of system reliability.

In MMC mode, CRCs are mandatory in transfer modes other than stream transfer. A 7-bit CRC is
added to each command, and a 16-bit CRC to every 512 bytes of data.

CRCs are optional in SPI mode.



11

2.4 Registers

Table 2.1 lists the MultiMediaCard™ internal registers.

Table 2.1 MultiMediaCard™ Registers

Register Name Length Description

OCR Operation conditions register 32 bits Defines the MMC operating voltage.
1 bit = 100 mV.

1: operable range; 0: non-operable range

CID Card identification register 128 bits Card-specific identification information.

Manufacturer, OEM, individual card number,
etc.

RCA Relative card address register 16 bits Used to set name for card identification by
host.

0001h to FFFFh (MMC mode only)

CSD Card specific data register 128 bits Stores card-specific information.

Corresponds to CIS of PCMCIA.

DSR Driver stage register 16 bits Used to set MMC bus drive capability.
Optional.

Not used in Hitachi MMCs.

Status register 32 bits Indicates MMC status and error occurrence
conditions.

2.4.1 OCR (Operation Conditions Register)

OCR is a 32-bit register that defines the operable range of the card. Bits corresponding to the
operable range are set to 1, with each bit representing a 100 mV step. This register also contains an
R/B bit for polling whether or not card internal processing has finished in the card identification
procedure. The contents of OCR are shown in table 2.2.



12

Table 2.2 OCR (Operation Conditions Register) Contents

OCR Bit Position V DD Voltage Window Hitachi MMC

31 Card power up status
(R/B)

0: Busy
1: Ready

0 or 8

30 to 24 Reserved 0

23 3.5 to 3.6 1* 1 F

22 3.4 to 3.5 1

21 3.3 to 3.4 1

20 3.2 to 3.3 1

19 3.1 to 3.2 1 F

18 3.0 to 3.1 1

17 2.9 to 3.0 1

16 2.8 to 2.9 1

15 2.7 to 2.8 1 8

14 2.6 to 2.7 0* 2

13 2.5 to 2.6 0

12 2.4 to 2.5 0

11 2.3 to 2.4 0 0

10 2.2 to 2.3 0

9 2.1 to 2.2 0

8 2.0 to 2.1 0

7 to 0 Reserved 0 —

Notes: 1. 1: Support voltage
2. 0: Not support voltage

2.4.2 CID (Card Identification Number: Card ID Register)

CID is a 128-bit register in which the serial number of the card is written by the card
manufacturer. The CID number is unique to each MultiMediaCard™, and in MMC mode is used
to assign a relative address for selecting a card.



13

2.4.3 RCA (Relative Card Address: Relative Card Address Register)
—Used in MMC mode only—

RCA is a 16-bit register that is used to assign the address corresponding to a card. An address
from 0001h to FFFFh can be assigned. After a card is selected using the address assigned by this
register, reading, writing, erasing, or other processing is performed on that card.

2.4.4 CSD (Card Specific Data: Card Specific Data Register)

CSD is a 128-bit register that holds various kinds of card-related information, including the
corresponding MMCA spec version, supported command classes, card capacity, access time, and
transfer unit block length.

2.4.5 DSR (Driver Specific Data: Driver Stage Register)

DSR is a 16-bit register that allows the bus drive capability of the card to be set. This is an
optional register, and is not supported by Hitachi cards.

2.4.6 Status Register

This is a 32-bit register that indicate the card status and error occurrence conditions.



14

2.5 Commands

2.5.1 Overview of Commands

All processing, including card identification, reading, writing, and erasing, is initiated by
commands issued from the host to the card. The commands are listed in table 2.3.

Table 2.3 Commands Supported by MultiMediaCard™

CMD MMC Mode SPI Mode

Index Abbreviation Function Type Argument Resp. Argument Resp.

CMD0 GO_IDLE_STATE MMC reset bc [31:0] Stuff bits — None R1

CMD1 SEND_OP_COND MMC R/B polling

Operating voltage
setting (MMC mode
only)

bcr [31:0]
OCR without busy

R2 None R1

CMD2 ALL_SEND_CID CID transmission
request

bcr [31:0] Stuff bits R3 

CMD3 SET_RELATIVE_
ADDR

RCA setting ac [31:16] RCA

[15:0] Stuff bits

R1

CMD4 SET_DSR DSR setting bc [31:16] DSR

[15:0] Stuff bits

—

CMD7 SELECT/
DESELECT_CARD

Selection of MMC to
be accessed

ac [31:16] RCA

[15:0] Stuff bits

R1b
(only
from the
selected
card)

CMD9 SEND_CSD CSD transmission
request

ac [31:16] RCA

[15:0] Stuff bits

R2 None R1

CMD10 SEND_CID CID transmission
request

ac [31:16] RCA

[15:0] Stuff bits

R2 None R1

CMD11 READ_DAT_UNTIL_
STOP

Stream read adtc [31:0] Data address R1

CMD12 STOP_
TRANSMISSION

Read/write stop
command

ac [31:0] Stuff bits R1b

CMD13 SEND_STATUS Card status request ac [31:16] RCA

[15:0] Stuff bits

R1 None R2 

CMD15 GO_INACTIVE_
STATE

Places card in inactive
state

ac [31:16] RCA

[15:0] Stuff bits

—

CMD16 SET_BLOCKLEN Read/write block
length change

ac [31:0] Block length R1 [31:0] Block length R1

CMD17 READ_SINGLE_
BLOCK

Single block read adtc [31:0] Data address R1 [31:0] Data address R1



15

CMD MMC Mode SPI Mode

Index Abbreviation Function Type Argument Resp. Argument Resp.

CMD18 READ_MULTIPLE_
BLOCK

Multiple block read adtc [31:0] Data address R1

CMD20 WRITE_DAT_UNTIL_
STOP

Stream write adtc [31:0] Data address R1

CMD24 WRITE_BLOCK Single block write adtc [31:0] Data address R1 [31:0] Data address R1

CMD25 WRITE_MULTIPLE_
BLOCK

Multiple block write adtc [31:0] Data address R1

CMD26 PROGRAM_CID CID programming adtc [31:0] Stuff bits R1

CMD27 PROGRAM_CSD CSD programming adtc [31:0] Stuff bits R1 None R1

CMD28 SET_WRITE_PROT Protection setting ac [31:0] Data address R1b [31:0] Data address R1b

CMD29 CLR_WRITE_PROT Protection clearing ac [31:0] Data address R1b [31:0] Data address R1b

CMD30 SEND_WRITE_PROT Protect bit status
transmission

adtc [31:0]
Write protect data
address

R1 [31:0]
Write protect data
address

R1

CMD32 TAG_SECTOR_
START

Sets first sector of
area to be erased

ac [31:0] Data address R1 [31:0] Data address R1

CMD33 TAG_SECTOR_END Sets last sector of
area to be erased

ac [31:0] Data address R1 [31:0] Data address R1

CMD34 UNTAG_SECTOR_ Sets sector not to be
erased within erase
area

ac [31:0] Data address R1 [31:0] Data address R1

CMD35 TAG_ERASE_
GROUP_START

Sets first group of
area to be erased

ac [31:0] Data address R1 [31:0] Data address R1

CMD36 TAG_ERASE_
GROUP_END

Sets last group of
area to be erased

ac [31:0] Data address R1 [31:0] Data address R1

CMD37 UNTAG_ERASE_
GROUP

Sets group not to be
erased within erase
area

ac [31:0] Data address R1 [31:0] Data address R1

CMD38 ERASE Erases selected area ac [31:0] Stuff bits R1b [31:0] Stuff bits R1b

CMD42 LOCK_UNLOCK Password setting adtc [31:0] Stuff bits R1b [31:0] Stuff bits R1b

CMD58 READ_OCR OCR (operating
voltage) information
read

None R3 

CMD59 CRC_ON_OFF CRC specification
on/off control

[31:1] Stuff bits

[0:0] CRC  option

R1



16

In MMC mode, the following four command types are defined.

1. Broadcast command (bc)

Command issued from the CMD line to all cards on the bus. There is no response from the
cards.

2. Broadcast command with response (bcr)

Command issued from the CMD line to all cards on the bus. All the cards on the bus
simultaneously return a response from the CMD line.

3. Addressed (point-to-point) command (ac)

Command issued from the CMD line to a designated specific card on the bus. The designated
specific command returns a response from the CMD line.

4. Addressed (point-to-point) data transfer command (adtc)

Command issued from the CMD line to a designated specific card on the bus. After the
designated specific command returns a response from the CMD line, data transfer is performed
via the DAT line.

(1)  Command Format

Table 2.4 shows the command format. A command consists of 48 bits (6 bytes), comprising a start
bit (always 0), a transfer bit (always 1), a 6-bit command field, a 4-byte (32-bit) argument field, a
7-bit CRC field, and an end bit (always 1). The argument field contains the necessary information
(card relative address, read address, write address, etc.) for issuing that command.

Table 2.4 Command Format

Serial data

[47] Command [0]

Bit position 47 46 [45:40] [39:8] [7:1] 0

Width (bit) 1 1 6 32 7 1

Value 0 1 X X X 1

Description Start bit Transmission
bit

Command
index

Argument CRC7 End bit



17

(2)  Card Command Classes

Commands are divided into a number of classes, such as basic commands, read commands, write
commands, and erase commands. The command classes are listed in table 2.5. Of course, write
and erase class commands cannot be used with ROM version MCCs since these cards do not
permit write and erase operations. The CSD register described above contains the supported
classes to enable the host to identify the kind of card, and must be read during the identification
sequence to obtain this information.

Table 2.5 Card Command Classes

Command Supported Commands

Class Class Definition MMC Mode SPI Mode

Class 0 Basic 0, 1, 2, 3, 4, 7, 9, 10, 12,
13, 15

0, 1, 9, 10, 13, 58, 59

Class 1 Stream read 11 Not supported

Class 2 Block read 16, 17, 18 16, 17

Class 3 Stream write 20 Not supported

Class 4 Block write 16, 24, 25, 26, 27 24, 27

Class 5 Erase 32, 33, 34, 35, 36, 37, 38 32, 33, 34, 35, 36, 37, 38

Class 6 Write protection 28, 29, 30 28, 29, 30

Class 7 Lock card 42 42

Class 8 Application specific 55, 56 55, 56

Class 9 I/O mode 39, 40 Not supported

Class 10, 11 Reserved

Next, the method of use of each command will be described, together with points for attention,
taking each command class in turn.

2.5.2 MMC Mode Commands

(1)  Basic Commands (Class 0)

Table 2.6 shows the commands in command class 0. This class contains basic commands used for
the identification sequence and for acquiring internal information.



18

Table 2.6 Basic Commands (Class 0)

Command
Index Type Argument Resp AbbrevIation Command Description

CMD0 bc [31:0] Stuff bits None GO_IDLE_STATE Command for resetting all cards
except cards in the Ina state to
the Idle state.

If CMD0 is issued while the CS
signal is low, the selected card
enters SPI mode.

CMD1 bcr [31:0]
OCR without
busy

R3 SEND_OP_COND Used to check the operable
voltage range of the card used,
and to check whether card
internal processing has
finished. When CMD1 is issued
to a card, the card returns an
R3 type response that includes
the value of the operation
conditions register (OCR).
Individual bits in OCR
correspond to a 100 mV range
(e.g. 3.2 V to 3.3 V), and when
set to 1 indicate that the card
can operate in that voltage
range. In addition, the most
significant bit is used for
Ready/Busy polling to
determine whether card internal
processing has finished.

CMD2 bcr [31:0] Stuff bits R2 ALL_SEND_CID When CMD2 is issued, all cards
in the Ready state
simultaneously start
transmitting one bit of CID
information each to the CMD
line. The CMD line has an
open-drain architecture, and
each card compares the CMD
line bus state with its own CID
value every transfer bit, and if
they differ halts CID
transmission at that point and
returns to the Ready state. As a
result, eventually the card with
the lowest CID value completes
transmission of its own CID
value to the end, and that single
card is selected and goes to the
Identification state.



19

Command
Index Type Argument Resp AbbrevIation Command Description

CMD3 ac [31:16] RCA

[15:0] Stuff bits

R1 SET_RELATIVE_
ADDR

Sets the relative card address
(RCA) for the card that has
been placed in the Identification
state by means of CMD2. The
card for which RCA is set goes
to the Standby state, and
makes no response to
subsequent CMD2 or CMD3
commands.

CMD4 bc [31:16] DSR

[15:0] Stuff bits

None SET_DSR Used to program the driver
state register (DSR). Hitachi
MMCs do not support DSR.

CMD7 ac [31:16] RCA

[15:0] Stuff bits

R1
(select
card
only)

SELECT/
DESELECT_
CARD

Selects a card and switches it
from the Standby state to the
Transfer state. Only one card
can be placed in the Transfer
state, and that card alone
responds to subsequent read,
write, erase, or other
commands. If a card is selected
for the Transfer state when
another card has already been
selected, the newly selected
card goes to the Transfer state
and the previously selected
card returns to the Standby
state. Issuing CMD7 when RCA
= 0000h is reserved for
returning all cards selected for
the Transfer state to the
Standby state.

CMD9 ac [31:16] RCA

[15:0] Stuff bits

R2 SEND_CSD Used to read CSD information
for the card specified by RCA.

CMD10 ac [31:16] RCA

[15:0] Stuff bits

R2 SEND_CID Used to read CID information
for the card specified by RCA.

CMD12 ac [31:0] Stuff bits R1b STOP_
TRANSMISSION

Command for forcibly stopping
stream read, multiple read,
stream write, and multiple write
command processing.



20

Command
Index Type Argument Resp AbbrevIation Command Description

CMD13 ac [31:16] RCA

[15:0] Stuff bits

R1 SEND_STATUS Command that requests
transmission of the status
register contents to the card
whose address is specified.
The status register holds details
of errors that have occurred in
the card, the card status, and
so forth.

CMD15 ac [31:16] RCA

[15:0] Stuff bits

None GO_INACTIVE_
STATE

Command for placing the card
in the Inactive state.

(2)  Stream Read Command (Class 1)

Table 2.7 shows the command in command class 1. This class contains the stream read command.

Table 2.7 Stream Read Command (Class 1)

Command
Index Type Argument Resp AbbrevIation Command Description

CMD11 adtc [31:0]
Data address

R1 READ_DAT_
UNTIL_STOP

Command for reading a data
stream starting from the given
address from the card until a
STOP_TRANSMISSION
command is transmitted.



21

(3)  Block Read Commands (Class 2)

Table 2.8 shows the commands in command class 2. This class contains commands relating to
block reads.

Table 2.8 Block Read Commands (Class 2)

Command
Index Type Argument Resp AbbrevIation Command Description

CMD16 ac [31:0]
Block length

R1 SET_BLOCKLEN Command used to change the
transfer block length in
subsequent CMD17 (single
block read), CMD18 (multiple
block read), CMD24 (single
block write), and CMD25
(multiple block write)
commands.

CMD17 adtc [31:0]
Data address

R1 READ_SINGLE_
BLOCK

Command for reading data
from the card, starting at the
address specified by the
argument and with the block
length set by CMD16 (or
default length of 512 bytes if
no setting is made).

CMD18 adtc [31:0]
Data address

R1 READ_MULTIPLE_
BLOCK

Command for consecutively
reading multiple blocks of data
from the card, starting at the
address specified by the
argument and with the block
length set by CMD16 (or
default length of 512 bytes if
no setting is made), until a
stop command (CMD12) is
input.



22

• CMD16

With Hitachi MMCs, the transfer block size can be changed in bytes units within a range of 1
to 2048 bytes, using CMD16.

Example:  Argument = 00 00 00 20h → 32-byte unit transfer

Once the block size has been changed, the new block size remains valid until changed again
with CMD16 or reset with CMD0. When this command is not used, data transfer is performed
using the default block size of 512 bytes.

As READ_BLK_PARTIAL = 1 is set as a CSD register value in Hitachi MMCs, if the transfer
block size is changed using CMD16, when a CMD17 or CMD18 block read command is used,
data can be read using the new block size.

However, as WRITE_BLK_PARTIAL = 0 is set as a CSD register value in Hitachi MMCs,
even if the transfer block size is changed using CMD16, when a CMD24 or CMD25 block
write command is used, data is written using a fixed 512-byte block size, not the new block
size.

• CMD17

With Hitachi MMCs, READ_BLK_MISALIGN = 0 is set in CSD, and so a read data block
cannot exceed a physical block boundary line. Start address and block size changes must be
carried out so that the read data range does not cross a physical boundary. Physical block
boundaries are located every 0800h addresses (every 2048 bytes) starting from address 0000h.
If an attempt is made to read block data that runs over a physical block boundary, an error bit
will be set in the response. Figure 2.5 shows sample start address settings.

2048 bytes

2048 bytes

2048 bytes

Start address

Start address

Physical boundary every 2048 bytes

Physical boundary every 2048 bytes�
�

Example of correct read using CMD17

Example of incorrect read using CMD17

Figure 2.5   Sample Start Address Settings When Using CMD17



23

• CMD18

As with CMD17, since READ_BLK_MISALIGN = 0 is set in CSD in Hitachi MMCs, an
individual data block in a multiple block read cannot exceed a physical block boundary line.
Start address and block size changes must be carried out so that individual data blocks do not
cross a physical boundary. Physical block boundaries are located every 0800h addresses (every
2048 bytes) starting from address 0000h. If an attempt is made to read block data that runs
over a physical block boundary, an error bit will be set in the response. Figure 2.6 shows
sample start address settings.

2048 bytes

2048 bytes

2048 bytes

Start address

Start address

Physical boundary every 2048 bytes

Physical boundary every 2048 bytes

Example of correct read using CMD18

Example of incorrect read using CMD18

Figure 2.6   Sample Start Address Settings When Using CMD18

(4)  Stream Write Command (Class 3)

Table 2.9 shows the command in command class 3. This class contains the stream write command.

Table 2.9 Stream Write Command (Class 3)

Command
Index Type Argument Resp AbbrevIation Command Description

CMD20 adtc [31:0]
Data address

R1 WRITE_DAT_
UNTIL_STOP

Writes a data stream starting
from the given address to
the card until a
STOP_TRANSMISSION
command (CMD12) is issued.



24

(5)  Block Write Commands (Class 4)

Table 2.10 shows the commands in command class 4. This class contains commands relating to
block writes.

Table 2.10 Block Write Commands (Class 4)

Command
Index Type Argument Resp AbbrevIation Command Description

CMD24 adtc [31:0]
Data address

R1 WRITE_BLOCK Command for writing data to
the card, starting at the
address specified by the
argument and with the block
length set by CMD16 (or
default length of 512 bytes if
no setting is made). Hitachi
MMCs use a fixed block length
of 512 bytes.

CMD25 adtc [31:0]
Data address

R1 WRITE_
MULTIPLE_BLOCK

Command for consecutively
writing multiple blocks of data
to the card, starting at the
address specified by the
argument and with the block
length set by CMD16 (or
default length of 512 bytes if
no setting is made), until a
stop command (CMD12) is
input. Hitachi MMCs use a
fixed block length of 512
bytes.

CMD26 adtc [31:0]
Stuff bits

R1 PROGRAM_CID Command used for CID
register programming. This
command can only be used
once, to write the CID prior to
shipment by the manufacturer,
and cannot be used by the
MMC host.

CMD27 adtc [31:0]
Stuff bits

R1 PROGRAM_CSD Command used for
programmable bit
programming in the CSD
register.



25

• CMD24

WRITE_BLK_PARTIAL = 0 is set in CSD in Hitachi MMCs, and so the block length is fixed
at 512 bytes.

With Hitachi MMCs, WRITE_BLK_MISALIGN = 0 is set in CSD, and so a write data block
cannot exceed a physical block boundary line. The start address setting must be made so that
the write data range does not cross a physical boundary. Physical block boundaries are located
every 0800h addresses (every 2048 bytes) starting from address 0000h. If an attempt is made
to write block data that runs over a physical block boundary, an error bit will be set in the
response. Figure 2.7 shows sample start address settings.

2048 bytes

2048 bytes

2048 bytes

Start address

Start address

Physical boundary every 2048 bytes

Physical boundary every 2048 bytes

Example of correct write using CMD24

Example of incorrect write using CMD24

Figure 2.7   Sample Start Address Settings When Using CMD24



26

• CMD25

As with CMD24, since WRITE_BLK_MISALIGN = 0 is set in CSD in Hitachi MMCs, an
individual data block in a multiple block write cannot exceed a physical block boundary line.
The start address setting must be made so that individual data blocks do not cross a physical
boundary. Physical block boundaries are located every 0800h addresses (every 2048 bytes)
starting from address 0000h. If an attempt is made to write block data that runs over a physical
block boundary, an error bit will be set in the response. Figure 2.8 shows sample start address
settings.

2048 bytes

2048 bytes

2048 bytes

Start address

Start address

Physical boundary every 2048 bytes

Physical boundary every 2048 bytes

Example of correct write using CMD25

Example of incorrect write using CMD25

Figure 2.8   Sample Start Address Settings When Using CMD25

In the internal structure of a Hitachi MMC, a 512-byte × 4-stage buffer and 2-kbyte flash comprise
a single unit. Actual writes to the flash are performed in 2-kbyte units, and data up to that point is
temporarily stored in the internal buffer. Therefore, when using multiple blocks, the write time
(Busy period) for each block is short when performing a buffer write, and the Busy period
becomes longer when writes to flash occurs every 2 kbytes. Figure 2.9 shows guidelines for the
Busy time for each transfer block.



27

512 bytes

1st 2nd 3rd 4thBuffer

Data

Flash

512 bytes × 4

2 kbytes

MMC

Transfer�
Block

1st

2nd

3rd

4th

Busy Period

≈ 300 µs

≈ 100 µs

≈ 100 µs

≈ 4.5 ms (Typ)

CMD25 RSP

DAT (1st)

Ready Ready Ready

DAT (2nd) DAT (3rd)

CMD

DAT
1st�

Busy

2nd�

Busy

3rd�

Busy

DAT (4th)

Ready Ready Ready

DAT (5th) DAT (6th)

CMD

DAT
4th�

Busy

5th�

Busy

6th�

Busy

Figure 2.9   Concept of Busy Time for Each Transfer Block

In Hitachi MMCs, there are flash write physical boundaries at 2048-byte intervals (addresses
0000h, 0800h, 1000h, 1800h ...), and writes are performed in these units. Therefore, when writing
2048 bytes of data comprising four 512-byte units using a multiple block write (CMD25) as
shown in figure 2.10, processing for writing to flash from the internal buffer is performed once
when writing from an address (0000h) whereby the data is within a 2048-byte physical boundary,
as in (A), and twice when the write runs over a physical boundary, as in (B). To achieve higher
speed, therefore, data writes should be executed from addresses that take account of 2048-byte
physical boundaries (0000h, 0800h, 1000h, 1800h ...).



28

1st 2nd 3rd 4th

1st Busy = 300 µs�
2nd Busy = 100 µs�
3rd Busy = 100 µs�
4th Busy = 4.5 ms (flash write) 

(A)  Recommended

Start address (0000h)

Stop CMD

1st 2nd

3rd 4th 512 bytes

1st Busy = 300 µs�
2nd Busy = 4.5 ms (flash write)�
3rd Busy = 300 µs�
4th Busy = 4.5 ms (flash write)

(B)

Start address (0400h)

Stop CMD

0000h

0800h

0000h

0800h

�

Figure 2.10   Example of Recommended Multiple Block Start Address Setting

When using a multiple block write, as mentioned earlier, the Busy time differs greatly according
to whether only buffer write processing is performed or flash writes are also executed. After data
transfer the DAT line goes to the Busy state, and the host carries out polling until DAT goes to the
Ready state again. If this polling interval is coordinated with the Busy period when flash writes
occur, there will be wasted time. Polling should therefore be performed at short intervals
coordinated with the Busy period when internal buffer writes are executed.



29

(6)  Erase Commands (Class 5)

Table 2.11 shows the commands in command class 5. This class contains commands relating to
erasing.

Table 2.11 Erase Commands (Class 5)

Command
Index Type Argument Resp AbbrevIation Command Description

CMD32 ac [31:0]
Data address

R1 TAG_SECTOR_
START

Sets the address of the first
sector in the range within which
erasing is to be performed
consecutively within the erase
group.

CMD33 ac [31:0]
Data address

R1 TAG_SECTOR_
END

Sets the address of the last
sector in the range within which
erasing is to be performed
consecutively within the erase
group.

Can be the same sector as set
by CMD32.

CMD34 ac [31:0]
Data address

R1 UNTAG_SECTOR Clears erasing of any sector in
the range within which erasing
is to be performed
consecutively within the erase
group.

CMD35 ac [31:0]
Data address

R1 TAG_ERASE_
GROUP_START

Sets the address of the first
erase group in the range within
which erasing is to be
performed consecutively.

CMD36 ac [31:0]
Data address

R1 TAG_ERASE_
GROUP_END

Sets the address of the last
erase group in the range within
which erasing is to be
performed consecutively.

Can be the same erase group
as set by CMD35.

CMD37 ac [31:0]
Data address

R1 UNTAG_ERASE_
GROUP

Clears erasing of one of the
erase groups on which erasing
is to be performed
consecutively.

CMD38 ac [31:0]
Stuff bits

R1b ERASE Executes erasing within the set
range.



30

To execute erasing in sector units, commands are issued in the sequence shown in figure 2.11. The
commands must be issued in the order shown. With Hitachi MMCs, an erase group size of 8
kbytes is set in CSD. Sector erases cannot run across erase groups. When executing erasing by
erase group unit, commands are issued in the sequence shown in figure 2.12. As with sector
erasing, the commands must be issued in the order shown.

512 bytes

.�.�.
Erase group�
16 sectors�
(8 kbytes)

0000h

Example of erase execution

0200h

: Erase range

1A00h

1C00h

1E00h

CMD32 argument = 0000h

CMD33 argument = 1C00h

CMD34 argument = 1800h

CMD34 argument = 1A00h

CMD38

CMD32: Start sector address setting (mandatory)

CMD33: End sector address setting (mandatory)

CMD34: Erase clearance sector address setting (omissible) Max. 16 times

CMD38: Erase execution (mandatory)

Figure 2.11   Sector-Unit Erase Procedure



31

8 kbytes

8 kbytes

8 kbytes

.�.�.

0000h

Example of erase execution

2000h

4000h

: Erase range

1A000h

1C000h

1E000h

CMD35 argument = 0000h

CMD36 argument = 1C000h

CMD37 argument = 18000h

CMD37 argument = 1A000h

CMD38

CMD35: Start erase group address setting (mandatory)

CMD36: End erase group address setting (mandatory)

CMD37: Erase clearance erase group address setting (omissible) Max. 16 times

CMD38: Erase execution (mandatory)

Figure 2.12   Block-Unit Erase Procedure



32

(7)  Write Protect Commands (Class 6)

Table 2.12 shows the commands in command class 6. This class contains commands relating to
write protection

Table 2.12 Write Protect Commands (Class 6)

Command
Index Type Argument Resp AbbrevIation Command Description

CMD28 ac [31:0]
Data address

R1b SET_WRITE_
PROT

Sets the write protect bit of the
group whose address is
specified when the card has a
write protect function.

CMD29 ac [31:0]
Data address

R1 CLR_WRITE_
PROT

Clears the write protect bit of
the group whose address is
specified when the card has a
write protect function.

CMD30 adtc [31:0]
Write protect
data address

R1 SEND_WRITE_
PROT

Requests transmission of the
write protect bit status to the
card when the card has a write
protect function.

