Table 1: Basic relationships in Magnetism:

(Sommerfeld system)

In free space $\mathbf{B} = \mu_0 \mathbf{H}$ $\mathbf{B} = \mu_0 \mathbf{M}$ Internal to a magnetised material in zero field, Internal to a magnetised material in field, H, $\mathbf{B} = \mu_o (\mathbf{H} + \mathbf{M})$ If the material is linear, i.e. $M = \chi H$, then $\mathbf{B} = \mu_0 (\mathbf{H} + \chi \mathbf{H})$ $= \mu_0 \mathbf{H} (1 + \chi)$

Defining the relative permeability as, $\mu_r = 1 + \chi$ and $\mu = \mu_0 \mu_r$ we then have,

$$\begin{aligned} \mathbf{B} &= \mu_o \ \mathbf{H} \ \mu_r \\ &= \mu_o \ \mu_r \ \mathbf{H} \\ &= \mu \ \mathbf{H} \end{aligned}$$

(Kennelly system)

In addition to M and H, the magnetic polarisation, J_0 , and B_0 are also often used for convenience. These are defined from,

$$\begin{split} \boldsymbol{B} &= \boldsymbol{\mu}_o \left(\ \boldsymbol{H} + \boldsymbol{M} \right) \\ &= \boldsymbol{\mu}_o \ \boldsymbol{H} + \boldsymbol{\mu}_o \ \boldsymbol{M} \\ &= \boldsymbol{\mu}_o \ \boldsymbol{H} + \boldsymbol{J} \\ &= \boldsymbol{B}_o + \boldsymbol{J} \end{split}$$

(Gaussian c.g.s system)

In c.g.s. units we have a similar system, except that effectively $\mu_0 = 1$ and

$$\mathbf{B} = \mathbf{H} + 4\pi \mathbf{M}$$
 or $\mathbf{B} = \mathbf{B}_0 + \mathbf{M}'$ where $\mathbf{M}' = 4\pi \mathbf{M}$

Here H is measured in oersteds, M in emu/cc and B in gauss. Hence (rather confusingly), 4π emu/cc = 1 oersted = 1 gauss.

(See accompanying tables summarising the inter relationships between units.)

Table 2. Comparison of principal units used in magnetism:

		SI	SI	EMU	
Quantity		(Sommerfeld)	(Kennelly)	(Gaussian)	
moment	m	A m ²	weber metre	emu	
Magnetisation	M	A/m	-	emu/cc	
Field	Н	A/m	A/m	oersted (Oe)	
Induction (Flux density)	В	tesla (T)	tesla (T)	gauss (G)	
Intensity of magn. /polrn.	J	-	tesla (T)	-	
Flux	Φ	weber (Wb)	weber (Wb)	maxwell	
		$B = \mu_o(H+M)$	$B = \mu_o H + J$ $B = B_o + J$	$B = H + 4\pi M$	

Table 3. Conver	sion Table:
-----------------	-------------

В	10,000 gauss	=	1 tesla	or	10 kG	= 1 T
H & M	1 emu/cc	=	1,000 A/m	or	1 emu/cc	= 1 kA/m
m	1,000 emu	=	1 A m^2			
σ	1 emu/grm	=	1 A/m/kg	or	1 emu/grm	= 1 J/T/kg

General working conversions: