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In this paper we propose and demonstrate a method to obtain simultaneous dual source–receiver
impulse responses in acoustical systems using binary maximum-length sequences~MLS!. A binary
MLS and its reversed-order sequence form a reciprocal MLS pair. Their correlation property
includes a two-valued ‘‘pulse-like’’ autocorrelation function and a relatively smaller-valued
cross-correlation function. This unique property, along with other number-theory properties, makes
the reciprocal MLS pair suitable for simultaneous dual source cross-correlation measurements. In
the measurement of a dual source system, each of the reciprocal MLS pairs simultaneously excite
one of two separate sources, one or several receiver signals cross-correlate in turn with each of the
MLS pairs, resulting in impulse responses associated with two separate sources. The proposed
method is particularly valuable for system identification tasks with multiple sound/vibration sources
and receivers that have to be accomplished in a limited time period. A fast algorithm called a fast
MLS transform is exploited for the cross-correlation. In this paper we propose a fast MLS transform
pair for the reciprocal MLS pairs. Its efficiency lies in the requirement of one single permutation
matrix for a pair of two fast MLS transforms. Its feasibility and usefulness in the acoustical
measurements are demonstrated using experimental results. ©2003 Acoustical Society of
America. @DOI: 10.1121/1.1561498#

PACS numbers: 43.60.Qv, 43.58.Gn, 43.55.Mc@JCB#
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I. INTRODUCTION

A wide acceptance of binary maximum-length s
quences~MLS or M sequences! measurement technology i
the acoustics community is due to MLS’ excellent numb
theory properties. One of the key characteristics of the M
is their two-valued periodic autocorrelation function. It
this autocorrelation property that is exploited in most of t
applications of MLS. The advanced MLS measurement te
nique is based on a fast algorithm termed aFast M-sequence
Transform~FMT! by Cohn and Lempel1 in which the im-
pulse response-related system identification tasks can b
complished efficiently. In addition, MLS, as excitation si
nals, possess a high signal power and low peak fact
Along with the inherent cross-correlation mechanism for s
tem identification, a high noise immunity in measureme
results can be obtained. Recent acoustical applications o
MLS measurement technique can be found, among other
architectural acoustics,2–7 audiology,8–10 ultrasonics,11,12

psychoacoustics,13,14 underwater acoustics,15 and physical
acoustics.16,17

In this paper we propose a technique using a recipro
pair of MLS in simultaneous dual-source channel measu
ments. Impulse responses between two separate source

a!Dedicated to Dr. Jens P. Blauert on the occasion of his 65th birthday. P
of this work have been presented at the 141st meeting of the Acous
Society of America@J. Acoust. Soc. Am.109, 2418~A! ~2001!#.

b!Author to whom correspondence should be addressed. Electronic
nxiang@olemiss.edu
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one or several receivers of acoustical systems can be d
mined simultaneously. The simultaneous dual-source m
surements exploit the cross-correlation properties of recip
cal MLS pairs that are considerably less widely known a
understood than the autocorrelation functions. It is this pr
erty that makes simultaneous dual-source measurements
sible. This technique is of practical significance for a numb
of acoustical investigations in physical acoustics, ultrason
and architectural acoustics. Particularly, some measurem
tasks of an acoustical system under test with multiple sou
vibration sources have to be accomplished in a limited ti
period. In Sec. II we briefly introduce some number-theo
properties pertaining to the technique. In Sec. III we th
describe a convenient algorithm for the FMT and in Sec.
derive a permutation matrix for the reciprocal MLS pairs.
Sec. V we discuss some acoustical experiments designe
a demonstration of the usefulness of the properties and
convenience of the algorithm.