In Hitachi MMCs, WP_GRP_SIZE = 1 is set in CSD. The write protect group size is stipulated by

(1 + WP_GRP_SIZE) × ERASE_GRP_SIZE

and so is 16 kbytes.

Therefore, write protection can be set using CMD28 and cleared using CMD29 in 16-kbyte units.
Figure 2.13 shows an example of a write protect block. When CMD28 is issued with argument =
4000h, the area shown in the figure is write-protected.

16 kbytes
Write protect group

Add 0000h

Add 4000h

Add 8000h

Example:� Protected when CMD28 is executed  �
� with argument = 4000h

16 kbytes

16 kbytes

Figure 2.13   Example of Write Protect Group



33

Erase and write protection can be applied to the entire card by setting either
PERM_WRITE_PROTECT or TMP_WRITE_PROTECT to 1 in the CSD register. (Both are
cleared to 0 by default.)

PERM_WRITE_PROTECT can only be set once by the customer, and once set, the card is
permanently protected against erasing and writing. TMP_WRITE_PROTECT, on the other hand,
enables protection to be applied temporarily, and can be set and cleared any number of times.

The status of the write protect bit can be read using CMD30 (send write protection). Figure 2.14
shows an example of transmission of the write protect bit status. Normally, the readable range is
32 protect groups from the specified address, and the status of the protect group at the specified
address is output as the final data, using the same method as for a single read.

If there are not 32 write protect groups after the write protect group corresponding to the specified
address, 0 is output for the write protect bits of nonexistent write protect groups.



34

0

1

0

1

0

0

16 kbytes

16 kbytes

16 kbytes

16 kbytes

16 kbytes

16 kbytes

Write protect group (1)

Write protect group (2)

Write protect group (3)

Write protect group (30)

Write protect group (31)

Write protect group (32)

Add 0000h

Add 4000h

Add 8000h

Add 74000h

Add 78000h

Add 7C000h

Write protect bit

Output order

Protection set: 1

Protection cleared: 0

Data block output from card via DAT line 0 0 1 0 1 0 16-bit CRC

 •� When there are 32 write protect groups�
� Example:� CMD30 issued with 0000h specified as write protect data address.�
�� → Write protect bit statuses for 32 groups are output from write protect group 0000h.

 •� When there are not 32 write protect groups�
� → Write protect bits for nonexistent write protect groups are output as 0.

0

1

0

0

0

0

16 kbytes

16 kbytes

16 kbytes

Write protect group (1)

Write protect group (2)

Write protect group (3)

Write protect group (30)

Write protect group (31)

Write protect group (32)

Add XXXXh

Add XXXXh

Add XXXXh

Maximum memory capacity

Write protect bit

Output order

Protection set: 1

Protection cleared: 0

Data block output from card via DAT line 0 0 0 0 0 1 0 16-bit CRC

Figure 2.14   Examples of Write Protect Bit Status Transmission



35

(8)  Lock Card Command (Class 7)

Table 2.13 shows the command in command class 7. This class contains a command for locking
the card by means of a password.

Table 2.13 Lock Card Command (Class 7)

Command
Index Type Argument Resp AbbrevIation Command Description

CMD42 adtc [31:0] Stuff bits R1b LOCK_UNLOCK Used for password setting/
erasing or card locking/
unlocking. When a card has
been locked by means of a
password, data cannot be read
or written until the card is
unlocked. A password of up to
128 bits can be set.

A card can be locked by using a protection function implemented with a password. A locked card
returns a response only to basic command class (class 0) and lock card command class (class 7)
commands. That is, only initialization, identification, selection, status inquiry, and lock-related
commands can be used, and card data cannot be read, written, or erased. Password information
and lock information is nonvolatile, and is not lost when power is turned on again.

Table 2.14 shows the register used by the card lock function.



36

Table 2.14 Register Used for Card Locking

Byte# Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

0 Reserved ERASE LOCK_
UNLOCK

CLR_
PWD

SET_
PWD

1 PWD_LEN

…

PWD_LEN + 1

Password data  (Max 128 bits)

Notes: ERASE: Set when all data in the card is to be forcibly erased.
1: Forcible erase executed

LOCK_UNLOCK: Set when locking or unlocking the card.
1: Card is locked
0: Card is unlocked

CLR_PWD: Set when clearing the password.
1: Password cleared

SET_PWD: Set when setting a new password.
1: New password is set in PWD register

PWD_LEN: Password length (in bytes)
PWD: Password data



37

Setting a New Password:

1. If the card for which the password is to be set is deselected, perform card selection using
CMD7.

2. Decide the length of the password to be set (between 1 and 16 bytes, in byte units).

3. Change the block length using CMD16 to allow data transfer of (decided password byte length
+ 2 bytes).

4. Transmit the card lock/unlock command (CMD42) and a data block.

If the LOCK_UNLOCK bit of the data block is set to 1 when transmission is performed, the
card is locked immediately after this CMD42 command is executed. Even if the
LOCK_UNLOCK bit is cleared to 0, the card is locked by cutting the card power supply and
then turning it on again. This is because the contents of PWD_LEN indicate whether or not a
password is currently set, and if the PWD_LEN value is not 0, the card is automatically locked
after a power-on operation.

5. The card saves the password length (PWD_LEN) and the password (PWD).

Table 2.15 Data Block Sent to Card When Setting New Password

Byte# Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

0 Reserved 0 LOCK_
UNLOCK

0 1

1 Byte length of password to be set (PWD_LEN)

…

PWD_LEN + 1

New password to be set (PWD)



38

Changing the Password:

1. If the card for which the password is to be set is deselected, perform card selection using
CMD7.

2. Decide the length of the new password (between 1 and 16 bytes, in byte units).

3. Change the block length using CMD16 to allow data transfer of (old password byte length +
new password byte length + 2 bytes).

4. Transmit the card lock/unlock command (CMD42) and a data block.

If the LOCK_UNLOCK bit of the data block is set to 1 when transmission is performed, the
card is locked immediately after this CMD42 command is executed. Even if the
LOCK_UNLOCK bit is cleared to 0, the card is locked by cutting the card power supply and
then turning it on again. This is because the contents of PWD_LEN indicate whether or not a
password is currently set, and if the PWD_LEN value is not 0, the card is automatically locked
after a power-on operation.

Table 2.16 Data Block Sent to Card When Changing Password

Byte# Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

0 Reserved 0 LOCK_
UNLOCK

0 1

1 Byte length of new password (PWD_LEN)

…

PWD_LEN + 1

Old password
+

New password



39

Clearing the Password:

1. If the card for which the password is to be cleared is deselected, perform card selection using
CMD7.

2. Change the block length using CMD16 to allow data transfer of (set password byte length + 2
bytes).

3. Transmit the card lock/unlock command (CMD42) and a data block.

4. If the transmitted password byte length and password match the values stored in the register,
the password is erased and the password length (PWD_LEN) is cleared to 0. The password
length of 0 in this case indicates that a password is not set.

Table 2.17 Data Block Transferred When Clearing Password

Byte# Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

0 Reserved 0 X 1 0

1 Set password byte length (PWD_LEN)

…

PWD_LEN + 1

Set password (PWD)

Locking a Card:

1. If the card to be locked is deselected, perform card selection using CMD7.

2. Change the block length using CMD16 to allow data transfer of (set password byte length + 2
bytes).

3. Transmit the card lock/unlock command (CMD42) and a data block.

4. If the transmitted password byte length and password match the values stored in the register,
the card is locked and CARD_IS_LOCKED = 1 is returned as the response to the command.

Table 2.18 Data Block Transferred When Locking Card

Byte# Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

0 Reserved 0 1 0 0

1 Set password byte length (PWD_LEN)

…

PWD_LEN + 1

Set password (PWD)



40

Unlocking a Card:

1. If the card to be unlocked is deselected, perform card selection using CMD7.

2. Change the block length using CMD16 to allow data transfer of (set password byte length + 2
bytes).

3. Transmit the card lock/unlock command (CMD42) and a data block.

4. If the transmitted password byte length and password match the values stored in the register,
the card is unlocked and CARD_IS_LOCKED = 0 is returned as the response to the command.

Note: The card unlocked state is maintained only as long as power to the card is on. If the card
power supply is cut and then turned on again, the card will again be locked automatically.
To permanently unlock a card, the password must be erased.

Table 2.19 Data Block Transferred When Unlocking Card

Byte# Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

0 Reserved 0 0 0 0

1 Set password byte length (PWD_LEN)

…

PWD_LEN + 1

Set password (PWD)

Forcibly Erasing Data: If the user forgets the card password information, the password contents
can be erased together with all the data in the card.

1. If the card to be forcibly erased is deselected, perform card selection using CMD7.

2. Change the transfer block length to 1 byte using CMD16 to allow data transfer of 1 byte.

3. Transmit the card lock/unlock command (CMD42) and a data block.

4. All the card data areas, including the password length register and password register, are
erased, and if the card was locked it is unlocked.

Table 2.20 Data Block Transferred When Forcibly Erasing Data

Byte# Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

0 Reserved 1 0 0 0



41

2.5.3 SPI Mode Commands

SPI commands are listed in table 2.21. The main differences from MMC mode commands are that,
since the OCR register value cannot be read with CMD1, CMD58 is assigned for OCR reads, and
since CRC is off by default in SPI mode, CMD59 is assigned for turning CRC on. With other
commands, although the response format differs, command functions and issuance conditions are
the same as in MMC mode.

Table 2.21 SPI Mode Commands

Command
Index

SPI
Mode Argument Resp AbbrevIation Command Description

CMD0 Yes None R1 GO_IDLE_STATE Command for a card reset.

If CMD0 is issued while the CS
signal is low, the selected card
enters SPI mode. After issuing
CMD0, the only commands that
can be issued are CMD1 and
CMD58.

CMD1 Yes None R1 SEND_OP_COND Used to monitor completion of
card initialization. The host
should continue polling with
CMD1 until response R1
changes from 01h (Busy) to 00h
(Ready). As there is no power
supply voltage range exchange
such as that by CMD1 in MMC
mode, CMD58 (Read_OCR)
should be used to check the
power supply voltage range, if
wished.

CMD2 No

CMD3 No

CMD4 No

CMD5 Reserved

CMD6 Reserved

CMD7 No

CMD8 Reserved

CMD9 Yes None R1 SEND_CSD Used to read CSD information
for the card specified by RCA.

CMD10 Yes None R1 SEND_CID Used to read CID information for
the card specified by RCA.

CMD11 No

CMD12 No



42

Command
Index

SPI
Mode Argument Resp AbbrevIation Command Description

CMD13 Yes None R2 SEND_STATUS Command for ordering
transmission to the selected
card of the card’s status
register.

CMD14 Reserved

CMD15 No

CMD16 Yes [31:0]
Block length

R1 SET_BLOCKLEN Command used to change the
transfer block length in
subsequent CMD17 (single
block read) and CMD24 (single
block write) commands. Hitachi
MMCs use a fixed write transfer
block size of 512 bytes.

See the description of CMD16
in MMC mode for a sample
setting when issuing this
command.

CMD17 Yes [31:0]
Data address

R1 READ_SINGLE_
BLOCK

Command for reading data from
the card, starting at the address
specified by the argument and
with the block length set by
CMD16 (or default length of
512 bytes if no setting is made).

CMD18 No [31:0]
Data address

R1 READ_MULTIPLE_
BLOCK

Command for consecutively
reading multiple blocks of data
from the card, starting at the
address specified by the
argument and with the block
length set by CMD16 (or default
length of 512 bytes if no setting
is made), until a stop command
(CMD12) is input.

CMD19 Reserved

CMD20 No

CMD21 to
CMD23

Reserved

CMD24 Yes [31:0]
Data address

R1 WRITE_BLOCK Command for writing data to
the card, starting at the address
specified by the argument and
with the block length set by
CMD16 (or default length of
512 bytes if no setting is made).
Hitachi MMCs use a fixed block
length of 512 bytes.



43

Command
Index

SPI
Mode Argument Resp AbbrevIation Command Description

CMD25 No [31:0]
Data address

R1 WRITE_
MULTIPLE_BLOCK

Command for consecutively
writing multiple blocks of data to
the card, starting at the address
specified by the argument and
with the block length set by
CMD16 (or default length of 512
bytes if no setting is made), until
a stop command (CMD12) is
input. Hitachi MMCs use a fixed
block length of 512 bytes.
(Applies from the MMCA
Standard Ver. 3.1 MM2 Series
onward.)

CMD26 No

CMD27 Yes None R1b PROGRAM_CSD Command used for
programmable bit programming
in the CSD register.

CMD28 Yes [31:0]
Data address

R1b SET_WRITE_
PROT

Sets the write protect bit of the
group whose address is
specified when the card has a
write protect function.

CMD29 Yes [31:0]
Data address

R1b CLR_WRITE_
PROT

Clears the write protect bit of the
group whose address is
specified when the card has a
write protect function.

CMD30 Yes [31:0]
Write protect
data address

R1 SEND_WRITE_
PROT

Requests transmission of the
write protect bit status to the card
when the card has a write protect
function.

CMD31 Reserved

CMD32 Yes [31:0]
Data address

R1 TAG_SECTOR_
START

Sets the address of the first
sector in the range within which
erasing is to be performed
consecutively within the erase
group.

CMD33 Yes [31:0]
Data address

R1 TAG_SECTOR_
END

Sets the address of the last
sector in the range within which
erasing is to be performed
consecutively within the erase
group.

Can be the same sector as set
by CMD32.

CMD34 Yes [31:0]
Data address

R1 UNTAG_SECTOR Clears erasing of any sector in
the range within which erasing is
to be performed consecutively
within the erase group.



44

Command
Index

SPI
Mode Argument Resp AbbrevIation Command Description

CMD35 Yes [31:0]
Data address

R1 TAG_ERASE_
GROUP_START

Sets the address of the first
erase group in the range within
which erasing is to be
performed consecutively.

CMD36 Yes [31:0]
Data address

R1 TAG_ERASE_
GROUP_END

Sets the address of the last
erase group in the range within
which erasing is to be
performed consecutively.

