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In this paper we propose and demonstrate a method to obtain simultaneous dual source—receiver
impulse responses in acoustical systems using binary maximum-length seqidb&¢sA binary

MLS and its reversed-order sequence form a reciprocal MLS pair. Their correlation property
includes a two-valued “pulse-like” autocorrelation function and a relatively smaller-valued
cross-correlation function. This unique property, along with other number-theory properties, makes
the reciprocal MLS pair suitable for simultaneous dual source cross-correlation measurements. In
the measurement of a dual source system, each of the reciprocal MLS pairs simultaneously excite
one of two separate sources, one or several receiver signals cross-correlate in turn with each of the
MLS pairs, resulting in impulse responses associated with two separate sources. The proposed
method is particularly valuable for system identification tasks with multiple sound/vibration sources
and receivers that have to be accomplished in a limited time period. A fast algorithm called a fast
MLS transform is exploited for the cross-correlation. In this paper we propose a fast MLS transform
pair for the reciprocal MLS pairs. Its efficiency lies in the requirement of one single permutation
matrix for a pair of two fast MLS transforms. Its feasibility and usefulness in the acoustical
measurements are demonstrated using experimental result200® Acoustical Society of
America. [DOI: 10.1121/1.1561498

PACS numbers: 43.60.Qv, 43.58.Gn, 43.55.M€B|

I. INTRODUCTION one or several receivers of acoustical systems can be deter-
mined simultaneously. The simultaneous dual-source mea-
A wide acceptance of binary maximum-length se-surements exploit the cross-correlation properties of recipro-
quencegMLS or M sequencgsmeasurement technology in cal MLS pairs that are considerably less widely known and
the acoustics community is due to MLS’ excellent number-understood than the autocorrelation functions. It is this prop-
theory properties. One of the key characteristics of the MLSerty that makes simultaneous dual-source measurements fea-
is their two-valued periodic autocorrelation function. It is sible. This technique is of practical significance for a number
this autocorrelation property that is exploited in most of theof acoustical investigations in physical acoustics, ultrasonics,
applications of MLS. The advanced MLS measurement techand architectural acoustics. Particularly, some measurement
nique is based on a fast algorithm termeBast M-sequence tasks of an acoustical system under test with multiple sound/
Transform(FMT) by Cohn and Lempélin which the im-  vibration sources have to be accomplished in a limited time
pulse response-related system identification tasks can be ggeriod. In Sec. Il we briefly introduce some number-theory
complished efficiently. In addition, MLS, as excitation sig- properties pertaining to the technique. In Sec. Il we then
nals, possess a high signal power and low peak factorslescribe a convenient algorithm for the FMT and in Sec. IV
Along with the inherent cross-correlation mechanism for sysderive a permutation matrix for the reciprocal MLS pairs. In
tem identification, a high noise immunity in measurementSec. V we discuss some acoustical experiments designed for
results can be obtained. Recent acoustical applications of tree demonstration of the usefulness of the properties and the
MLS measurement technique can be found, among others, tonvenience of the algorithm.
architectural acoustiés, audiology?~1° ultrasonics;t?
psychoacousticE"'* underwater acoustics, and physical II. BASIC PROPERTIES OF BINARY MLS

acousticg®17 . . . .
. . : . An n-stage linear feedback shift-register device can gen-
In this paper we propose a technique using a reciprocal ; S .
. o erate a binary periodic sequenfa} with a; {0,1}. When
pair of MLS in simultaneous dual-source channel measure; . -
its feedback taps are appropriately connected, the periodic

ments. Impulse responses between two separate sources and . ' . .
P P P sequences arrive at their maximum period length ef2"

