

Current Transducer HA 100-SRI/SP1

For the electronic measurement of DC, AC and pulsed currents, with a galvanic isolation between the primary (high power) circuit and the secondary (electronic) circuit.

Electrical data

Primary nominal DC or rms current 100 Primary current measuring range + 140 Α 30000 Overload capacity (Ampere Turns) Α Analogue output current @ $I_p = 0$ 4 mΑ Analogue output current @ $\pm I_{DN}$ 20 mΑ Maximum measuring resistance 200 Ω Supply voltage + 24 V Current consumption (max)1) 55 mΑ

Rms voltage for AC isolation test, 50 Hz, 1 mn

Ac	Accuracy - Dynamic performance data				
X	Accuracy ²⁾ @ I _{PN} , T _A = 25°C	± 2	%		
		Max			
I _{OE}	Electrical offset current @ $I_p = 0$, $T_A = 25$ °C	± 0.1	mA		
I _{OM}	Residual offset current $@ I_p = 0$				
	after an overload of 3 x I _{PN}	$< \pm 0.025$	mA		
I _{OT}	Thermal drift of offset current $T_A = -25 + 70^{\circ}C$	± 0.02	mA/°K		
TCE _G	Thermal drift of gain $T_A = -25 + 70$ °C	± 0.05	%/°K		
t _{av}	Averaging time constant	100	ms		
K _{CF}	Crest factor for stated accuracy	2			
f	Frequency bandwidth (- 3 dB) ³⁾	DC and			
		0.045 25	kHz		

	General data				
T_{A}	Ambient operating temperature	- 25 + 70	°C		
T _s	Ambient storage temperature	- 25 + 85	°C		
m	Mass	250	g		
	Standards 4)	EN50155,			
		ENV50121-3-2	(1996)		

Notes : 1) Including I OUT

- 2) Excludes the electrical offset
- ³⁾ Refer to derating curves in the technical file to avoid excessive core heating at high frequency
- ⁴⁾ A list of corresponding tests is available

$I_{PN} = 100 A$

Features

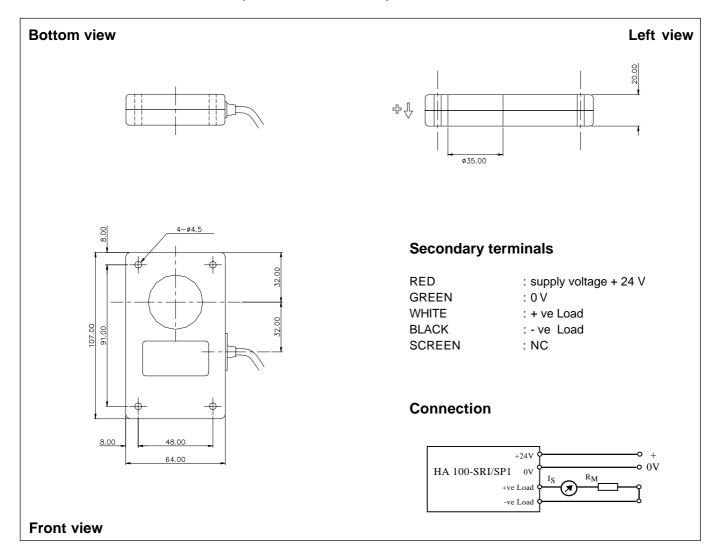
- Open loop transducer using Hall Effect
- Panel mounting
- Insulated plastic case to UL 94-V0
- Fully potted construction
- True Rms output.

Advantages

kV

- Very good accuracy
- Low temperature drift
- Wide frequency bandwidth
- Very low insertion losses
- High immunity to external interference
- Current overload capability
- Low power consumption

Applications


- AC variable speed drives and servo motor drives
- Static converters for DC motor drives
- Battery supplied applications
- Uninterruptable Power Supplies (UPS)
- Switched Mode Power Supplies (SMPS)
- Power supplies for welding applications
- Railway equipment.

HA101RI990804/2

2.2

Dimensions HA 100-SRI/SP1 (in mm. 1 mm = 0.0394 inch)

Mechanical characteristics

• General tolerance

± 0.5 mm Ø 35 mm

• Primary through-hole

· Connection of secondary

via 4 core Halogen free screened cable 1 m in length

Remarks

- I_{OUT} is positive when I_{P} flows in the direction of the arrow.
- \bullet When generating a voltage by insertion of $\mathbf{R}_{_{\mathrm{M}}}\!,$ the developed voltage will be floating with respect to zero volts. The output terminals must therefore not be grounded.
- Temperature of the primary conductor should not exceed 90°C.
- This is a standard model. For different versions (supply voltages, secondary connections, unidirectional measurements, operating temperatures, etc.) please contact us.