Can be the same erase group
as set by CMD35.

CMD37 Yes [31:0]
Data address

R1 UNTAG_ERASE_
GROUP

Clears erasing of one of the
erase groups on which erasing
is to be performed
consecutively.

CMD38 Yes [31:0]
Stuff bits

R1b ERASE Executes erasing within the set
range.

CMD39 No

CMD40 No

CMD41 Reserved

CMD42 Yes [31:0]
Stuff bits

R1b LOCK_UNLOCK Used for password setting/
erasing or card locking/
unlocking. When a card has
been locked by means of a
password, data cannot be read
or written until the card is
unlocked. A password of up to
128 bits can be set.

CMD43 to
CMD57

Reserved

CMD58 Yes None R3 READ_OCR Command for reading the
contents of the OCR register.

CMD59 Yes [31:1]
Stuff bits

[0:0]
CRC option

R1 CRC_ON_OFF Command for turning the CRC
option on and off.

In SPI mode the CRC option is
off by default, and is turned on
using this command.
• CRC option bit = 1

→ CRC on
• CRC option bit = 0

→ CRC off

CMD60 No



45

2.6 Responses

When a command is issued from the host to a card, on receiving the command the card returns a
response to the host in a format stipulated for each command. These formats differ according to
whether MMC mode or SPI mode is used for the interface. The response formats in MMC mode
are shown in table 2.22, and those in SPI mode in table 2.23.

Table 2.22 Response Formats (MMC Mode)

R1, R1b (normal response commands: 48 bits)

Serial data

[47] R1, R1b [0]

Bit position 47 46 [45:40] [39:8] [7:1] 0

Width (bit) 1 1 6 32 7 1

Value 0 0 X X X 1

Description Start bit Transmission
bit

Command
index

Card status CRC7 End bit

R2 (CID and CSD register response commands: 136 bits)

Serial data

[135] R2 [0]

Bit position 135 134 [133:128] [127:1] 0

Width (bit) 1 1 6 127 1

Value 0 0 111111 X 1

Description Start bit Transmission
bit

Reserved CID or CSD register End bit

R3 (OCR register response commands: 136 bits)

Serial data

[135] R3 [0]

Bit position 47 46 [45:40] [39:8] [7:1] 0

Width (bit) 1 1 6 32 7 1

Value 0 0 111111 X 111111 1

Description Start bit Transmission
bit

Reserved OCR register Reserved End bit



46

Table 2.23 Response Formats (SPI Mode)

R1, R1b (response to all commands except SEND_STATUS command)

Serial data

7

0

0

In idle state�

Erase reset�

Illegal command�

Com crc error�

Erase sequence error�

Address error�

Parameter error

R2 (response to SEND_STATUS command: CMD13)

Serial data

7 00Byte 1 Byte 2

0

7

0

Card is locked�

wp erase skip | lock/unlock cmd failed�

Error�

CC error�

Card ecc failed�

wp violation�

Erase param�

Out of range�

In idle state�

Erase reset�

Illegal command�

Com crc error�

Erase sequence error�

Address error�

Parameter error

Note: SEND_STATUS command = CMD13



47

1. MMC mode

In MMC mode there are five response types: R1, R2, R3, R4, and R5. The type of response
returned for the various commands is as shown in table 2.16. The main command response is
R1, which returns card status information. R2 returns a 136-bit response containing the CSD
register value, CID register value, etc., when command 2, 9, or 10 is received, and R3 returns a
48-bit response containing the OCR register value when command 1 is received

2. SPI mode

In SPI mode there are two response types: R1 and R2. An R2 type 16-bit response is returned
when command 13 is received, and an R1 type 8-bit response is returned when any other
command is received. The lower 8 bits of the R2 type 16-bit response are exactly the same as
the R1 type.



48

2.7 Read/Write Protocols

Figures 2.15 and 2.16 show examples of the read and write protocols in MMC mode and SPI
mode.

Data block crc Busy Data block crc Busy

Command Response Command ResponseCMD

DAT

•  (Multiple) block write (MMC mode)

Multi block write operation (CMD25)

Block write operation (CMD24)

Data block crc Data block crc

Command Response Command ResponseCMD

DAT

•  (Multiple) block read (MMC mode)

Multi block read operation (CMD18)

Block read operation (CMD17)

Data stop operation�
(CMD12)

Data stop operation�
(CMD12)

Figure 2.15   Examples of MMC Mode Read/Write Transfer

Response Data response Busy

Command Data blockData in

Data out

•  Block write (SPI mode)

Block write operation (CMD24)

Response Data block crc

CommandData in

Data out

•  Block read (SPI mode)

Block read operation (CMD17)

Figure 2.16   Examples of SPI Mode Read/Write Transfer



49

Section 3   Total System Support for Application Product
Development

3.1 MultiMediaCard™ System Development

An MMC is not simply a card containing flash memory, but, with use in multimedia products in
mind, also includes a controller for increasing the level of intelligence (generally through the use
of a microcomputer) and a command interface for all requests to the card. These features provide a
high level of user program independence in interfacing to the MMC, and simplify program
development.

3.1.1 Support Policy

1. Easy MMC evaluation and examination

When an MMC is used in an application product, a development platform is provided that
facilitates evaluation and examination of the card’s characteristics and functions. Evaluation
can be carried out simply by connecting this platform to a personal computer, without use of
the user system.

2. Easy construction of PC-compatible files on an MMC

Image, voice, and character data is generally stored in a card in the form of files, and a file
system is required for this purpose. Hitachi offers a PC-compatible file system, as well as
MMC driver software that handles communication with the MMC via commands, etc.,
simplifying the construction of a file system.

3. MMC total system development support

When developing a system that supports MMCs, it is important to be able to check the
interface between the system and the card under various conditions. A protocol analyzer
offering the following features is available to simplify this work.

a. Monitoring of all signals between MMC and system

b. Detection of various trigger events such as commands and data patterns during monitoring

c. Chameleon modes for easier debugging

• Normal mode

Monitoring between system and card

• Pseudo-card mode

Pseudo system-side operation, debugging of interface on card side

• Pseudo-host mode

Pseudo card-side operation, debugging of interface on host side



50

d. Provision of interface LSI in adapter control system

The adapter control system includes MMC mode and SPI mode, with LSIs available in
both modes to simplify system construction.

3.1.2 System Development Sequence

Figure 3.1 shows the support situation for development of a system using an MMC.

MultiMediaCard™�
support system

MultiMediaCard™�
application�

development

Hardware�
development

MultiMediaCard™�
protocol�
analyzer

MultiMediaCard™�
protocol�
analyzer

SPI/MMC�
adapter LSI

System�
software�

development

System�
integration

MultiMediaCard™�
solution

Development�
platform

•� PC-compatible �
� file system�
•� Device driver

MultiMediaCard™ �
protocol�
analyzer

MultiMediaCard™�
evaluation/�
examination

�

System debugging�
•�MultiMediaCard™ �
� protocol analyzer�
•�In-circuit emulator�
� (system debugging)

MultiMediaCard™�
installation system

Figure 3.1   Overview of System Development



51

First, MMC evaluation and examination is carried out using the development platform in the
MMC solution stage. When this evaluation work is completed, development of the MMC support
system is begun. The development sequence comprises software development, hardware
development, and then system integration, after which system debugging is carried out and the
MMC installation system is completed.

1. Software development

Development of the installation system control program and user application program is
carried out.

In MMC application development, files in the MMC can be supported by using the PC-
compatible file system and device driver.

In system software development, use of a multimedia protocol analyzer enables almost all
system software checking to be carried out before the application product is completed.

2. Hardware development

Hardware development involves MMC interface development in addition to the usual
development tasks. Use of adapter control system SPI mode and MMC mode LSIs and an
MMC socket simplifies MMC implementation. In addition, the provision of SuperH™*
microcomputers, FPAGs, ASICs, CBICs, etc., as MMC interface adapter logic components is
planned, to further simplify embedding and shorten development times. Hardware-based
system debugging of the MMC interface of the completed hardware can be carried out using a
multimedia protocol analyzer.

Note: * SuperH is a trademark of Hitachi, Ltd.

3. System debugging

When development of both software and hardware has been completed, the two are integrated
in the system integration stage, and system debugging is begun. Conventionally,
hardware/software debugging is executed and system confirmation work carried out using an
in-circuit emulator, but with an intelligent device such as an MMC, a logic analyzer or similar
means is used, making it impossible to shorten the system development time and also imposing
a heavy load on the developers. MMC-related bug analysis can be carried out using the
MultiMediaCard™ protocol analyzer provided for the purpose of simplifying MMC
installation. Also, if the developers want to conduct testing with specific data provided in the
MMC, it is possible to carry out formatting and analysis of data recorded in system testing with
the development platform.

The development of an MMC installation system is carried out in this way.

An overview of the development sequence in developing an MMC installation system has been
given above. The construction of the installation system will now be considered in greater detail as
shown in figure 3.2.



52

MMC

MultiMediaCard™ installation system

MultiMediaCard™ protocol analyzer

MMC installation system development support

MMC MMC

SPI mode driver�
software

MMC mode driver�
software

SPI adapter LSI MMC adapter LSI

PC-compatible file system

Port control driver�
software

MMC MMC

Figure 3.2   Installation System Configuration Diagram

An MMC installation system includes port control and adapter control by means of an MMC
control system , with a PC-compatible file system as the main element. The adapter control system
SPI mode and MMC mode are described here.

As shown in figure 3.2, an installation system is constructed by selecting a number of systems, in
all of which MMC access is performed via SPI mode driver software and an SPI adapter LSI or
MMC mode driver software and an MMC adapter LSI, and data writes, reads, and erases are
performed in file units. MMC processing is executed in parallel on the system side, while on the
card side commands, data, and responses from the card are processed serially. In intelligent card
debugging, the ability to collect and analyze various statuses and other kinds of information more
effectively enables the developer to make more efficient use of manpower. Development time can
be shortened by using an MMC protocol analyzer.

Figure 3.3 summarizes the development support available for products using MMCs.
Development support can be broadly divided into three categories.



53

MultiMediaCard™ �
product �
development �
support

Adapter �
control

Tools��

File �
support

MMC adapter LSI

Protocol analyzer

SPI adapter LSI

Hardware development support

System development support

Software development support

Development platform

PC-compatible file system

MMC mode driver software

SPI mode driver software

Port control driver software

Figure 3.3   Product Development Support

1. Hardware development support

In order to install an MMC in hardware, an adapter control system must be implemented. For
this purpose, an MMC adapter LSI and SPI adapter LSI are provided, allowing easy
incorporation of both systems in the user system.

2. Software development support

To support easy implementation of a file system in an MMC, a PC-compatible file system is
provided, together with two kinds of driver software for implementing an adapter control
system. This allows the user to develop application software without any special knowledge of
MMCs. Similarly, port control system driver software is also provided.

3. System development support

A protocol analyzer and development platform are provided in order to carry out
comprehensive debugging of software and hardware during system development. The
development platform can be used for the following purposes in addition to evaluation and
examination.



54

a. Although MMC file writes do not function in system debugging, files (image, voice, text,
etc.) can be created if it is wished to test read processing.

b. Checking whether a file written in system debugging has been correctly created.

c. Correction of data in the MMC.

Use of such development support tools simplifies the development of an MMC system. Details of
software support and tools available are given in the following sections.



55

3.2 Adapter Logic

An MMC is connected to the host by serial interface lines called CLK, CMD, and DAT. To enable
high-speed data transfer at up to 20 Mbps to be executed efficiently between the card and the host,
hardware called an adapter is required between the general-purpose microcomputer in the host and
the MMC. Figure 3.4 shows a sample configuration of a system incorporating this hardware.

Two kinds of adapter—an MMC adapter and an SPI adapter—are stipulated in the
MultiMediaCard™ System Specification*. The amount of circuitry incorporated in the adapter is
determined by the required system speed. Here, port control system, MMC adapter, and SPI
adapter hardware circuits implemented using commercially available FPGAs will be described.

Note: * Specification drawn up by the MMCA (MultiMediaCard™ Association)

(2)� Adapter control system

Software

OS

File manager

Driver software �
(MMC/SPI)

8-bit parallel

Serial (MMC/SPI)

Socket

MultiMediaCard™

ROM

(1)� Software (port) control system

Software

OS

File manager

Driver software �
(MMC/SPI)

CPU�
(SH7612)

CPU�
(SH7612)

Port�
(multi-byte register)

MultiMediaCard™�
adapter

8-bit parallel

Serial (MMC/SPI)

Socket

MultiMediaCard™

ROM

Figure 3.4   Example of MultiMediaCard™ System Implementation

3.2.1 Port Control System

Figure 3.5 shows a block diagram of the port control system constructed this time.

A one-byte register port is constructed in the external memory area of the host microcomputer
using an FPGA, and control of CLK, CMD, DAT, and VDD is executed by means of bits in this
register. Power supply on/off control, clock high/low level control, individual bit output for
commands, and bit-unit input/output of data are all handled by host microcomputer driver software
processing. This results in a lower transfer speed but simplifies the hardware configuration.



56

PORTREGRD-N

D15–D8 NC

HC125

HC125

E10K30A

Switching REG

D Q

QR

SPISEL-N

SPIDATARD-N

MMCDATARD-N
MMCSEL-N

HC125

3.3V

10k

10k10k

47k

For SPI

SCLK

DO
DI

DAT
CMD

CMDOUT
DATOUT

CS
VDD

For MMC

CLK

DAT
CMD

NC
VDD

VDDON-N

PORTREGD7–D0

PORTREGWR-N

PWRONRES-N

PORTREGRD-N

PORTREGWR-N

D0
D1
D2

D3

D4

D5
D6
D7

D0
D1
D2

D1

D2

D3

D4

D5
D6
D7

D0

Q0
Q1
Q2

Q3

Q4

Q5
Q6
Q7

CLR

CLK

Figure 3.5   Block Diagram of Port Control System



57

3.2.2 MMC Adapter

Figure 3.6 shows a block diagram of the MMC adapter constructed this time.

