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It is a known fact that sinusoidal oscillators must rely on the action of some amplitude-
limiting mechanism in order to achieve good frequency and amplitude stabilities. 
Likewise, accurate loop-gain control and high-Q tuned circuits are required for the 
attainment of low-distortion output levels. 
 
This article discusses an OP-AMP based sine wave L-C oscillator that can be built using 
non-critical components and is capable of delivering a clean and stable output 
waveform. Fig.1 shows the schematic diagram of the oscillator. 
 

 
 
The operation principle is as follows: a high-gain non-inverting amplifier configured as a 
voltage comparator, IC1, imposes some negative resistance across the parallel lossy 
resonant circuit. As soon as an oscillation builds up, a constant-amplitude square-wave 
signal source starts driving the tuned network, giving rise to a sine-like waveform across 
its terminals. 
 
A second stage, IC2, acts as a “Q” multiplier. It supplies additional negative resistance to 
the tank, raising its “Q” up to the point where harmonics of the square-wave signal’s 
fundamental frequency are strongly attenuated, yielding a clean sine wave across the 
tuned circuit. The feedback resistor Rf is made variable for easy adjustment of the tank’s 
“Q”. The waveform’s amplitude and frequency remain very stable after the setting has 
been effected.  
 
Circuit analysis 
 
As usual, we would like to arrive to formulae for the frequency and amplitude of 
oscillation, and for the conditions to be met for oscillations to occur. Before beginning 
our analysis we shall recall a simple network transformation that concerns to a lossy coil 
and whose proof is given in Appendix A. 



It states that at any given radian frequency ω = 2πf, a lossy inductor L can be made 
equivalent to a lossless coil LP in parallel with a loss RP: 
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where 
S

S R
LQ ω

=  is the lossy inductor’s “Q” factor at frequency ω and RS is the series 

loss.  
 
Applying eqs. (1.1) and (1.2) to the circuit of Fig.1 we arrive to the equivalent oscillator 
of Fig.2, which will be used for our analysis from here on. 
 

 
 

It is interesting to notice that according to the above formulae, the resonant frequency ωr 
of an isolated tuned circuit comprising the lossy coil L and the series-connected C 
capacitors is: 
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where Ceq = C/2 and  
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Generation of negative resistances 
 
The comparator stage comprising IC1 (Fig.3-a) has the small-signal equivalent circuit 
shown in Fig.3-b. Here, Ad is the complex open-loop gain of the frequency-compensated 
OP-AMP, and is given by: 
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where Ao is the differential voltage gain at DC frequencies and fo is the low-frequency 
pole of the gain plot (Fig.3-c). 
 

 
 
Let´s apply a test signal vt = VT cosωt to the output port of the comparator. The current 
supplied by the test generator will be, according to Fig.3-b: 
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The quotient VT / IT is the small-signal output impedance Z0 of the comparator: 
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Z0 acts as a source impedance and for resonance calculations it will appear across the 
terminals of the tuned circuit of Fig.2. The reader can verify that Z0 is the parallel 

combination of RC and 
d

C

A
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The real part of 
d

C

A
R

−  is a negative resistance: 
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The imaginary component suggests a capacitive reactance, due to the negative sign: 
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More over, it may be associated to a capacitance: 
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Clearly, Nr  and NC  are series-connected. They can be transformed to their parallel 
equivalent using formulae for Case II from Appendix A (Fig.4): 
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where ω is any radian frequency of our interest. 
 
 
 



 
 

Now, let´s turn our attention towards the “Q”-multiplier stage comprising IC2. Appendix 
B shows that this stage supplies a negative resistance across the tank circuit given by: 
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and modifies the tuning capacitance according to: 
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where 
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Barkhausen’s criterion for oscillation from the negative resistance point of view 
 
So far, two important conclusions are: 
 
1. Net tuning capacitance                  CT = CPc + CPm                                …(8.1) 
 
2. Net parallel loss                    RT = RC // RP  // RPc // RPm 

 

or                                            
PmPcPCT RRRRR
11111

+++=                      …(8.2) 

 
For oscillations to build up, the net parallel loss should be infinity, or equivalently,  
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Then: 
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Being convenient for our discussion, we shall make 
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Then, eq.(9) reads: 
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or RPc = - (RC // RL).  
 
From eqs. (6.1) and (10.2) we arrive to a very useful relationship: 
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where ωosc is the frequency of oscillation, obtained from  
 

                                                           
TP

osc CL
12 =ω                                  …(12) 

 
after recalling eqs.(1.1) and (8.1). Using eq.(6.2) and the equivalence shown by eq.(11) 
we arrive to an alternate form for CPc: 
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Eq.(12) may now be written as: 
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Important observations 

1. If 10>=
S

osc
S R

L
Q

ω
, then LP = L within 1%. This condition can be met adjusting Rf 

for a clean waveform across the tuned circuit. Negative resistance effectively cancels 
circuit losses. 

2. RL can be made to be a negative value if Rf in the “Q”- multiplier stage is adjusted so 

that 011
<+

PmP RR
, which in turn will be an indication of complete coil-loss 

cancellation. 

3. If 14 222 >>fosc RCω , then fPm RR 4−≈  and 
2
CCC eqPm =≈ . 

4. Any change in RL will yield a corresponding variation in ωosc. 
 
Calculation of the amplitude of oscillation 

 
Eq. (11) tells us that the comparator’s gain at the fundamental frequency will have to 
reduce itself, due to the amplitude-limiting mechanism, to the value: 
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The amplitude of the oscillation across the tank will be then: 
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where 
π

14V  is the amplitude of the fundamental-frequency component of the square- 

wave output of the comparator swinging between –V1 and +V1 Volts. 
 