—1. In this case, the sequences are referred to as maximum-
dDedicated to Dr. Jens P. Blauert on the occasion of his 65th birthday. Parfength sequence@MLS). A characteristic polynomiaf (x)

of this work have been presented at the 141st meeting of the Acoustic ; ; : ;
Society of AmericdJ. Acoust, Soc. Am109, 2418A) (2003]. aéxpressmg its feedback connection is then referred to as
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nxiang@olemiss.edu the MLS as well as its primitive polynomi@PP. In math-
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ematical treatment MLS are convenient in their binary form TNwiw)=0, w,0eQ, i#]. ®)

a; €{0,1} while a bipolar formm;e{—1,+1} is often used . : .
{08 P &1 } A TOB can be considered as a special coordinate system

in practice to generate waveforms witly=1—2a; . taini ¢ that h It
MLS enjoy a number of attractive properties that make®OMaNiNgn veclorswo, @;,...,w,-y that are orthogonal to
each other in a sense of the trace operator. The practical

them widely useful in broad scientific and engineering fields.

In this section we briefly review some basic properties per_significance of a TOB for GF(3 lies in the fact that an

. i re
taining to the following discussion with respect to the app"_arbltrlarybglemenv EbGF(Z )—{0} can be represeRntfed7b]y an
cation of reciprocal MLS pairs. A detailed description andn'tUp‘?j |qi';1ry numbereio.€i1,....€ -1 (see Ref. 7 for
definitions can be found in Refs. 18—23. more detaily as

n—-1
A. Decimation of MLS vi=j20 gjwj; Osi<L (4)

If {a;} is an MLS of lengthL=2"—1, a decimation and
{ayi} of sequencda;} yields another ML b;} of the same
degree withb;=ag;, if and only if (see Ref. 18the greatest o
common divider of positive integerg and L equals one, Tr(v VJ)=k20 Cik ik » )
gcd(g,L)=1. qis said to be a proper decimation factor. The
index operationg-i of {ay} and all others throughout this with
paper are evaluated modulo . e;=Tr(v'w) e GR2). (6)

A decimation factor of 2 results in the same MKE;} ) ) o
with b;=b,; only for a unique initial state of the linear feed- Equationg4)—(6) will be useful for the derivation in Sec. IV.
back shift register for every individual Pi®x). This special
class of MlngS is desigr:zgted as characteri§tialso as an  C. Reciprocal MLS and polynomials
idempotent,” self-similar® MLS. Without restriction on a .
specific initial state, a decimation factor of 2 or evenwill If {a} 'S a MLS of lengthL =2"—1 generate(_j by (x),
generally yield a phase-shifted MLS associated with the e can derlye anothgb;}: of the_same degree in terms of
same PP? with k being a positive integer. Recently, Xiang simply reverting the sequence with
et al?® described an algorithm for determining the initial bj=a_;. (7
state according to Goltf. The self-similar, characteristic
MLS substantiated in terms of this invariant decimation hav
found applications in ultrasonic measurement technidties.
They are also of practical significance for the technique pro-  r(x)=x"f(x"1). (8
posed in this paper.

n-1

e{b‘} is then generated by a primitive polynomiglx) de-
rived by simply reverting the given PRx) of degreen:

. L ... r(x) is termed the reciprocal polynomial 6é{x). The MLS
W'.th some other proper decimation factors, de_cmatlon{bi} generated by (x) is termed reciprocal MLS ofa;}. A
may yield distinctly different MLS gen_erateq by d'St_'”C“Y air of reciprocal PH(x), r(x) always associate with a re-
different _PP of the same degree. Th|s_var|ar_1t dec'mat'orgiprocal pair of characteristic ML$a;}, {b;}, respectively.
prc_)perty IS wprth mennomngltogether W'th reciprocal ,MLS In addition, if v is a primitive element off (x) such that
pairs and their cross-correlation property in the following. f(»~1)=0, thenv~L is a primitive element of (x) such that

o r(v)=0.
B. Primitive elements over GF  (2") and trace A reciprocal MLS{b;} of {a;} can also be derived from
orthogonal basis the given{a;} in terms of decimation with a factor af=L
A primitive polynomial (PP f(x)=3{_oc;x! exactly =~ —1.In effect,bj=a4=a, -1 =a-;, which is exactly Eq.