SHD[7:0]

PONRES-N

SHIRQ

20MHz-P

State�
machine

SEL
P→S�
con-�

version

CRC16

CRC16

CRC7

CRC7

S→P conversion

P→S conversion

S→P conversion

1kB FIFO

FF FF

DI

FIFOCNTREG

Command register

CMD0–CMD5

Response register

RESP0–RESP16

Number of transfer bytes

Operation control �
register

Interrupt control register

Interrupt status register

INTCR

INTSTR

TBCR

Card status register

CSTR

Error status register

ESTR

VDDon register

Clock divider

VDDon

Timeout setting register

TOCR

OCR

FIFOCR

DO

DR

DAT

CMD

VDDON-N

CLK

RS

Figure 3.6   Block Diagram of MMC Adapter

In order to reduce the software overhead of the host microcomputer, FPGAs are used to configure
circuits such as a circuit to convert the microcomputer bus interface to the MMC serial interface,
and a command register (6 bytes), response register (17 bytes), and data register (1-kbyte FIFO).



58

The MMC transfer protocol requires a CRC check to ensure data transfer quality in command
transfer, response transfer, and data transfer, so a CRC code is automatically generated by
hardware and added to the bit pattern when a command or data is transmitted. When a response or
data is received, a CRC check is carried out automatically.

The data register incorporates a FIFO that can be written to and read independently in the FPGA.
In data transfer to the MMC, data is written to the FIFO from the microcomputer beforehand, a
command is set in the register, and when the command is started the command pattern is
automatically transmitted together with the CRC, and the response from the card is shown in the
response register. The microcomputer checks the contents of this response, and if valid, set the
data transfer enable register to transfer enable status. The data held in the FIFO is then read by
hardware, byte by byte, converted to a serial bit stream, and sent from the DAT line on the MMC
interface. An error during data transfer, lack of a response, or a FIFO empty or FIFO full
condition, is reported by an interrupt to the microcomputer. In addition to the above registers
required as MMC adapter registers, a register that turns the MMC card power supply on and off,
and a function that selects a 400 kHz, 5 MHz, 10 MHz, or 20 MHz clock for supply to the MMC,
are also provided.

3.2.3 SPI Adapter

The hardware configuration of the SPI adapter is the same as that of the MMC adapter described
above. Differences in the MMC bus interface are that the response length is a maximum of 2
bytes, the data transfer block size is a maximum of 512 bytes, and multiple block data transfer in
response to a single command is not permitted. As with the MMC adapter, a parallel/serial
conversion circuit, command register (6 bytes), response register (2 bytes), data register (512-byte
FIFO), etc., are configured by FPGAs. The CRC circuit, interrupt generation circuit, clock
generation circuit, and power supply on/off circuit are the same as in the MMC adapter. The CS
line specific to the SPI interface is controlled from the microcomputer by means of a newly added
register.

3.2.4 Host Microcomputer

For the above adapter functions, operation has been checked with each MMC adapter incorporated
in the daughter board holding the FPGA. The read performance has been obtained as an initial aim
with the port control system, SPI adapter, and MMC adapter. In the case of an MMC card, there is
a strong demand for the use of an 8-bit class microcomputer as the host, and the development
platform has been created with an H8S microcomputer as its base, as described below.



59

3.3 Development Platform

The MMC development platform was created in order to simplify the development of a system
using MMC cards, and because there is a need for a system enabling easy evaluation of MMC card
reading and write performance.

Figure 3.7 shows the configuration of the system created this time, and figure 3.8 shows a block
diagram of the system.

Host PC

RS-232C �
cable

Power supply �
adapter

Reset SW

DIP SW

MODE-SEL
Mode indicator �
LED

Card slot 1

LED

Serial port 1

Serial port 2�
(for expansion)

Power SW

Card slot 2

Card slot 3

H8S platform

Figure 3.7   System Configuration



60

F-ZTAT I/F

H8S/2633

SRAM�
128 kbytes

MMC controller�
(FPGA)

5.0 V operation
3.3 V operation

Mode SW 20 MHz

Slot 1

Slot 2

Slot 3

20 MHz

RS232C 2ch

RS232C�
I/F

RS232C�
I/F

IIC I/F

STATUS�
LED

DIP SW

Reset SW

Level shifter

Figure 3.8   Block Diagram of Development Platform

3.3.1 Microcomputer Selection

The H8S/2633 was selected as a microcomputer for low-end consumer applications, featuring on-
chip flash memory, an external memory space of 128 kbyte or more, and two or more serial
interface channels to a personal computer, and capable of operating at 20 MHz or above.

As the maximum MMC bus interface clock speed is 20 MHz, 20 MHz has been set for the CPU
clock.



61

3.3.2 Control Adapter Circuit

Either the SPI adapter circuit or MMC adapter circuit mentioned earlier is configured in the FPGA
automatically at power-on by means of a switch mounted on the board. The value of this switch
can also be read by the H8S microcomputer, enabling monitor software incorporated in the
platform to recognize automatically which adapter is mounted.

An 8-bit standard interface is used as the interface between the adapter and the H8S
microcomputer, and data (8-bit), address (5-bit), RD, WR, CS, IRQ, and CLOCK signal lines are
used. The adapter is seen from the H8S microcomputer as a group of registers comprising
approximately 30 bytes.

3.3.3 MMC Bus Interface

The control adapter has an interface to the microcomputer and an interface to the cards. The
MultiMediaCard™ System Specification stipulates a card stack of up to 30 cards for a single
MMC bus, but the platform developed this time is provided with 3 card slots. When a single
control adapter handles multiple card slots, this is provided for in the SPI adapter by increasing the
number of CS lines (CS0, CS1, CS2, and so on). With the MMC adapter, multiple cards are
managed automatically on the card side, without the need for additional signals. Three card slots
are provided to facilitate operation verification and evaluation when there are a number of memory
cards in the system.

3.3.4 Monitor Commands

The MultiMediaCard™ development platform is used with a personal computer connected as a
terminal via a serial cable.

A monitor program and driver software are written in the flash memory on the platform, and the
following functions are supported. Table 3.1 lists the monitor commands.

• MMC card register information (CID and CSD) can be displayed.

• Specified MMC card addresses (specified by sector number) can be read into the edit buffer,
edited, and written.

• MMC card file operations can be performed, including file list display, file copying, and file
contents display.

• File transfer can be executed between the host system and an MMC card on the H8S platform.

• MMC and SPI protocols are supported for MMC card access.



62

Table 3.1 Monitor Commands

Function Command Processing Notes

CID, CSD display CID CID register information display

CSD CSD register information display

MMC specified
address read/write

R Reads data in a specified MMC card
sector into the edit buffer.

Single-sector unit
(fixed at 512 bytes)

W Writes data in a specified MMC card
sector from the edit buffer.

Single-sector unit
(fixed at 512 bytes)

Buffer editing D Edit buffer contents display

M Edit buffer contents change

F Data embedding in edit buffer

Formatting FORMAT MMC card formatting

Directory operations DIR File list display

MD Directory creation

RD Directory deletion

File operations COPY File copy

DISKCOPY Disk copy

DUMP File dump

File transfer to/from
host system

PUT Transfer of one file from MMC card to
host PC

GET Transfer of one file from host PC to
MMC card

3.4 Software for Products Incorporating MMCs

In order for data written in an MMC to be recognized as a file by a personal computer, etc., a PC-
compatible file system and driver software must be installed on the embedded system side. Here,
the software required for development of an embedded product incorporating an MMC is
described, taking the example of driver software created for use with “USFiles” available
commercially as a PC-compatible file system for embedded applications.

As software for implementing requests to the MMC such as “data write to MMC” and “data read
from MMC” in an embedded system, software called a “driver” is needed that performs accesses
to the MMC based on a procedure whereby an instruction called a “command” is sent to the MMC
and a reply called a “response” is received from the MMC by the software. The main processing
of the driver consists of MMC initialization, data reading, data writing, area erasing, and MMC
status checking.



63

3.4.1 Software Configuration

Figure 3.9 shows an example of the software configuration in an embedded system.

Application program

MMC protocol processing layer

MMC I/O processing layer

MMC�
(card)

Upper layer

Driver software

Lower layer

FAT file system�
(USFiles)

File system I/F processing layer

Figure 3.9   MMC Control Software Configuration

The area from the file system/driver I/F processing layer to the MMC I/O processing layer
corresponds to the driver software. The MMC has two modes—SPI mode and MMC mode—
which differ as follows from the viewpoint of software.

1. MMC mode

• There is an Identification sequence in which an address is assigned to an MMC (details
given below).

• There is a Broadcast command that issues instructions to all MMCs simultaneously.

• In order to select a specific MMC from among multiple MMCs, select and deselect
processing is required, using MMC addresses. (Uses the card select command.)

• There are more types of response than in SPI mode.



64

2. SPI mode

• The Identification sequence is simple.

• When multiple MMCs are used, a Chip Select signal (CS) is used to select a specific
MMC.

• The response system is simple, with fewer types of response from the MMC than in MMC
mode.

The software that performs processing in accordance with the MMC or SPI mode protocol
comprises the protocol processing layer. Processing such as MMC initialization, reading, writing,
and erasing is performed in this layer.

There are two control methods, distinguished by the nature of the trade-off between hardware and
driver software functions: the adapter control system in which MMC bus protocol processing is
handled by hardware, and the port control system in which processing is performed by software.
These are handled in the I/O processing layer.

1. Port control system

In this system, everything from command generation to port input/output processing is
controlled by software. Specifically, all processing including clock transmission, data
transmission and reception in synchronization with the clock, and CRC addition to transmit
data and CRC checking in receive data to detect errors on the bus, is controlled by software.

3.4.2 Interface to File System

The interface between the file system and driver software comprises the 8 functions shown in table
3.2. Providing these functions on the driver side enables access to be performed without awareness
of the recording medium (MMC, CF card, etc.).

Table 3.2 Interface between File System and Driver

init( ) Initializes device

format( ) Performs physical formatting of sectors

raw_read( ) Reads sector (cylinder, head, sector specified)

raw_write( ) Writes sector (cylinder, head, sector specified)

read( ) Reads sector (logical sector number specified)

write( ) Writes sector (logical sector number specified)

timestamp( ) Returns time and date

diskchange( ) Returns notification that disk has been changed



65

3.4.3 MMC Hot Insertion/Removal

MMCs support hot insertion and removal. The process for hot insertion and removal is described
below taking the example of file opening (figure 3.10).

When a file open request is sent from the application program to the file system, the file system
first checks if the medium has been changed. This is done by calling mmc_diskchange() on the
driver software side. If a medium change is not detected, the procedure moves on to file open
processing. If a medium change is detected, on the other hand, MMC initialization is performed by
means of mmc_init() on the driver software side. When initialization is completed normally, the
procedure moves on to file open processing.

A sample program for the diskchange() function of an MMC driver created for USFiles is shown
in figure 3.11.

File opening

Medium check�
mmc_diskchange( )

Check card status with CMD13. �
Confirm insertion/removal �
by checking for response �
from card and error.

No

No

Yes

Yes

diskchange�
detected

Medium initialization�
mmc_init( )

Initialization�
completed?

Open processing

Open processing

No medium

Application program

File system

Figure 3.10   Processing for File Opening



66

int mmc_diskchange( DEVICE *devp )
{
   byte   card_no;
   uint32  ret;

   card_no = 0;
   ret = 0;
   /*----------------------------------------------------*/
   /*  Card number acquisition� */
   /*----------------------------------------------------*/
   card_no = (devp->unit_no & ~UNIT_NO);
   /*----------------------------------------------------*/
   /*  Card status check */
   /*----------------------------------------------------*/
   if ( ret = MMC_Send_Status( card_no, &Card_Info ) ){
      return( 1 );/* Medium change */
   }
   else{
      return( 0 );/* No medium change */
   }
}

Figure 3.11   Sample Coding for Handling Hot Insertion/Removal

3.4.4 MMC Initialization

In order to perform data read/write access, etc., to an MMC, the MMC must first be initialized.
The initialization processing is different for MMC mode and SPI mode, and the appropriate
processing must be carried out for the relevant mode. MMC mode uses an open-drain control
method. The initialization processing for open-drain MMC mode is described in detail below.

The commands shown in table 3.3 are provided for MMC initialization.

Table 3.3 Commands for Initialization

Command Response Abbreviation Description

CMD0 — GO_IDLE_STATE Resets all cards and places them
in the idle state.

CMD1 R3 SEND_OP_COND Asks all cards for their operation
condition.

CMD2 R2 ALL_SEND_CID Asks all cards for CID.

CMD3 R1 SET_RELATIVE_ADDR Assigns RCA.



67

1. CMD0 issuance

In MMC initialization, the host first issues CMD0 to the MMCs. Issuing CMD0 places the
MMCs in the idle state. Normally, an MMC returns a response to a command from the host,
but there are number of commands for which no response is returned. CMD0 is one such
command, and no response is sent to indicate whether an MMC has entered the idle state.
Therefore, the host needs to issue CMD0 as many times as is considered adequate.

2. CMD1 issuance

When the MMCs have gone to the idle state, CMD1 is issued. CMD1 enables the voltage value
of the power supply to the MMCs to be set. When CMD1 is issued, if an MMC supports the set
voltage value, it returns the voltage range it supports as a response. An MMC outside the
supported voltage range goes to the inactive state.

3. CMD2 issuance

If there is an MMC from which a response is obtained after issuing CMD1, the host next issues
CMD2. When CMD2 is issued, the MMC returns CID (Card Identification Register) data as a
response.

If there are a number of MMCs on the bus, all the MMCs return a response on receiving
CMD2 from the host. In this case, the response of the MMC that first acquires bus mastership
can be received by the host.