II. BASIC PROPERTIES OF BINARY MLS

An n-stage linear feedback shift-register device can g
erate a binary periodic sequence$ai% with aiP$0,1%. When
its feedback taps are appropriately connected, the peri
sequences arrive at their maximum period length ofL52n

21. In this case, the sequences are referred to as maxim
length sequences~MLS!. A characteristic polynomialf (x)
expressing its feedback connection is then referred to
primitive. The positive integern is said to be the degree o
the MLS as well as its primitive polynomial~PP!. In math-
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ematical treatment MLS are convenient in their binary fo
aiP$0,1% while a bipolar formmiP$21,11% is often used
in practice to generate waveforms withmi5122ai .

MLS enjoy a number of attractive properties that ma
them widely useful in broad scientific and engineering fiel
In this section we briefly review some basic properties p
taining to the following discussion with respect to the app
cation of reciprocal MLS pairs. A detailed description a
definitions can be found in Refs. 18–23.

A. Decimation of MLS

If $ai% is an MLS of lengthL52n21, a decimation
$aqi% of sequence$ai% yields another MLS$bi% of the same
degree withbi5aqi , if and only if ~see Ref. 18! the greatest
common divider of positive integersq and L equals one,
gcd(q,L)51. q is said to be a proper decimation factor. T
index operationq• i of $aqi% and all others throughout thi
paper are evaluated moduloL.

A decimation factor of 2 results in the same MLS$bi%
with bi5b2i only for a unique initial state of the linear feed
back shift register for every individual PPf (x). This special
class of MLS is designated as characteristic,25 also as an
idempotent,19 self-similar26 MLS. Without restriction on a
specific initial state, a decimation factor of 2 or even 2k will
generally yield a phase-shifted MLS associated with
same PP,18 with k being a positive integer. Recently, Xian
et al.26 described an algorithm for determining the initi
state according to Gold.25 The self-similar, characteristic
MLS substantiated in terms of this invariant decimation ha
found applications in ultrasonic measurement technique26

They are also of practical significance for the technique p
posed in this paper.

With some other proper decimation factors, decimat
may yield distinctly different MLS generated by distinct
different PP of the same degree. This variant decima
property is worth mentioning together with reciprocal ML
pairs and their cross-correlation property in the following

B. Primitive elements over GF „2n
… and trace

orthogonal basis

A primitive polynomial ~PP! f (x)5( j 50
n cjx

j exactly
expressing the feedback connections of the linear feedb
shift register with its coefficientscj over a finite field, called
a Galois field GF~2!, has a close connection with the el
ments of GF(2n). Given a PPf (x) of degreen, one can
always find an elementn of GF(2n) such thatf (n21)50.20 n
is a primitive element of GF(2n) and so isn21, namely
f (n)50. The characteristic MLS has a close relation to
trace operator of an elementa over GF(2n).20 The trace of
an arbitrary elementaPGF(2n) is defined by

Tr~a!5 (
k50

n21

a2k. ~1!

And a basisV5$v0 ,v1 ,...,vn21% of GF(2n) over GF~2! is
termed the trace orthogonal basis~TOB! if

Tr~v i !51, v iPV ~2!

and
J. Acoust. Soc. Am., Vol. 113, No. 5, May 2003 N. Xian
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Tr~v iv j !50, v i ,v jPV, iÞ j . ~3!

A TOB can be considered as a special coordinate sys
containingn vectorsv0 , v1 ,...,vn21 that are orthogonal to
each other in a sense of the trace operator. The prac
significance of a TOB for GF(2n) lies in the fact that an
arbitrary elementn iPGF(2n)2$0% can be represented by a
n-tuple binary number$ei0 ,ei1 ,...,ei (n21)% ~see Ref. 7 for
more details! as

n i5 (
j 50

n21

ei j v j ; 0< i ,L ~4!

and

Tr~n in j !5 (
k50

n21

eikejk , ~5!

with

ei j 5Tr~n iv j !PGF~2!. ~6!

Equations~4!–~6! will be useful for the derivation in Sec. IV

C. Reciprocal MLS and polynomials

If $ai% is a MLS of lengthL52n21 generated byf (x),
one can derive another$bi% of the same degree in terms o
simply reverting the sequence with

bi5a2 i . ~7!