expressing the feedback connections of the linear feedbadid) since the index operation is evaluated moduldf {a;} is
shift register with its coefficients; over a finite field, called & characteristic MLS{b;} achieved using Eq(7) is also a

a Galois field GR2), has a close connection with the ele- characteristic MLS. The cross-correlation function of the re-
ments of GF(2). Given a PPf(x) of degreen, one can ciprocal MLS pairs is of practical significance for the tech-
always find an elementof GF(2") such thatf(v~%)=02°»  nique being discussed in the following.

is a primitive element of GF() and so isv~ !, namely

f(v)=0. The characteristic MLS has a close relation to thep correlation property of MLS

trace operator of an elementover GF(2).?° The trace of o )

an arbitrary elemeni e GF(2") is defined by MLS are periodic pseudorandom signals. The normal-
1 ized periodic autocorrelation functiofPACF of a bipolar
2K MLS within one period is a two-valued functidmvith
Tr(a)= 2 a“®, 1)

k=0 . L+1 s 1 N 9

=— ——: < .
And a basig) ={wy,w;,...,0n_1} of GF(2") over GR2) is ¢()=——o~ '= ©)

termed the trace orthogonal ba¢OB) if When the period length=2"—1 is large enough, the PACF
Tr(wj))=1, we (2 of MLS approximates a unit-sample sequence:

and P(i)y=6(i); 0O=i<L. (10
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From its PACF, it is readily deduced that its power spectral
density function is of broadband nature and covers the entire (@
frequency rangdexcept for the zero frequengyilt is this 100,
well-known property of MLS that has been exploited in most
applications. Figure (&) illustrates the normalized PACF of a
MLS of degree 12 for one period.

Cross-correlation properties of MLS are considerably
less widely known, particularly in the acoustics community.
Cross-correlation means correlation of one bipolar MLS with & 94}
another of the same degree. There exists a humber of MLSE

o
o

ed Correlation
(=]
S

. . . . . . . 1= 0.2H 10 12 14 16 138 20
pairs for which their periodic cross-correlation functions 2 Time (ms)
(PCCBH possess considerably smaller values in comparison
to the peak value of their two-valued PACF. Goldfhhas 0.0 P T — 20208
observed that ifa;} and{b;} are generated by different PPs,
then the PCCRp,,, takes on at least three values. An appro- 0 10 20 30 a0 50 60 70 80
priate decimation of MLS will yield pairs of MLS having a Time (ms)

relatively small three-valued PCCF. The small valued PCCF , _ _
depends only on the decimation factor rather than upon in]';:IG' 1. Correlation functions of a MLS of degrt_ee 12 generated at sqmplmg
L . requency of 50 kHz.(a) Autocorrelation function.(b) Cross-correlation
dividual MLS. These three-valued PCCF of MLS pairs havefnction between the reciprocal MLS pahifted downward beneath the
gained considerable attention due to th@latively) small  autocorrelation function for a convenient comparison while keeping the
magnitude in spread spectrum communication Sysf_?éms_same amplitude scaleThe peak value of the cross-correlation amounts to
. . 0.03, 30.2 dB lower than the peak value of the autocorrelat@m zoomed
They are termed preferred pairs of MESIn add!tlon to the presentation of a segment frof).
preferred three-valued PCCF, there also exist four-valued
PCCFs for specific classes of MI2$They are even slightly
:)nettenri tth dan _trf;]el three'rv\?vlill"ﬁd fp;elltrsbwl[t: t:]estp;](erct t\? Ehe dsmn I hereh, Y are vectors of. elementsM represents the MLS
aghitude. “his pape eterto both the three-valued anG,iix of dimensionL XL, its rows contain sequentially
four-valued MLS pairs as preferred pairs. Appropriate deci-. . . .
. ) ! right-cyclically shifted MLS{m;}:
mation factors leading to the preferred MLS pairs are well
documented and can be found in Refs. 22-23.
The most significant feature in this context is that the M=[M]=[m;]; i,j=01,.L-1 (13
cross-correlation of the reciprocal MLS pairs also have small
values being close to those of three-valued MLS pairs, yet
not limited to three value¥ The normalized cross- Equation(12) is termed theM sequence (MLS) transform
correlation bound(n) of the reciprocal MLS pairs is depen- Taking a bipolar{m;} of degree 3 as an examplen;}
dent upon the degree?>2* ={-1,-1,-1,+1,—1,+1,+1} and using its binary version
o(n+2)2_ 1 {a;} for the MLS matrix, the binary MLS matriA (binary
(11)  version ofM) becomes