4. CMD3 issuance

The host must issue a CMD3 command to the MMC that has acquired the bus. CMD3 allows
the RCA (Relative Card Address)—the number assigned to an MMC—to be set. The RCA can
be set in a range from 1 to 65,535, and is used to select a particular MMC to be accessed from
among multiple MMCs in subsequent accesses.

If there are a number of MMCs on the bus, the host must issue the same number of CMD2
commands as there are MMCs on the bus, for the MMCs that were not able to acquire the bus
when the first CMD2 was issued.

When CMD3 ends normally, the MMC goes to data transfer mode (from card identification
mode). An MMC that has entered data transfer mode does not return a response to subsequent
CMD2 commands.

This procedure prevents duplicate RCAs from being set when there are a number of MMCs on
the bus, and enables all the MMCs to be placed in data transfer mode.

The above initialization procedure is illustrated in figure 3.12.

Figure 3.13 shows a sample program for the initialization function mmc_init() of an MMC driver
created for USFiles.



68

Idle state

CMD1

Ready state

CMD2

Identification�
state

CMD0

Inactive state

Voltage-incompatible �
card

Busy or voltage �
incompatibility

Bus not acquired Bus acquisition

Identification mode

Data transfer mode

CMD3

Standby state

Figure 3.12   MMC States during Initialization



69

int mmc_init( DEVICE *devp )
{
    uint32  ret;/* Error presence/absence during initialization */

    ret = 0;
    /*-----------------------------------------------------------*/
    /*  Card initialization (SPI mode: processing up to CMD0, CMD1 */
    /*                MMC mode: processing up to CMD0 to CMD3) */
    /*-----------------------------------------------------------*/
    if ( ret = MMC_InitCard( &Card_Info ) ){
        return( 1 );
    }
    /*-----------------------------------------------------------*/
    /*  CSD, CID acquisition */
    /*-----------------------------------------------------------*/
    if ( ret = MMC_GetInfo( &Card_Info ) ){
        return( 1 );
    }
    /*-----------------------------------------------------------*/
    /*  Set number of bytes per block */
    /*-----------------------------------------------------------*/
    if ( ret = MMC_SetSectLen( &Card_Info ) ){
        return( 1 );
    }
    return( 0 );
}

Figure 3.13   Sample Initialization Coding



70

3.5 MultiMediaCard™ Protocol Analyzer

A MultiMediaCard™ has a 7-pin external interface, over which data is transferred to and from the
application product using three serial lines (CLK, CMD, and DAT). While the hardware interface
is simple, data transfer between the card and the application product is determined by a protocol
comprising commands and responses. There are 64 kinds of command. When developing a system
using cards, the system development time can be shortened if a means is available for simplifying
analysis of this protocol. With this in mind, an MMC protocol analyzer was developed and
released on the market. (“Protocol analyzer” may be abbreviated to “analyzer” in the following
text.)

Photo 3.1 and table 3.4 show the appearance and physical specifications of the protocol analyzer.
This protocol analyzer system consists of the main analyzer unit and software running on a host
personal computer for performing analyzer operations via a GUI. Figure 3.14 shows the protocol
analyzer system configuration.

The protocol analyzer includes a variety of functions that are helpful in MMC system
development, as described later, all of which can be handled via the GUI.

Photo 3.1   Protocol Analyzer



71

Table 3.4 Physical Specifications of Analyzer

Dimensions of Main Unit 235(W) × 170(L) × 50(D) mm

Weight 1.45 kg

Power Supply AC 90 V to 132 V or AC 200 V to 264 V

Accessories AC cord (for AC 90 V to 132 V or for AC 200 V to 264 V)

RS232C cable (2m, DSUB 9-pin type)

Parallel cable (2m, DSUB 25-pin type)

Analyzer probe (50 cm, coaxial cable)

Pseudo-card cable (50 cm, coaxial cable)

System software (two 3.5" FDs)

Operation manual (Japanese and English versions)

Protocol analyzer

Control PC

Tested host

Insertion Insertion
Probe Tested card

MultiMediaCard™ protocol

Figure 3.14   Protocol Analyzer System Configuration

Table 3.5 lists the functional specifications of the protocol analyzer.



72

Table 3.5 Functional Specifications

No. Item Specifications

1 Trace functions • Traces MMC bus states

(CMD, DAT, CLK, VDD voltage, VDD current, Time Stamp information)

• Supports four trace modes (1 of 4 selectable)

 Free trace mode

 Trace start condition specification mode

 Trace stop condition specification mode

 Trace monitor mode

• Command/response-only trace mode (MMC mode only)

• Trace capacity: 64K cycles

 (Overwrite and buffer stop functions included)

• Time stamp (real time) display

 Resolution: 50 ns units

 CLK, COMMAND, RESPONSE, and DATA intervals on MMC bus
displayed as real time or number of clocks

2 Event detection • Command pattern, response 1, 2, 3 pattern, or data pattern trace
trigger (start or stop condition) can be specified

• Forced trace start/stop by means of GUI buttons

3 Operating status
monitoring

• MMC bus CLK status, VDD voltage value, VDD current value constantly
displayed on GUI screen regardless of whether trace is on or off

4 Pseudo modes • Normal mode, pseudo-host mode, and pseudo-MMC mode
supported

(1 of 3 selectable)

 Normal mode used with analyzer probe inserted between MMC
adapter and MMC.

 Pseudo-host used with MMC inserted in MMC connector on main
unit.

Commands and write data can be sent from protocol analyzer.

 Pseudo-MMC used with host connected via pseudo-MMC cable.
Responses and write data can be returned from protocol
analyzer.

• Traces also valid in pseudo modes (simple protocol checks and
timing checks possible)

• VDD on/off control and selection of various clocks possible in pseudo-
host mode



73

No. Item Specifications

5 Host interface • RS232C asynchronous serial or bidirectional parallel connection

• RS232C serial: 9600 bps to 38400 bps

• Bidirectional parallel: 150 kbytes/sec

6 LED display • Power On, Trace On, MMC-VDD, CMD, and DAT status display

7 Switches • Power ON/OFF switch (back)

• Reset switch (front)

• DIP switch (front)

8 DIAG functions • Execution/non-execution of detailed diagnostic test at power-on
specifiable according to DIP switch state

9 SPI mode
support

• Functions in items 1, 2, 3, 5, 6, 7, and 8 are also valid in SPI mode
(Either use in SPI mode or use in MMC adapter mode can be
selected)

1. Trace function

It is possible to obtain a trace of the signal states between a MultiMediaCard™ and the system,
and to display commands, responses, data, etc., in an easily understood format on the host
personal computer. (Voltage and current values are also displayed.)

2. Event detection function

It is possible to specify various trigger conditions such as commands, responses, and data
patterns, and to start and stop traces based on these conditions.

3. Pseudo-operation

Two pseudo-operation modes are available: pseudo-host mode in which the analyzer performs
pseudo-host operation and card-side interface debugging can be carried out, and pseudo-card
mode in which the analyzer performs pseudo-card operation and host-side interface debugging
can be carried out.

These functions enable MMC system development to go ahead without a host system or card.

4. Performance measurement

Data that can be obtained with the trace function includes data on the time for which the MMC
bus is used, in addition to MMC signals. This data makes it possible to indicate the data
transfer performance between an MMC and the host.

5. Bus state display

The MMC bus power supply state and clock state are constantly displayed.

6. State saving and restoration

Emulation states (set conditions and trace information) can be saved to disk and restored.



74

7. Hard copy

Contents displayed on the screen can be output as hard copy on a printer.

Figure 3.15 shows an overview of the trace acquisition modes.

MMC All data Free trace

<Protocol> <Data> <Mode> <Condition>

Trace stop 1

Trace stop 2

Trace start condition

Trace stop condition

Trace monitor

SPI All data Free trace

Trace stop 1

Trace stop 2

Trace start condition

Trace stop condition

Trace monitor

Command/response Free trace

Trace stop 1

Trace stop 2

Trace start condition

Trace stop condition

Trace monitor

�

Figure 3.15   Overview of Trace Acquisition Modes



75

For <Protocol>, either MMC or SPI can be chosen as the protocol used for trace analysis.

For <Data>, there are two functions: an all-data trace function that acquires commands, responses,
and data, and a command/response trace function that acquires commands and responses only. Use
of this function enables only commands and responses to be traced, simplifying MMC protocol
analysis.

For <Mode> and <Condition>, the trace mode and trace start and stop conditions can be specified.
In a free trace, the latest bus states are constantly written to trace memory holding information for
64k cycles, and older information is overwritten.

Figure 3.16 shows the trace data outline window and figure 3.17 shows the trace data detail
window.

After trace acquisition, these trace display functions can be used to give a clear indication on the
personal computer screen of command types, response types, their intervals, clock-by-clock bit
changes, and so on.

Trace data can also be output to the screen in list format.

Figure 3.16   Trace Data Outline Window



76

Figure 3.17   Trace Data Detail Window

Figure 3.18 shows the pseudo-host mode window.

Figure 3.18   Pseudo-Host Mode Window



77

The MMC card protocol can be checked by using pseudo-host mode commands, issuing a
command to an MMC card and checking the response. In the example in figure 3.18, after the
protocol analyzer turns on VDD for the card, it supplies a 10 MHz clock and then issues a CMD0
command. This sequence and the responses from the card are traced, allowing easy analysis. The
pseudo-modes comprise the pseudo-host mode described here, and a pseudo-card mode in which
the analyzer returns a response to the host in place of the MMC card.

Use of a protocol analyzer as described above offers an improvement over the previous practice of
carrying out debugging while viewing waveforms on a logic analyzer or oscilloscope, and allows
more efficient development of a system employing MultiMediaCard™.

3.6 Example of Application System Development
(Music Player Prototype)

Portable music players are a typical example of the kind of products that make full use of the
MultiMediaCard™’s special features of small size, light weight, and large-capacity flash memory.
This section covers a prototype MP2 player created as a portable product for MMC performance
evaluation and demonstration purposes. The development and prototype production of a
mainstream MP3 player is also planned for the future. The prototype covered here uses the MMC
adapter logic FPGA, MMC driver software, PC-compatible file system, and MMC protocol
analyzer described earlier in the text as development tools. Photo 3.2 illustrates the setup during
development.

Photo 3.2   MP2 Player (Prototype)



78

Figure 3.19 shows a hardware block diagram of the player developed in this example.

CPU

SW, LED

PS�
5V, 3.3V, 1.8V

Current�
indicator block

SDRAM

PLD

Serial

CODEC

SPI�
connector

MIC�
connector

Phone�
connector

FLASH�
ROM

Figure 3.19   Block Diagram of MP2 Player



79

3.6.1 Adapter Logic between Microcomputer and MMC

In order to provide medium-class performance in terms of system speed for music recording and
playback, SPI interface adapter logic circuitry is used. The SPI adapter has a 512-byte FIFO, an
MMC command register, and a response register, and reduces the overhead on the driver software
between the microcomputer and MMC. Figure 3.20 shows the memory map as seen from the CPU
of the SPI adapter’s microcomputer.

A transfer speed of 20 Mbits/second is used between the MMC and the adapter.

D7

CSON

D6

TYP1

D5

TYP0

D4

DATAEN

D7 D0

D7 D0

D7 D0

FEIE FFIE DRPIE DTIE R1IE CMDIE FNEIE INTE

CRCIE DTERIE CTERIE

D7

BUSY

D6

FiFo�
Full

D5

FiFo�
EPTY

D4

CWRE

D3

DTBUSY

D2 D1 D0

REQ

D7

VDDON

D2

CSEL2

D1

CSEL1

D0

CSEL0

D7

DTSEL3

D6

DTSEL2

D5

DTSEL1

D4

DTSEL0

D3

CTSEL3

D2

CTSEL2

D1

CTSEL1

D0

CTSEL0

D2

CRCERR

D1

DTOUT

D0

CTOUT

D3

C3

D2

C2

D1

C1

D0

C0

D1

TXMD

D0

FiFoCR

FEI FFI DRPI DTI R1I CMDI FNEI INT

CRCI DTERI CTERI

D7 D6 D5 D4 D3 D2 D1 D0

Address (B+)

0�

1�

2�

3�

4�

5�

�

6�

7�

8�

�

9�

�

A�

�

B

C�

D

E�

F

10�

�

11�

�

12�

�

13�

�

14

SPI registers

CMDR 0�

CMDR 1�

CMDR 2�

CMDR 3�

CMDR 4�

CMDR 5�

�

RSPS 0�

RSPS 1�

RSPS 2�

�

DR (FiFo)�

�

OCR�

�

CSTR

INTCR 0�

INTCR 1

INTSTR 0�

INTSTR 1

VDDON�

�

TOCR�

�

ESTR�

�

TBCR�

�

FiFoCR

Figure 3.20   SPI Adapter Memory Map



80

3.6.2 Microcomputer Used

For voice compression and expansion, a microcomputer with appropriate processing power must
be selected.

For this project, an SH7729—one of Hitachi’s SuperH™ RISC microcomputers—was selected.

The microcomputer is operated on a 133 MHz internal clock, with a 33 MHz external bus clock
and 33 MHz on-chip peripheral clock.

3.6.3 Audio Codec, etc.

An AC'97 compliant codec IC is used for the interface between audio input/output and the
microcomputer, and 8-Mbyte SDRAM is provided as audio data buffer memory. A function has
also been provided to monitor the system current dissipation, microcomputer current dissipation,
or MMC card current dissipation, and display the value on a 7-SEG LED. This function is
implemented by means of a current sensor and an H8/337 single-chip microcomputer.



81

(1)  Software Processing Sequence

Figure 3.21 shows the software processing sequence for the newly developed player.