$bi% is then generated by a primitive polynomialr (x) de-
rived by simply reverting the given PPf (x) of degreen:

r ~x!5xnf ~x21!. ~8!

r (x) is termed the reciprocal polynomial off (x). The MLS
$bi% generated byr (x) is termed reciprocal MLS of$ai%. A
pair of reciprocal PPf (x), r (x) always associate with a re
ciprocal pair of characteristic MLS$ai%, $bi%, respectively.
In addition, if n is a primitive element off (x) such that
f (n21)50, thenn21 is a primitive element ofr (x) such that
r (n)50.7

A reciprocal MLS$bi% of $ai% can also be derived from
the given$ai% in terms of decimation with a factor ofq5L
21. In effect,bi5aqi5a(L21)i5a2 i , which is exactly Eq.
~7! since the index operation is evaluated moduloL. If $ai% is
a characteristic MLS,$bi% achieved using Eq.~7! is also a
characteristic MLS. The cross-correlation function of the
ciprocal MLS pairs is of practical significance for the tec
nique being discussed in the following.

D. Correlation property of MLS

MLS are periodic pseudorandom signals. The norm
ized periodic autocorrelation function~PACF! of a bipolar
MLS within one period is a two-valued function4 with

f~ i !5
L11

L
d~ i !2

1

L
; 0< i ,L. ~9!

When the period lengthL52n21 is large enough, the PACF
of MLS approximates a unit-sample sequence:

f~ i !'d~ i !; 0< i ,L. ~10!
2755g and M. R. Schroeder: Reciprocal maximum-length sequence
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From its PACF, it is readily deduced that its power spec
density function is of broadband nature and covers the en
frequency range~except for the zero frequency!. It is this
well-known property of MLS that has been exploited in mo
applications. Figure 1~a! illustrates the normalized PACF of
MLS of degree 12 for one period.

Cross-correlation properties of MLS are considera
less widely known, particularly in the acoustics commun
Cross-correlation means correlation of one bipolar MLS w
another of the same degree. There exists a number of M
pairs for which their periodic cross-correlation functio
~PCCF! possess considerably smaller values in compari
to the peak value of their two-valued PACF. Golomb18 has
observed that if$ai% and$bi% are generated by different PP
then the PCCFfab takes on at least three values. An app
priate decimation of MLS will yield pairs of MLS having
relatively small three-valued PCCF. The small valued PC
depends only on the decimation factor rather than upon
dividual MLS. These three-valued PCCF of MLS pairs ha
gained considerable attention due to their~relatively! small
magnitude in spread spectrum communication system22

They are termed preferred pairs of MLS.23 In addition to the
preferred three-valued PCCF, there also exist four-val
PCCFs for specific classes of MLS.22 They are even slightly
better than the three-valued pairs with respect to the sm
magnitude. This paper will refer to both the three-valued a
four-valued MLS pairs as preferred pairs. Appropriate de
mation factors leading to the preferred MLS pairs are w
documented and can be found in Refs. 22–23.

The most significant feature in this context is that t
cross-correlation of the reciprocal MLS pairs also have sm
values being close to those of three-valued MLS pairs,
not limited to three values.22 The normalized cross
correlation boundl (n) of the reciprocal MLS pairs is depen
dent upon the degreen:22,24

l ~n!5
2~n12!/221

2n21
. ~11!

For the applications exploiting the small peak cro
correlation properties, one should not necessarily insist
having three- or four-valued PCCF. Figures 1~b! and 1~c!
illustrate the normalized PCCF of a reciprocal MLS pair w
a degree of 12 for one period. For convenience of comp
son, the PACF of one of MLS is also illustrated in Fig. 1~a!.
Table I lists the peak cross-correlation values for deg
8–24 achieved by calculating the peak cross-correlation
tween these reciprocal MLS pairs compared with the cro
correlation bound valuesl (n) predicted using Eq.~11!.