I(N)= —F7——
( ) 2n_1
For the applications exploiting the small peak cross- _ _
correlation properties, one should not necessarily insist ofABLE I. Cross-correlation bound valug¢n) [Eq. (11)] and normalized
having three- or four-valued PCCF Figureéb)land 10) peak cross-correlation values of reciprocal MLS pairs achieved experimen-

. . . ©7 tally by performing the fast MLS transform of reciprocal MLS.
illustrate the normalized PCCF of a reciprocal MLS pair with

a degree of 12 for one period. For convenience of compari- Period Cross-correlation Peak cross-
son, the PACF of one of MLS is also illustrated in Figa)l Degree length bound[Eg. (11)] correlation
Table | lists the peak cross-correlation values for degree g 255 0.1216 0.1216
8-24 achieved by calculating the peak cross-correlation be- 9 511 0.0881 0.090
tween these reciprocal MLS pairs compared with the cross- 10 1023 0.0616 0.061
correlation bound valuel{n) predicted using Eq(11). 1 2047 0.0437 0.043
12 4095 0.0310 0.0308
13 8191 2.198E-2 0.0222
14 14383 1.557E-2 0.0155
Ill. FAST MLS TRANSFORM 15 32767 1.012E-2 1.013E-3
16 65535 7.797E-3 7.78E-3
Applying a periodic bipolar MLYm;} to a linear time- 17 131071 5.517E-3 5.51E-3
invariant system under test and receiving one period of the 18 262 143 3.903E-3 3.90E-3
system respons¥ to the MLS after the system arrives at its ;g 1(5)i48 f_f;; i'gggg_g iggig
steady state, its impulse resporisecan predominantly be 21 2097 151 1381E-3 1.38E-3
determined in terms of cross-correlation between the excita- 22 4194 303 9.763E-4 9.76E-4
tion MLS and the system response to the M{’®y 23 8388 607 6.904E-4 6.90E-4
16 777 215 4.882E-4 4.88E-4
h=MY, (12
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Y Fast h IV. PERMUTATION MATRIX OF RECIPROCAL MLS
——»| Permutation —» Hadamard [— s:;mutation — PAIR
) Transform If {a;} is a characteristic MLS of degreegenerated by
a PPf(x) andv is a primitive element over GF('2, which
P, P, satisfiesf (v~ 1) =0, then the MLS matriA can be factored
Matrix Matrix using Eqgs.(4)—(6) in terms of the trace operator and the

TOB' as

FIG. 2. Flow diagram of the Fast MLS Transform algorithm. A system -
responseY to the MLS undergoes permutation, Fast Hadamard Transform A= [Aij 1= [aj —i]=[Tr( v VJ)]
and repermutation, yielding the impulse respomséirectly in the time ne1

domain. In general, the algorithm requires two permutation matrices from

the given MLS. = [ kEO €—i)kCjk

=E,E,; i,j=0,1,..L—1. (16)

A close investigation of Eq16) reveals thaE;, E, are of a
similar structure in such a way that the rowsBf can be
found in the columns oE; in the reversed order except for
the first row and the first column. Taking the previous MLS
of degree 3 in Eq(14) as an examplek; andE, become