Recording data

MP2 encoder

PC-compatible file creation

SPI driver�
�

MMC data storage

SPI driver�
�

MP2 decoder

PC-compatible file creation

Audio output

Figure 3.21   Recording/Playback Flowchart



82

Stereo Playback:

1. MP2 stereo audio compression is performed by host personal computer.

2. File is created in PC file format.

3. File is loaded from PC to player via serial port.

4. Audio data is stored in MMC.

5. Data stored in MMC is read and audio is output to earphone while executing stereo audio
expansion.

Monaural Recording/Playback:

1. Microphone audio data is captured from codec IC.

2. Data compression is performed by means of MP2 encoder processing.

3. PC-compatible file is created, and is written to MMC by SPI driver. (Recording)

4. File in MMC is read by SPI driver. (Playback)

5. Audio is played back to earphone while performing MP2 decoding processing.

(2)  Performance Evaluation

The MP2 player created in this case can store 17 minutes of stereo music data or 70 minutes of
monaural voice data when using one 16-Mbyte MMC card as the storage medium.



83

Section 4   Notes on Design of a MultiMediaCard™ System

4.1 Introduction

An MMC is extremely small in size for a flash card. While major current flash cards such as PC
cards and CompactFlash™ are PC-oriented in concept, the MMC is clearly more oriented toward
consumer applications. This is shown by such features as:

• a simple 7-pin interface

• an extremely small and lightweight housing

• an architecture that allows for hot insertion and removal

The development of the MMC was thus based on excellent design concepts, but it is a new
standard, and the environment is not yet one in which information and know-how for use of
MMCs is becoming generally available or in which MMCs can be used by a large number of
designers. Further, the fact that the MMC standard specification itself is in principle made
available only to member enterprises of the MMCA (MultiMediaCard™ Association) makes it all
the more difficult to obtain information. It is necessary to belong to the MMCA in order to obtain
details of the standard, but an abbreviated version of the standard is available on the MMCA’s
Home Page, and can be downloaded free-of-charge by anyone interested.

MMCA Home Page: http://www.mmca.org/
Draft specification: http://www.mmca.org/specific.htm

This section is provided as reference material for those who have already acquired the
specification and have embarked on the design process, or those currently looking into the
possible use of MMCs or wanting to find out more about these cards.



84

4.2 Operating Modes

An MMC has the following two operating modes.

Generally, the host machine supports one or other of these modes.

1. MMC (MultiMediaCard™) mode

Primary mode: Always supported by the MMC.

2. SPI (Serial Peripheral Interface) mode

Optional mode: A mode designated as optional in the specification.

The MMC is placed in MMC mode immediately after powering on. SPI mode is entered from
MMC mode by asserting the CS pin when CMD0 is issued. Mode switching is enabled only in the
initialization procedure carried out immediately after powering on, and once operation is started in
MMC mode, it is not possible to switch to SPI mode except by powering on again. The same
applies to MMC mode when the card is operating in SPI mode.

The supported commands are different in each mode. MMC mode supports read/write commands
for multiple sectors, while SPI mode supports only single-sector read/write commands.

The features of each mode are summarized in table 4.1. It is important to use the most appropriate
mode for the system configuration under consideration.

Table 4.1 Features of Each Mode

MMC (MultiMediaCard™) Mode SPI (Serial Peripheral Interface) Mode

Bus system Full-duplex 3-wire serial bus
(CLK, CMD, and DAT pins)

Full-duplex 3-wire serial bus
(CLK, DI, DO, and CS)

Operating
frequency

Variable, 0 to 20 MHz Variable, 0 to 20 MHz
(0 to 5 MHz in MMC Specification Ver.
1.4)

Card selection
method

Card selected by command

Theoretically, up to 64 cards can be
managed

Card selected by CS pin

Theoretically, no limit on number of cards

Maximum
number of
cards
connectable

30 (10 MHz)

Up to 5 cards at 20 MHz

30 (10 MHz)

Up to 5 cards at 20 MHz

Transfer
commands

Single-sector/single-block unit transfer

Multiple-sector/block unit transfer

Sequential transfer

Single-sector/single-block unit transfer
only



85

4.3 Bus Design

4.3.1 Bus Wiring Design

In an MMC, the MMC bus is driven in open-drain mode or push-pull mode, and pull-up
resistances are essential for each bus line. Note that the bus will not function normally without
resistances or if pull-down resistances are connected. Figure 4.1 shows the bus configuration. The
pull-up resistance values are stipulated in the MMC specification, as shown in table 4.2.

1 2 3 4 5 6 7

DAT

CLK

CMD
DAT

CLK

CMD

Host

ROD

VCCCan be omitted

According to MMC specification:�
RDAT = 50 to 100 kΩ�
RCMD = 4.7 to 100 kΩ

RDAT RCMD

Figure 4.1   Bus Connection Diagram

Table 4.2 Pull-Up Resistance Values

Parameter Symbol Min Max Unit Remark

CMD R CMD 4.7 100 kΩ To prevent bus floating

DAT R DAT 50 100 kΩ To prevent bus floating

The pull-up resistance values must be customized within the range given in the specification
according to such conditions as the bus operating frequency, number of MMC slots, and the load
capacitance of the cards. Some MMC bus conditions are shown below for reference.



86

Wiring capacitance CL per bus line:

• CL 250 pF {fpp ≤ 5 MHz, 30 cards connected}

• CL 100 pF {fpp ≤ 20 MHz, 10 cards connected}

Inductance L per bus line:

• Estimated at 16 nH {fpp ≤ 20 MHz}

The load capacitance C per MMC card has been set at 7 pF.

The above conditions should be observed to ensure stable operation.

4.3.2 Reducing Power Supply Noise

Generally, a bypass capacitor is used to lessen the influence of the peak current. The capacitor is
located on the bus side, as shown in the figure below. The guideline value for the capacitance of
the bypass capacitor, including the capacitance of the host controller (relative to VCC) is: Cbuf =
1 µF/slot.

As MMC bus lines are controlled by open-drain or push-pull operation, pull-up resistances are
inserted on the VCC side. It should be noted that as a result, there is comparatively more influence
on power supply side VCC fluctuations than GND fluctuations.

Lmax = 13 mm Single card slot

VSS1

VCC
MultiMediaCard™

C

C = 100 nF

Single card slot

VSS2

Figure 4.2   Placement of Bypass Capacitor



87

4.4 Cautions on Powering On, and Reset Operation

4.4.1 Powering On

Figure 4.3 shows the power-on sequence. An MMC has an internal power supply voltage detection
circuit whereby, if the voltage falls below a certain level, a power-on reset is effected to prevent
erroneous operation and internal initialization is performed automatically when the voltage
reaches a sufficient level.

System supply voltage�

Power-up time Execution of initialization �
processing

CMD1 issued after �
power supply stabilizes

This time is max. 1 ms or 74 clock cycles.

Time

VCC

Minimum voltage allowing  �
operation of memory core block

Minimum voltage allowing  �
operation of logic block

Figure 4.3   Power-On Sequence

When a sufficient voltage level has been reached after powering on, the host starts clock
transmission to the MMC and issuance of the identification sequence is performed on the CMD
line, but the MMCA spec stipulates that before this, the CMD line is to be held high for at least 1
ms or 74 clock cycles as a dummy clock period. When the MMC’s internal automatic initialization
procedure ends normally, the MMC (irrespective of hot insertion or cold insertion) goes to the Idle
state in which only SEND_OP_COND (CMD1) and CMD0 are accepted.

Access to an MMC comprises two stages with respect to the power supply voltage, and is divided
into a communication mode in which register access only is possible and an operation mode which
also allows flash memory reads and writes. The voltage should be checked, as it varies for
different products.



88

4.4.2 Reset Operation

An MMC reset must be carried out in accordance with the sequence defined in the specification.
An MMC does not have an external reset pin; instead, a reset command is issued for this purpose.
A reset command can be executed by means of the GO_IDLE_STATE (CMD0) command. When
a reset command is executed, the MMC is forcibly switched to the Idle state regardless of its
current state. However, an MMC in the Inactive state will ignore even this reset command. When
this CMD0 command is issued, all the card’s output pins go to the high-impedance state and each
card’s RCA register value is set to its initial value (0001h). The same applies at power-on, and
after powering on a card is always in the Idle state. In this state, the only command that is accepted
from a valid host is CMD1: SEND_OP_COND. However, in SPI mode, CMD1 does not have a
valid operand, and therefore the host must poll the card state continuously by repeatedly sending
CMD1 commands while the in-idle-state bit contained in the response is valid. When this bit
becomes invalid, the relevant card terminates the initialization processing normally, indicating that
preparation for acceptance of the next command has been completed. This difference in CMD1
processing in MMC mode and SPI mode must be noted.

4.5 Initial Settings up to Data Transfer in MMC Mode

Initial settings are used to carry out the following for all cards on the bus:

• acquisition and specification of operating conditions

• acquisition of card attribute information

• specification of relative addresses of cards on the bus

CMD1 is used for acquisition and specification of operating voltage conditions, CMD2 for
acquisition of card attribute information, and CMD3 for specification of the cards’ relative
addresses. Figure 4.4 shows a state transition diagram for the initial setting procedure, and figure
4.5 shows the initial setting flowchart.

Initial settings in SPI mode are covered in section 4.6.



89

Power-on

Card Busy

Card loses �
bus

Idle state�
(Idle)

Ready state�
(Ready)

Identification state�
(ident)

Standby state�
(stby)

Inactive state�
(ina)

All states except�
(ina)

CMD0

CMD1

CMD2

CMD3

Card outside operating voltage range  �
specified when host issues CMD1

Card wins bus�
(Card with lowest CID in Ready state)

Card identification mode�
(Bus mode: open-drain)

Data transfer mode�
(Bus mode: push-pull)

Figure 4.4   MMC State Diagram (Card Identification Mode)



90

Agrees with�
OCR value specified�

by host?

Data transfer enabled state

Response

Commands are not accepted �
subsequently.

Omissible

Yes

Detection of�
CID transmission from�

MMC?

Yes

No

No

Ready

Wired-OR output �
of all MMC Busy �
flags

CID transmission �
to all MMCs

If there are multiple �
MMCs on bus, one is �
always successful.

End of identification of all MMCs

Card identification mode

Data-transfer mode

Busy

Omissible

xxx

From any state
(1

)�
A

cq
ui

si
tio

n 
an

d 
sp

ec
ifi

ca
tio

n 
of

 o
pe

ra
tin

g 
co

nd
iti

on
s

(2
)�

A
cq

ui
si

tio
n 

of
 c

ar
d 

�
�

at
tr

ib
ut

e 
in

fo
rm

at
io

n
(3

)�
S

pe
ci

fic
at

io
n 

of
 r

el
at

iv
e 

�
�

ad
dr

es
se

s 
of

 c
ar

ds
 o

n 
bu

s

Idle state

Ready state

Inactive state

Identification state

Standby state

Wait for initialization�
1 ms or 74 clk

CMD2 issuance�
(to all MMCs)

CMD3 issuance�
(RCA setting)

CMD1 issuance�
Specified operating voltage value�

full-range specification

CMD1 issuance�
Common operating voltage or�
host operating voltage value�

specification�
(OCR value)

Transition to standby state �
from card for which RCA�

setting has finished.�
No response to subsequent �

CMD2 or CMD3.

Wait for voltage to stabilize�
after powering on

Common operating voltage�
acquisition

Also possible�
by issuing CMD0

Delay

Figure 4.5   Initial Setting Flowchart



91

4.5.1 Acquisition and Specification of Operating Voltage Conditions

After powering on, MMCs go to the Idle state. In this state,

0. The host performs control in accordance with the frequency set during initialization,

1. The host issues SEND_OP_COND (CMD1).

2. The host must issue CMD1 commands and perform MMC polling until all the MMCs on the
bus exit the power-up sequence. The operating voltage profile (OCR value) is used as the
CMD1 argument. The voltage value (range) actually supplied to the MMCs should be
specified as the OCR value.

Note: Do not specify an OCR value of all 0s, as this means that a voltage is not supplied to
the cards. If this is specified, the MMCs will go to the Inactive state in accordance with
the specification, and will not respond to subsequent commands. If this specification is
made by mistake, the power-on sequence must be repeated.

3. When CMD1 is issued to an MMC, the card’s OCR value and Busy flag are returned as a
response. If multiple MMCs are connected to the bus, the OCR values and Busy flag values
output from each of the MMCs are wired-ORed and the result is reported to host. The Busy
flag indicates that the relevant group of MMCs are in the middle of the power-up sequence,
and the OCR value is the common divisor of the operable voltages for all the connected cards.

4. The host must continue issuing CMD1 commands, and must perform Busy bit polling, until all
the Busy bits of the group of cards are cleared.

Note: If CMD1 is issued to an MMC when all the MMCs’ Busy bits have been cleared, the
card will go to the Inactive state and may no longer operate normally.

5. When the Busy bit is cleared, it is known that the MMC (except for an MMC that has entered
the Inactive state) has entered the Ready state.

Next, acquisition of card attribute information will be described.

4.5.2 Acquisition of Card Attribute Information and Specification of Relative Card

Address on the Bus

The host must issue ALL_SEND_CID (CMD2) to all MMCs in the Ready state connected to the
bus in order to acquire identification information (CID) for all these MMCs. The CID information
is completely different for each MMC. The CMD line is used to transfer this data.



92

1. The host issues ALL_SEND_CID (CMD2) to MMCs in the Ready state.

2. When MMCs receive CMD2, they all begin sending CID information from the 5th clock
onward.

3. As the CID information is different for each card, parts for which the MMC output and the
card’s bus output level are different appear during sending. A card for which this is detected
returns to the Ready state and waits for a CMD2 command to be issued again.

4. As a result, for issuance of a single CMD2 command, only the single MMC with the lowest
CID value succeeds in sending its CID, and goes to the Identification state.

5. There is then only one MMC in the Identification state on the bus.

RDAT

VCC

Open drain

MMC bus�
(DAT)

Match?
No

Yes

Host MMC

CID register (128 bits)

Comparison

Card loses bus�
Ready state

Card wins bus�
Identification state

Figure 4.6   Open-Drain Architecture



93

6. The host now issues SET_RELATIVE_ADDR (CMD3), and sets the relative card address
(RCA) for this MMC.

Note: RCA values can be set without restriction, except that an RCA value of 0000h must not
be specified. This setting is reserved in the MMC specification to enable all the MMCs
on the bus to be deselected by setting RCA = 0000h when SELECT_DESELECT_
CARD (CMD7) is used in data transfer mode.
The RCA initial value of an MMC when first powered on is 0001h.

7. The MMC for which the RCA is set switches to the standby state—one of the states in data
transfer mode—and thereafter does not respond to CMD2 or CMD3 commands. The host
repeats steps 1 to 7, and sets the RCA value for all the MMCs.

8. The host determines whether or not all the cards on the bus have been identified by issuing a
CMD2 command and checking for no response from any MMC (i.e. no CID transmission).
The timeout criterion in this case is non-detection of a start bit 5 clocks after sending CMD2.

9. The MMCs go to the data transfer state. At this point, the clock frequency can be changed to
20 MHz or below.

10. The CSD register is read.

11. Settings such as a change of read sector size are made.

12. Processing such as data reading and writing can now be carried out.

After this procedure is completed, data transfer commands such as data read and write commands
can be used on the MMCs.



94

4.6 Initial Settings up to Data Transfer in SPI Mode

Immediately after powering on, an MMC starts up in MMC mode. Therefore, unless specific
processing is executed, an MMC is normally in MMC mode, and SPI mode may be considered as
a troublesome alternative. However, since SPI mode does not include the concept of “states” used
in MMC mode, and card selection uses a CS pin approach similar to that used with conventional
memory devices, switching to SPI mode actually allows simpler card handling than MMC mode.

Note that, although an MMC goes to the Idle state after powering on, it is still in MMC mode.

In this state, the host

1. drives CS high, making the card nonactive,

2. issues at least 76 dummy clocks for MMC initialization, and

3. drives CS low and transmits a CMD0 command (GO_IDLE_STATE).

Note: At this point, the card is still in MMC mode, and so a CRC is necessary. The command
0 format is “40, 00, 00, 00, 00, 95”, of which “95” is the CRC.
Also, according to the MMC specification, an MMC in the Idle state only accepts
CMD0 and CMD1. If the user wishes to turn the CRC function on or off with CMD59,
this must be done after issuing CMD1.

4. At this point the mode changes to SPI mode. The host waits for an R1 response from the
MMC.

5. If the R1 response is 01h, the sequence proceeds to step 8; if the R1 response is a value other
than 01h, an error is judged to have occurred and error handling is performed. Processing
might generally be to provide an error indication or to re-execute the sequence starting from
powering-on.

6. If there is no response, this is taken to indicate a timeout and error handling is performed.

7. The host issues CMD1 (SEND_OP_CMD) and polls for an R1 response from an MMC.

8. If the R1 response is 00h, the sequence proceeds to step 9 and polling is performed by issuing
CMD1 commands again until a 00h response is received. If the R1 response is not 00h or 01h,
an error is judged to have occurred and error handling is performed. Processing might
generally be to provide an error indication or to re-execute the sequence starting from
powering-on. If there is no response, this is taken to indicate a timeout and error handling is
performed.



95

9. The mode changes to data transfer mode. At this point, the clock frequency can be changed to
20 MHz or below.

Note: Some MMCs compliant with MMC Specification Ver. 1.4 must be operated at 0 to 5
MHz in SPI mode.

10. The CSD register is read. Unlike MMC mode, in which special commands are used to read
register values, in SPI mode CSD and CID register contents are acquired by means of an
ordinary simple read block transfer. In response to a request from the host, an MMC returns
data by means of a standard Response token. That is, a request is answered with a 16-byte data
block and an associated 16-bit CRC.

11. Settings such as a change of read sector size are made.

12. At this point read/write accesses are enabled.

13. When powering off, check that the cards are in the Ready state and drive CS high before
cutting the power.

4.7 Timing Design

MMC timing specifications are shown in figure 4.7. According to the MMC specification, input
and output of each signal is all stipulated with respect to the rise of the clock, and the MMC
performs all signal data capture and output at the rise of the clock signal. Shaded areas in the
figure are Don’t Care zones; the host should not perform data capture within these areas.



96

Clock

Input

Output 

Shaded areas indicate Don’t Care.

tPP

tWH tWL

tOH tOSU

tIH tTHL

VIH

VIL

VIH

VIL

VOH

VOL

tTLH

tISU

Clock CLK (All specifications are stipulated with respect to VIH and VIL.)

Frequency in data transfer �
(10-card stack)�

Frequency in data transfer �
(30-card stack)�

Frequency in initialization�

Clock low time�

Clock high time�

Clock rise time�

Clock fall time�

Clock low time�

Clock high time�

Clock rise time�

Clock fall time�

Input setup time�

Input hold time�

Output setup time�

Output hold time

Symbol Min�

�

0�

�

0�

�

0�

10�

10�

�

�

50�

50�

�

�

3�

3�

5�

5

Max�

�

20�

�

5�

�

400�

�

�

10�

10�

�

�

50�

50

Unit�

�

MHz�

�

MHz�

�

kHz�

ns�

ns�

ns�

ns�

ns�

ns�

ns�

ns�

ns�

ns�

ns�

ns

According to MMC specification

Parameter Remark

CL ≤ 100 pF�
(10 cards)

CL ≤ 100 pF�
(10 cards)

CL ≤ 250 pF�
(30 cards)

CL ≤ 250 pF�
(30 cards)

fPP�

�

fPP�

�

fOD�

tWL�

tWH�

tTLH�

tTHL�

tWL�

tWH�

tTLH
�

tTHL�

tISU�

tIH�

tOSU�

tOH

Figure 4.7   MMC Timing Chart



97

Appendix

A. Development Support

Figure A.1 shows an outline flowchart for the development of a system incorporating
MultiMediaCard™. As shown in the figure, various support tools are available for each phase of
the development process.

System Development Sequence

MultiMediaCard™�
solution

•� H8S development platform�
� Facilitates MMC develop- �
� ment evaluation.

•� PC-compatible file system�
•� Device driver�
� Facilitates construction of  �
� PC-compatible files in �
� MMC.�
�

•� Microcomputer with on-chip �
� MMC I/F (in preparation)

•� Adapter logic

•� Card socket and case�
�

•� Protocol analyzer�
� Enables debugging of �
� interface between user �
� system and card.�
�

•� In-circuit emulator�
� (When using Hitachi �
� microcomputer)�
�

MultiMediaCard™�
evaluation/�
examination

Application software�
development

MMC interface�
development

MultiMediaCard™�
installation system�

(completed)

MultiMediaCard™�
installation system�

development

Hardware�
development

Software�
development

System software�
development

System integration

System debugging

Support Tools Manufacturer

Kokusai Electric Alpha Co., Ltd.

A.I. Corporation

Hitachi, Ltd.

Kokusai Electric Alpha Co., Ltd.

Tokyo Eletech Corporation

Kokusai Electric Alpha Co., Ltd.

Hitachi, Ltd.

Figure A.1   MultiMediaCard™ Development Flowchart and Available Tools



98

Overseas Support

For inquiries concerning MultiMediaCards™, contact:

• USA

Hitachi Semiconductor (America) Inc.

179 East Tasman Drive San Jose CA 95134-1620

http://www.hitachi.com/semiconductor

• Europe

Hitachi Europe GmbH

Dornacher Straße 3 D-85622 Feldkirchen bei München Germany

http://www.hitachi-eu.com

• Taiwan

Hitachi Asia Ltd.

4th floor, No.167, Tun Hwa N. Road, Hung-Kuo Building, Taipei, Taiwan

http://www.hitachi.com.tw

• Korea

Hitachi Asia (Hong kong) Ltd.

Hanji Group Bldg. 191, 2-ka, Hangang-ro, Yongsan-ku, Korea

http://www.hitachi.com.hk/eng

• Japan

Hitachi Ltd.

Media Flash Memory Business Unit Product Marketing Team

Nippon Bldg., Ohtemachi 2-chome, Chiyoda-ku, Tokyo 100-0004, Japan

http://www.hitachi.co.jp/Sicd/index.htm

For inquiries concerning the protocol analyzer or development platform, contact:

• USA, Europe, Asia

Nissei Sangyo Co., Ltd. and its Overseas Affiliated Companies.

For inquiries concerning adapter logic contact:

TBD

For inquiries concerning the file system or driver software, contact:

TBD



99

For inquiries concerning the MMC socket and case, contact:

• USA, Europe, Asia

Nissei Sangyo Co., Ltd. and its Overseas Affiliated Companies.

• Taiwan

Daimaru Kogyo, Ltd. Taipei Branch

7F-3, No.128 Sec.3, Min-sheng East Rd., Taipei 105, Taiwan R.O.C.

http://www.daimaru-kogyo.com/

• Japan

Tokyo Eletech Corporation Head Office

3-10 Akihabara, Taito-ku, Tokyo 110-0006, Japan

http://www.tetc.co.jp/

Nissei Sangyo contact:

• Europe

Mr. M. Kleiner

Nissei Sangyo GmbH (Deutschland)

Dornacher Str.3e 85622 Feldkirchen, F.R. Germany

Tel: +49(0)89-99180287

Em: martin.kleiner@nissei-eu.com

• America

Mr. T. Komai

Nissei Sangyo America, Ltd. Head Office

2850 Golf Road, Suite 200, Rolling Meadows, IL 60008, USA

Tel: +1-847-545-2230

Em: tak.komai@nissei.com

• Asia

Taiwan: Mr. C.H. Wang

Nissei Sangyo Co., Ltd. Taipei Branch Office

Shin Kang Chung Shan Bldg., 10th fl., 44, Sec.2, Chung Shan N. Road, Taipei, Taiwan

Tel: +886-2-2522-6921

Em: chwang@gcn.net.tw



100

Singapore: Mr. J. Liew

Nissei Sangyo (Singapore) Pet. Ltd.

3 Killiney Road, No.07-05/09, Winsland House, Singapore 239519, Singapore

Tel: +65-737-2011

Em: jack-liew@nissei.com.sg

Korea: Mr. S.S. Lee

Nissei Sangyo Co., Ltd. Seoul Branch Office

No.641 6th fl., The Chamber of Commerce & Industry

Industry Bldg., 45, 4-Ka, Namdaemun-Ro, Chung-Ku, Seoul, Korea

Tel: +82-2-773-5692

Em: lees-sel@gr.nisseisg.co.jp

Hong Kong: Mr. Y. Araiso

Nissei Sangyo Hong Kong Ltd.

Suite 1208-11, North Tower, World Finance Centre, Harbour City, Canton Road,

T.S.T., Kowloon, Hong Kong

Tel: +852-2737-4740

Em: araiso @nissei-hk.com.hk



MultiMediaCard™

Publication Date: 1st Edition, September 2000
2nd Edition, September 2001

Published by: Customer Service Division
Semiconductor & Integrated Circuits
Hitachi, Ltd.

Edited by: Technical Documentation Group
Hitachi Kodaira Semiconductor Co., Ltd.

Copyright © Hitachi, Ltd., 2000. All rights reserved. Printed in Japan.


	Cover
	Cautions
	Contents
	Section 1 History and Features of MultiMediaCard™
	1.1 History of Flash Cards
	1.2 Features of MultiMediaCard™
	1.3 MMCA Standard Ver.3.1

	Section 2 Overview of Hitachi MultiMediaCard™
	2.1 MultiMediaCard™ System Concept
	2.2 Bus Interface
	2.2.1 Interface
	2.2.2 Identification of Multiple Cards
	2.2.3 Bus Protocol
	2.2.4 Transfer Modes

	2.3 CRC
	2.4 Registers
	2.4.1 OCR (Operation Conditions Register)
	2.4.2 CID (Card Identification Number:Card ID Register)
	2.4.3 RCA (Relative Card Address:Relative Card Address Register) -Used in MMC mode only -
	2.4.4 CSD (Card Specific Data:Card Specific Data Register)
	2.4.5 DSR (Driver Specific Data:Driver Stage Register)
	2.4.6 Status Register

	2.5 Commands
	2.5.1 Overview of Commands
	2.5.2 MMC Mode Commands
	2.5.3 SPI Mode Commands

	2.6 Responses
	2.7 Read/Write Protocols

	Section 3 Total System Support for Application Product Development
	3.1 MultiMediaCard ™ System Development
	3.1.1 Support Policy
	3.1.2 System Development Sequence

	3.2 Adapter Logic
	3.2.1 Port Control System
	3.2.2 MMC Adapter
	3.2.3 SPI Adapter
	3.2.4 Host Microcomputer

	3.3 Development Platform
	3.3.1 Microcomputer Selection
	3.3.2 Control Adapter Circuit
	3.3.3 MMC Bus Interface
	3.3.4 Monitor Commands

	3.4 Software for Products Incorporating MMCs
	3.4.1 Software Configuration
	3.4.2 Interface to File System
	3.4.3 MMC Hot Insertion/Removal
	3.4.4 MMC Initialization

	3.5 MultiMediaCard ™ Protocol Analyzer
	3.6 Example of Application System Development (Music Player Prototype)
	3.6.1 Adapter Logic between Microcomputer and MMC
	3.6.2 Microcomputer Used
	3.6.3 Audio Codec,etc.


	Section 4 Notes on Design of a MultiMediaCard™ System
	4.1 Introduction
	4.2 Operating Modes
	4.3 Bus Design
	4.3.1 Bus Wiring Design
	4.3.2 Reducing Power Supply Noise

	4.4 Cautions on Powering On,and Reset Operation
	4.4.1 Powering On
	4.4.2 Reset Operation

	4.5 Initial Settings up to Data Transfer in MMC Mode
	4.5.1 Acquisition and Specification of Operating Voltage Conditions
	4.5.2 Acquisition of Card Attribute Information and Specification of Relative Card Address on the Bus

	4.6 Initial Settings up to Data Transfer in SPI Mode
	4.7 Timing Design

	Appendix
	A.Development Support

	Colophon