III. FAST MLS TRANSFORM

Applying a periodic bipolar MLS$mi% to a linear time-
invariant system under test and receiving one period of
system responseY to the MLS after the system arrives at i
steady state, its impulse responseh can predominantly be
determined in terms of cross-correlation between the exc
tion MLS and the system response to the MLS1,7 by

h5MY , ~12!
2756 J. Acoust. Soc. Am., Vol. 113, No. 5, May 2003
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whereh, Y are vectors ofL elements.M represents the MLS
matrix of dimensionL3L, its rows contain sequentially
right-cyclically shifted MLS$mi%:

M5@Mi j #5@mj 2 i #; i , j 50,1,...,L21. ~13!

Equation~12! is termed theM sequence (MLS) transform.
Taking a bipolar $mi% of degree 3 as an example$mi%
5$21,21,21,11,21,11,11% and using its binary version
$ai% for the MLS matrix, the binary MLS matrixA ~binary
version ofM ! becomes

FIG. 1. Correlation functions of a MLS of degree 12 generated at samp
frequency of 50 kHz.~a! Autocorrelation function.~b! Cross-correlation
function between the reciprocal MLS pair~shifted downward beneath the
autocorrelation function for a convenient comparison while keeping
same amplitude scale!. The peak value of the cross-correlation amounts
0.03, 30.2 dB lower than the peak value of the autocorrelation.~c! A zoomed
presentation of a segment from~b!.

TABLE I. Cross-correlation bound valuesl (n) @Eq. ~11!# and normalized
peak cross-correlation values of reciprocal MLS pairs achieved experim
tally by performing the fast MLS transform of reciprocal MLS.

Degree
Period
length

Cross-correlation
bound@Eq. ~11!#

Peak cross-
correlation

8 255 0.1216 0.1216
9 511 0.0881 0.090

10 1023 0.0616 0.061
11 2047 0.0437 0.043
12 4095 0.0310 0.0308
13 8191 2.198E-2 0.0222
14 14 383 1.557E-2 0.0155
15 32 767 1.012E-2 1.013E-3
16 65 535 7.797E-3 7.78E-3
17 131 071 5.517E-3 5.51E-3
18 262 143 3.903E-3 3.90E-3
19 524 287 2.760E-3 2.76E-3
20 1 048 575 1.952E-3 1.95E-3
21 2 097 151 1.381E-3 1.38E-3
22 4 194 303 9.763E-4 9.76E-4
23 8 388 607 6.904E-4 6.90E-4
24 16 777 215 4.882E-4 4.88E-4
N. Xiang and M. R. Schroeder: Reciprocal maximum-length sequence
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A5@Ai j #5@aj 2 i #53
1 1 1 0 1 0 0

0 1 1 1 0 1 0

0 0 1 1 1 0 1

1 0 0 1 1 1 0

0 1 0 0 1 1 1

1 0 1 0 0 1 1

1 1 0 1 0 0 1

4 . ~14!

The MLS matrix in Eq.~13! is permutationally similar to
Hadamard matrix:23,27

M5P2HP1, ~15!

where H is a Hadamard matrix of Sylvester-type.P1, P2
denote the permutation and the repermutation matrix, res
tively. Equation~15! implies a fast algorithm, referred to a
Fast MLS Transform~FMT! by Cohn and Lempel,1 since the
fast Hadamard transform for Hadamard matrixH is adopted
in the calculation. Figure 2 illustrates a flow diagram for t
FMT. It consists of three major steps.

~1! Permutation of the system responseY to the MLS being
used as excitation of the system under test (P1Y).

~2! Fast Hadamard transform of the permuted vec
„H(P1Y)….

~3! Repermutation of the transformed vector„P2@H(P1Y)#….