1101001
E,=|1 0 100 11 (17)
1001110

A=[Ajl=[a-i]= (14

B P O F, O O B
P O R O O k K
O Fr O O Fr kL Bk
P O Ok Kk KL O
O O Fr kP KB O Bk
O Fr kP kB O Fr O

e = == I = = R =N

and
The MLS matrix in Eq.(13) is permutationally similar to

Hadamard matrix>?’ 1100 1 1
E)=|1 1 1 0 0 0, (18
M =P,HP;, (15) 101 11 0
whereT stands for transpose of a matrix. Readers can easily

where H is a Hadamard matrix of Sylvester-typBy, P, verify that E,E; results in the binary MLS matriA in Eq.

denote the permutation and the repermutation matrix, respeét®- Matricesg,, E; lead straightforwardly to permutation
tively. Equation(15) implies a fast algorithm, referred to as matr|ce§P1, Py, Wh'Ch can be gxpressed n |-ndex form by
Fast MLS TransforntFMT) by Cohn and Lempéi since the converting each binary column in qu,'7)__(18) |nt_o a d?‘?"
fast Hadamard transform for Hadamard mattixs adopted r’qal number with the top row containing the insignificant
in the calculation. Figure 2 illustrates a flow diagram for theb't:

FMT. It consists of three major steps. P,=(7,1,2,5,4,6,3ndex (19

o O

(1) Permutation of the system responéeo the MLS being  and
used as excitation of the system under té5tY().
(2) Fast Hadamard transform of the permuted vector P>=(7,3,6,4,5,2, Jingex- (20

(H(P.Y)). A detailed calculation oP; can be found in Refs. 3, 7. In a
(3) Repermutation of the transformed vect®[H(P1Y)]).  practical implementation, once the permutation indiegss
calculated from the given MLS, the repermutatioequiring
P,) needs to take the indices froR in the reversed order,
except for the first index while the permutation takes the
8ndices in its sequential order. The FMT using this approach
is illustrated in Fig. 3, where only one permutation matrix is
required.

An impulse responsé results directly in the time domain

right after the repermutation, except for a scale fattor.
Generally two permutation matrices are required by th

fast MLS transform, as indicated in E@.5) and Fig. 2(see,

among others, Refs. 1, 4, R&he two permutation matrices

are derived from the MLS bei_ng used for_ th_e expitation sig- For a given PF(x), its reciprocal MLS{b,} of {a;] is

fnal. They are usually stored_m form of indiceSince the_ generated by its reciprocal PPx) =x"f(x~1). If »~ ! satis-

ast MLS transform performs inherently the cross-correlatio iesf(»~1)=0, so does ¢~ 1)~ T satisfyr[(»~ 1)~ 1]=0.Ina

between the MLS. itself and the system response to t.he MLSs.imiIar fashion, the reciprocal MLS matr& can be factored

the two permutation matrices together can be considered ?ICSing Eqs(4)—(6) ad

the original binary MLS in index form. In the following sec- o

tion we briefly describe an approach to construct the permu- B=[bj_i]:[Tr((v*1)J*')]

tation matrices from the characteristic MLS. It yields one n—1

single permutation matrix that can be used at the same time “[Tr(v ) ]=| D ene x| =G,Gy. (21)

for a pair of two reciprocal MLS. (o Dk T
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Y Fast Re- h Sl . h Rl
——| Permutation —| Hadamard —» g W . —> —1>0 11 o+—>»
Transform S h R
\ P s : - - :
Matrix ) h N
1 -
S / " - R
FIG. 3. Flow diagram of the Fast MLS Transform algorithm of a character- —— .). o r )
istic MLS. The algorithm requires only one permutation matrix. The dashed- i hnp —_—
line arrow from the permutation matrix to the repermutation implies that the

repermutation takes the permutation indices in a reversed order while the

permutation just takes its sequential ordeolid arrow. FIG. 5. System-theoretical model of a multisource and multireceiver sys-
tem. All togethernx p impulse responsds; are defined betweemsources
andp receivers.