 
 
 
 



Experimental results 
 

An oscillator using the proposed topology was built around two independent TL072 ICs 
having low-frequency poles at f0 = 20Hz and saturating output voltages of +/-11 Volts 
when energized from +/-12V DC split power supplies. 
 
A magnetic telephone earpiece exhibiting 31mH and 60 ohms DC resistance on a B&K 
Precision 875A LCR-Meter was used in conjunction with two series-connected 0.33uF 
Mylar capacitors for the tank circuit. RC was selected to be 10k ohms and Rf was a 1k- 
ohm variable resistor. The latter was adjusted for a 5-Volt peak oscillation across the 
tank. The frequency of the oscillation was measured as 2.181kHz, yielding a low-
distortion and stable sine wave. Frequency drift was less than 2Hz in a period of an hour. 
 
Careful measurements were conducted in order to check for the accuracy of the derived 
formulae. The equivalent LS-RS series circuit of the magnetic telephone-hearing element 
was obtained at different signal levels using a General Radio Type 1608-A Impedance 
Bridge. Readings were first taken at 1kHz using an external signal source for the bridge. 
A second set of measurements was obtained at 2.181kHz. In both cases, readings were 
taken at 0.1, 0.2, 0.5, 0.75, 1, 2 and 3Volts peak across the coil. Measured data is shown 
in Fig.5 below. 
 

 

 
 

Fig.5 Influence of signal strength and frequency on the equivalent series inductance     
LS of the magnetic hearing element 



The restricted output of the available external signal generator impeded readings above 3 
Volts. So, an additional set of measurements was taken with the circuit oscillating at 
peak tank-voltage amplitudes of 3, 4, 5, 6, and 6.9 Volts (last value before clipping 
started). 
 
Eq.(7.1) permitted calculation of the negative resistance contributed by the “Q” 
multiplier stage for each value of signal amplitude. The contributed capacitance CPm was 
obtained from eq.(7.2). Table I below was constructed with this data and the 
corresponding measured values for the frequency of oscillation fosc and feedback resistor 

Rf. Values for 
L

C

R
R

+1  were calculated substituting the figures of the first two columns 

into eq.(16). Equation (14) was then solved for LP and the values of RP computed from 
eq.(10.1). 
 

TABLE I 
 
Tank voltage 

Volts fosc  Hz Rf  ohms RPm ohms CPm  nF LP  mH 1 + RC/RL RP  ohms
3.0 2133 396.4 -1714.57 152.59 29.70 0.0438 2050.80 
4.0 2164 334.7 -1487.20 148.53 31.04 0.0323 1737.19 
5.0 2181 308.6 -1392.85 146.23 31.95 0.0257 1611.55 
6.0 2191 289.0 -1323.66 144.10 32.76 0.0213 1520.65 
6.9 2196 278.2 -1286.17 142.76 33.36 0.0185 1471.99 

 
               

It should be noticed that the calculated values for LP shown on Table I will closely 
approximate the series inductance values LS of the lossy coil L, due to the loss 
cancellation effected by the negative resistance contributed by the “Q”-multiplier stage. 
Fig.6 below shows the circuit that supplied values for Table I. 
 

 
 
 
 
 
 
 



Conclusions 
 
A sine wave L-C oscillator featuring excellent amplitude and frequency stabilities has 
been devised using a voltage comparator and a Colpitts-type “Q” multiplier. High 
performance is achieved thanks to the amplitude-stabilizing action of a voltage 
comparator stage that drives a lossy tank circuit with a constant-amplitude square wave 
signal. The “Q” multiplication provided by the Colpitts-type stage renders an output 
waveform with low harmonic content.  
 
Formulae have been derived for the frequency and the amplitude of the oscillation across 
the tank circuit. Higher operation frequencies may be obtained using high-speed OP-
AMPs, while maintaining the excellent stabilities observed at audio frequencies. 
 
One straightforward application for the circuit could be the indirect determination of the 
equivalent series inductance LS and parallel loss RP of iron-cored inductors at different 
signal levels and specific operation frequencies. A second and obvious application is that 
of a stable frequency source. 
 
 
 
 
 
 

Appendix A 
 

Series to parallel transformation 
 

We wish to put the impedance Z = RS + jXS into its parallel equivalent 
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The following is then true: 
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Thus, we get the transformation pair: 
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XP has the same sign as XS. 
 
Case I: Series RS and LS 
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Case II: Series RS and CS 
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Appendix B 
 

Negative resistance generation in the “Q” multiplier 
 

Fig.1 recalls the capacitive tapping in the “Q”-multiplier section of the oscillator, the top 
end of C2 and right end of Rf being at the same potential “E” with respect to ground. 
 

 
 
If we call E1 the potential at the junction of C1 and C2, we may write:  
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Substituting eqs.(1.a), (1.b) and (1.c) into eq.(2): 
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Eq.(1.a) in terms of eq.(3) gives: 
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The above expression suggests the existence of a negative resistance 
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in series with a capacitance 
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= . The series network can be transformed into a 

parallel equivalent (Fig.2). If we make: 
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For the special case where C1 = C2 = C: 
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