An impulse responseh results directly in the time domain
right after the repermutation, except for a scale factor.7

Generally two permutation matrices are required by
fast MLS transform, as indicated in Eq.~15! and Fig. 2~see,
among others, Refs. 1, 4, 28!. The two permutation matrice
are derived from the MLS being used for the excitation s
nal. They are usually stored in form of indices.7 Since the
fast MLS transform performs inherently the cross-correlat
between the MLS itself and the system response to the M
the two permutation matrices together can be considere
the original binary MLS in index form. In the following sec
tion we briefly describe an approach to construct the per
tation matrices from the characteristic MLS. It yields o
single permutation matrix that can be used at the same
for a pair of two reciprocal MLS.

FIG. 2. Flow diagram of the Fast MLS Transform algorithm. A syste
responseY to the MLS undergoes permutation, Fast Hadamard Transf
and repermutation, yielding the impulse responseh directly in the time
domain. In general, the algorithm requires two permutation matrices f
the given MLS.
J. Acoust. Soc. Am., Vol. 113, No. 5, May 2003 N. Xian
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IV. PERMUTATION MATRIX OF RECIPROCAL MLS
PAIR

If $ai% is a characteristic MLS of degreen generated by
a PPf (x) andn is a primitive element over GF(2n), which
satisfiesf (n21)50, then the MLS matrixA can be factored
using Eqs.~4!–~6! in terms of the trace operator and th
TOB7 as

A5@Ai j #5@aj 2 i #5@Tr~n2 in j !#

5F (
k50

n21

e~2 i !kejkG
5E2E1 ; i , j 50,1,...,L21. ~16!

A close investigation of Eq.~16! reveals thatE1 , E2 are of a
similar structure in such a way that the rows ofE2 can be
found in the columns ofE1 in the reversed order except fo
the first row and the first column. Taking the previous ML
of degree 3 in Eq.~14! as an example,E1 andE2 become

E15F 1 1 0 1 0 0 1

1 0 1 0 0 1 1

1 0 0 1 1 1 0
G ~17!

and

E2
T5F 1 1 0 0 1 0 1

1 1 1 0 0 1 0

1 0 1 1 1 0 0
G , ~18!

whereT stands for transpose of a matrix. Readers can ea
verify that E2E1 results in the binary MLS matrixA in Eq.
~14!. MatricesE1 , E2 lead straightforwardly to permutatio
matricesP1 , P2 , which can be expressed in index form b
converting each binary column in Eqs.~17!–~18! into a deci-
mal number with the top row containing the insignifica
bit:7

P15~7,1,2,5,4,6,3! index ~19!

and

P25~7,3,6,4,5,2,1! index. ~20!

A detailed calculation ofP1 can be found in Refs. 3, 7. In a
practical implementation, once the permutation indicesP1 is
calculated from the given MLS, the repermutation~requiring
P2) needs to take the indices fromP1 in the reversed order
except for the first index while the permutation takes t
indices in its sequential order. The FMT using this approa
is illustrated in Fig. 3, where only one permutation matrix
required.

For a given PPf (x), its reciprocal MLS$bi% of $ai% is
generated by its reciprocal PPr (x)5xnf (x21). If n21 satis-
fies f (n21)50, so does (n21)21 satisfyr @(n21)21#50. In a
similar fashion, the reciprocal MLS matrixB can be factored
using Eqs.~4!–~6! as7

B5@bj 2 i #5@Tr„~n21! j 2 i
…#

5@Tr~n2 jn i !#5F (
k50

n21

eike~2 j !kG5G2G1 . ~21!

m

2757g and M. R. Schroeder: Reciprocal maximum-length sequence
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A close comparison of Eq.~21! with Eq. ~16! reveals that
G1

T5E2 and G25E1
T , since the primitive elementn in Eq.

~21! is the same as that in Eq.~16!. This implies that the
FMT for the reciprocal MLS$bi% uses the same single pe
mutation matrix. Figure 4 shows the flow diagram of t
FMT pair if the reciprocal MLS pair comes into practic
applications that we elaborate on in the following section

V. APPLICATIONS

In a variety of acoustical applications, a system un
test can contain multiple sound/vibration sources and rec
ers, such as a listening situation in auditoria,29 where, e.g.,
multiple loudspeakers of a sound system operate, or a n
ber of musical instruments are played at the same time on
stage. Moreover, some impulse response-related sy
identification tasks with multiple sources have to be acco
plished in a limited time period.30,31 A simultaneous source
measurement technique is especially needed.