A close comparison of Eq21) with Eq. (16) reveals that

G;=E, andG,=E], since the primitive element in Eq.

(21) is the same as that in E16). This implies that the time domain.h;; stands for an impulse response defined be-
FMT for the reciprocal MLS[b;} uses the same single per- tween theith source and thgh receiver of a linear system.
mutation matrix. Figure 4 shows the flow diagram of the  In the presence of all source signals as required by si-
FMT pair if the reciprocal MLS pair comes into practical multaneous source channel measurements jttheeceiver
applications that we elaborate on in the following section. Yields an output signal:

n
Ri()=2 S(O*hg(1); j=1,.p, (22)
V. APPLICATIONS k=1
In a variety of acoustical applications, a system undetVhere " stands for the linear convolution, assuming that
test can contain multiple sound/vibration sources and receii€ Systém under test can be considered as a linear time-
ers, such as a listening situation in auditGRayhere, e.g. invariant system. A cross-correlation between itiesource
multiple loudspeakers of a sound system operate, or a nunti9nal and thgth receiver signal reads as
ber of musical instruments are played at the same time on the n
stage. Moreover, some impulse response-related system Si(t)®R;(t)= Z di()* hy(1);
identification tasks with multiple sources have to be accom- k=1
plished in a limited time perio&3' A simultaneous source i=1,.n; j=1,..p, (23)

measurement technique is especially needed. . .
where ® stands for linear cross-correlation angh,(t)

=Si(t) ® S¢(t) for cross-correlation between tlig andkth
. . N ) ) source signal.
A system schematically illustrated in Fig. 5 is suitable For experimentally determining the impulse responses,

for modeling the system identification tasks with multiple the following PCCF of excitation signals is desirable:
sources. In the figures; denotes théth source signal in the S(1) for i=k
, or i=Kk,

time domain whileR; denotes thgth receiver signal in the

A. Principle of simultaneous measurements

PV=10 forizk, 24
Fast MLS Transform (FMT) since inserting Eq(24) into Eq. (23) yields
L Permutation —>| Ha::;zrd L Re- . —h> M O=SOeR(: T=1.n J=1...p. @9
M Transform Permutation | () Equation (25) indicates that the impulse response between
it the ith source and thgth receiver could conveniently be
\ el determined if the simultaneous excitation signals would pos-
P_ - sess the property expressed in Ez2d), namely, their PACF
/,/" Matrix would be a unit-sample sequence while their PCCF would
x,/ equal zero. [ke?® pointed out that signals with exactly such
@ Fast © a cross-correlation property can neither exist nor be con-

= .| Permutation—» Hadamard —»| R®" o structed. Fortunately, some special classes of binary MLS are
Y, Transform Permutation h, most suitable candidates for the discussed tasks due to the
following two reasons.

First, the cross-correlation of reciprocal and preferred
FIG. 4. Flow diagram of the Fast MLS Transform pair. The algorithms pairs of binary MLS discussed in Sec. Il B approximates the
require only one permutation matrix for both the fast MLS transfarvT) desired condition in E¢24). As expressed both in Eg&L0)

and the fast reciprocal MLS transfor®RMT). The dashed-line arrows  5q(11) jllustrated in Fig. 1 and listed in Table I, the longer
from the permutation matrix to the permutation or repermutation imply that

these permutations take the permutation indices in a reversed order while € sequences are to be used, the smaller the pgak Cross-
other permutations just take their sequential or@elid arrows. correlation value becomes and the closer their cross-

Fast Reciprocal MLS Transform (FRMT)

2758 J. Acoust. Soc. Am., Vol. 113, No. 5, May 2003 N. Xiang and M. R. Schroeder: Reciprocal maximum-length sequence



1.0 ™ '
hll
0.5}
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FIG. 6. Simultaneous acoustical measurement undertaken in an anechoic
chamber with two sound sources and two microphones. 8 '12 :
2 b
correlation approximate the condition in E@4). Second, 'g- 0.5¢
the FMT described in Sec. Il can accomplish the operation <
expressed in Eq(25) with high computational efficiency, § > -
particularly using the fast reciprocal MLS transform pair, as s 5
discussed in Sec. IV, two ML&eciprocal pair need only a §
single permutation matrix. 2 -}-g
h22
B. Experimental results 0.5}
An exploratory experiment was carried out in an 0.0
anechoic chamber, as schematically illustrated in Fig. 6,
when a reciprocal MLS pairng;,m,) excited two sound 0.5
sources simultaneously. Each MLS of degree 13 at a sam-
pling frequency of 30 kHz excited one sound source, respec- 44 ' . . :
tively. Two microphones received one period of responses Single source h ,
(M4,M,) to the MLS excitations after the system arrived at 0.5¢ l ]
the steady state. Each microphone signal was then fed intc 0.0
input labeled by(1) of the FMT illustrated in Fig. 4 and then )
into the input labeled by2) of the FRMT, respectively. 05} r
Since each microphone signal contained a linear combi-
nation of responses to the individual MLS from each sound '1-°o 2 4 p é 1'0 1‘2 1‘4 16

source and the FMT pair performed the cross-correlation of Time (ms)
each MLS to the microphone signal, the F§ffom input(1)
to output(a) in Fig. 4] approximately filtered out the impulse FIG. 7. Segments of impulse responses simultaneously measured in an

* : anechoic chamber using a reciprocal MLS pair of degree 13 as excitation
responseh;; and suppressed the componens™hy; with signals at the twdloudspeakersource channels, respectively. Each of two

microphone signaM; feeding into the input labeled bit) microphone signals is, in turn, fed into two inputs of the FMT félus-
of the FMT. And the FRMT[from input (2) to output(b)] trated in Fig. 4 yielding four impulse responseb{;, hy,, h,;, andh,,). A

approximately filtered out the impulse respotseand sup- s?ngle-source impulse_ response, correspondirlglio but achieved from a _
pressed the component;* hy; with microphone signaM , single loudspeaker-microphone measurement is also plotted for a compari-
feeding into the input labeled bi2) of the FRMT. One per-

mutation matrix was determined using the given MLS of

degree 13 for the pair of FMT and FRMT. In a similar fash- technique can be used, among others, for the study of out-
ion, when feeding microphone signil,, in turn, into the  door sound propagation, as required by the experimental
input labeled by(1) of the FMT and then into the input study in Refs. 30-31.

labeled by(2) of the FRMT, the FMT pair(in Fig. 4 ap- Another example is a simultaneous measurement of
proximately yieldech;, andh,,. Figure 7 shows the first 16 room impulse responses carried out in an auditor{imthe

ms segments of four impulse responses. The peak-to-noigeational Center for Physical Acoustics, The University of
ratio of 30—-31 dB was achieved for all four impulse re- Mississipp) with a stereo sound system. The measurement
sponses, about 2—3 dB less than the peak cross-correlatisetup is similar to the sketch in Fig. 6 but in the auditorium.
value listed in Table I(for degree 1B A single-excitation A reciprocal MLS pair of degree 20, at a sampling frequency
impulse response with a peak-to-noise ratio of 53 dB, correef 50 kHz, drove the pair of loudspeakers, respectively, and
sponding toh;,, but achieved from a single loudspeaker- two microphones received one period of the responses to the
microphone measurement using an M sequence of degree $Bnultaneous MLS excitations from both stereo loudspeak-
is also plotted in Fig. 7 for comparison. This measuremeners. One permutation matrix was determined using the given
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1.0 especially for the simultaneous source channel measurement;

a limited measurement time period is often critical in specific
applications.