A. Principle of simultaneous measurements

A system schematically illustrated in Fig. 5 is suitab
for modeling the system identification tasks with multip
sources. In the figure,Si denotes theith source signal in the
time domain whileRj denotes thejth receiver signal in the

FIG. 3. Flow diagram of the Fast MLS Transform algorithm of a charac
istic MLS. The algorithm requires only one permutation matrix. The dash
line arrow from the permutation matrix to the repermutation implies that
repermutation takes the permutation indices in a reversed order while
permutation just takes its sequential order~solid arrow!.

FIG. 4. Flow diagram of the Fast MLS Transform pair. The algorith
require only one permutation matrix for both the fast MLS transform~FMT!
and the fast reciprocal MLS transform~FRMT!. The dashed-line arrows
from the permutation matrix to the permutation or repermutation imply t
these permutations take the permutation indices in a reversed order whi
other permutations just take their sequential order~solid arrows!.
2758 J. Acoust. Soc. Am., Vol. 113, No. 5, May 2003
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time domain.hi j stands for an impulse response defined
tween theith source and thejth receiver of a linear system

In the presence of all source signals as required by
multaneous source channel measurements, thejth receiver
yields an output signal:

Rj~ t !5 (
k51

n

Sk~ t !* hk j~ t !; j 51,...,p, ~22!

where ‘‘* ’’ stands for the linear convolution, assuming th
the system under test can be considered as a linear t
invariant system. A cross-correlation between theith source
signal and thejth receiver signal reads as

Si~ t ! ^ Rj~ t !5 (
k51

n

f ik~ t !* hk j~ t !;

i 51,...,n; j 51,...,p, ~23!

where ^ stands for linear cross-correlation andf ik(t)
5Si(t) ^ Sk(t) for cross-correlation between theith andkth
source signal.

For experimentally determining the impulse respons
the following PCCF of excitation signals is desirable:

f ik~ t !5H d~ t !, for i 5k,

0, for iÞk,
~24!

since inserting Eq.~24! into Eq. ~23! yields

hi j ~ t !5Si~ t ! ^ Rj~ t !; i 51,...,n; j 51,...,p. ~25!

Equation~25! indicates that the impulse response betwe
the ith source and thejth receiver could conveniently b
determined if the simultaneous excitation signals would p
sess the property expressed in Eq.~24!, namely, their PACF
would be a unit-sample sequence while their PCCF wo
equal zero. Lu¨ke23 pointed out that signals with exactly suc
a cross-correlation property can neither exist nor be c
structed. Fortunately, some special classes of binary MLS
most suitable candidates for the discussed tasks due to
following two reasons.

First, the cross-correlation of reciprocal and preferr
pairs of binary MLS discussed in Sec. II B approximates
desired condition in Eq.~24!. As expressed both in Eqs.~10!
and~11!, illustrated in Fig. 1 and listed in Table I, the longe
the sequences are to be used, the smaller the peak c
correlation value becomes and the closer their cro

-
-

e
he

t
the

FIG. 5. System-theoretical model of a multisource and multireceiver s
tem. All together,n3p impulse responseshi j are defined betweenn sources
andp receivers.
N. Xiang and M. R. Schroeder: Reciprocal maximum-length sequence
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correlation approximate the condition in Eq.~24!. Second,
the FMT described in Sec. III can accomplish the operat
expressed in Eq.~25! with high computational efficiency
particularly using the fast reciprocal MLS transform pair,
discussed in Sec. IV, two MLS~reciprocal pair! need only a
single permutation matrix.