The separation of individual impulse responses from in-
dividual simultaneous sources is due to the excellent cross-
correlation properties of reciprocal and preferred MLS pairs.
The separation at the receiving ends, however, is not a big
concern at all, since individual receiving channels inherently
possess the separation ability. Increasing the number of re-
ceiving channels does not significantly influence the figure of
achievable P/N ratio in the measured impulse responses, but

0.5

0.5

0.5 multaneous mode if a specific application requires more

source channels given the limited measurement period. Some
MLS-related sequenc&scan be employed if the number of
available preferred MLS pairs cannot meet the need.

]

3_, increasing the number of simultaneous source channels does.

3 05 Generally one more source channel leads to at least 3 dB

E degradation of achievable P/N ratio depending on the MLS
1.0

T 10 - selected.

% hy, More preferred MLS pairs need to be added to the si-

g ]

[~}

2

0.0

VI. CONCLUSION

The two-valued autocorrelation function of binary
maximum-length sequencébILS) has long been exploited
for various applications, while considerably less attention
has been given to the excellent cross-correlation property of
binary MLS, particularly of reciprocal MLS. The cross-
. ‘ . . correlation function between a pair of reciprocal MLS exhib-
0 0.2 0.4 Ti 0.6 038 10 its relatively smaller values than the peak value of their auto-

ime (sec) correlation function. It is this excellent property that makes

FIG. 8. Segments of room impulse responses simultaneously measured in #1€ Simultaneous dual-source measurements feasible. The
auditorium using a reciprocal MLS pair of degree 20 as excitation signalsmeasurement technique simultaneously obtains impulse re-
driving two stereo loudspeakers of a sound system, respectively. Two mis onses of an acoustical system under test with two separate
crophones are used for the sound receivers. Each of two microphone signalg d d | . ith h of th
is, in turn, fed into two inputs of the FMT paiillustrated in Fig. 4 yielding Sou_n sources an . one _Qr several recelvers with each o e
four room impulse responseby, hy, hyy, andhyy). reciprocal MLS pair exciting each of dual source channels.
The impulse response measurements are based on a fast

MLS of degree 20 for the EMT pair. Each of the two micro- cross-correlation technique called the Fast MLS Transform.

phone signals was, in turn, fed into each input of the FMTIn this paper we have proposed the fast reciprocal MLS

) . . . . transform(FRMT) pair. The efficiency of the FRMT pair lies
pair, resolving two pairs of room impulse responses, as illus;

trated in Fig. 8. In Fig. 8, the first 1.1 s long segments of fourbOth in exploitation of the fast Hadamard transform algo-

room impulse responses are shown, the peak-to-noise ratrci)thm qu in the requirement of.a single permutqtion matrix.
ranges between 42-50 dB ' n addltlon_to the cross-correlation property, in this paper we
' have applied some fundamental properties of the binary
MLS for a derivation of the permutation matrix from the
C. Discussion MLS pair, including decimations, characteristic MLS, trace
. ] ] . operations, and a trace orthogonal basis. The principle of the
The peak-to-nois¢P/N) ratios achieved in the two ex-  gimyitaneous dual source measurements is discussed and the
amples discussed previously can be further improved if aRyficient technique and potential acoustical applications have
even longer reciprocal MLS pair can be used. The maximunheen demonstrated using exploratory experimental results.
achievable P/N ratio is restricted by the peak cross—hg technique proposed in this paper is especially of practi-
correlation value of reciprocal MLS pairs listed in Table I: cal significance when impulse responses of acoustical sys-

The PCCF between two reciprocal MLS pairs as shown iems with multiple sources and receivers have to be deter-
Fig. 1(b) is of a deterministic nature given the reciprocal mined in a limited time period.

MLS pair. Therefore, additional averages cannot significantly

improve the P/N rat|o§ if other kinds o_f random noise are in, - N OWLEDGMENTS
the measurement environment. For this reason, additional av-
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