B. Experimental results

An exploratory experiment was carried out in a
anechoic chamber, as schematically illustrated in Fig.
when a reciprocal MLS pair (m1 ,m2) excited two sound
sources simultaneously. Each MLS of degree 13 at a s
pling frequency of 30 kHz excited one sound source, resp
tively. Two microphones received one period of respon
(M1 ,M2) to the MLS excitations after the system arrived
the steady state. Each microphone signal was then fed
input labeled by~1! of the FMT illustrated in Fig. 4 and then
into the input labeled by~2! of the FRMT, respectively.

Since each microphone signal contained a linear com
nation of responses to the individual MLS from each sou
source and the FMT pair performed the cross-correlation
each MLS to the microphone signal, the FMT@from input~1!
to output~a! in Fig. 4# approximately filtered out the impuls
responseh11 and suppressed the componentm2* h21 with
microphone signalM1 feeding into the input labeled by~1!
of the FMT. And the FRMT@from input ~2! to output ~b!#
approximately filtered out the impulse responseh21 and sup-
pressed the componentm1* h11 with microphone signalM1

feeding into the input labeled by~2! of the FRMT. One per-
mutation matrix was determined using the given MLS
degree 13 for the pair of FMT and FRMT. In a similar fas
ion, when feeding microphone signalM2 , in turn, into the
input labeled by~1! of the FMT and then into the inpu
labeled by~2! of the FRMT, the FMT pair~in Fig. 4! ap-
proximately yieldedh12 andh22. Figure 7 shows the first 16
ms segments of four impulse responses. The peak-to-n
ratio of 30–31 dB was achieved for all four impulse r
sponses, about 2–3 dB less than the peak cross-correl
value listed in Table I~for degree 13!. A single-excitation
impulse response with a peak-to-noise ratio of 53 dB, co
sponding toh12, but achieved from a single loudspeake
microphone measurement using an M sequence of degre
is also plotted in Fig. 7 for comparison. This measurem

FIG. 6. Simultaneous acoustical measurement undertaken in an ane
chamber with two sound sources and two microphones.
J. Acoust. Soc. Am., Vol. 113, No. 5, May 2003 N. Xian
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technique can be used, among others, for the study of
door sound propagation, as required by the experime
study in Refs. 30–31.

Another example is a simultaneous measurement
room impulse responses carried out in an auditorium~in the
National Center for Physical Acoustics, The University
Mississippi! with a stereo sound system. The measurem
setup is similar to the sketch in Fig. 6 but in the auditoriu
A reciprocal MLS pair of degree 20, at a sampling frequen
of 50 kHz, drove the pair of loudspeakers, respectively, a
two microphones received one period of the responses to
simultaneous MLS excitations from both stereo loudspe
ers. One permutation matrix was determined using the gi

oic

FIG. 7. Segments of impulse responses simultaneously measured
anechoic chamber using a reciprocal MLS pair of degree 13 as excita
signals at the two~loudspeaker! source channels, respectively. Each of tw
microphone signals is, in turn, fed into two inputs of the FMT pair~illus-
trated in Fig. 4! yielding four impulse responses (h11 , h12 , h21 , andh22). A
single-source impulse response, corresponding toh12 , but achieved from a
single loudspeaker-microphone measurement is also plotted for a com
son.
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MLS of degree 20 for the FMT pair. Each of the two micr
phone signals was, in turn, fed into each input of the FM
pair, resolving two pairs of room impulse responses, as il
trated in Fig. 8. In Fig. 8, the first 1.1 s long segments of fo
room impulse responses are shown, the peak-to-noise
ranges between 42–50 dB.

C. Discussion

The peak-to-noise~P/N! ratios achieved in the two ex
amples discussed previously can be further improved if
even longer reciprocal MLS pair can be used. The maxim
achievable P/N ratio is restricted by the peak cro
correlation value of reciprocal MLS pairs listed in Table
The PCCF between two reciprocal MLS pairs as shown
Fig. 1~b! is of a deterministic nature given the reciproc
MLS pair. Therefore, additional averages cannot significan
improve the P/N ratios if other kinds of random noise are
the measurement environment. For this reason, additiona
erages are not relevant for a P/N ratio improvement. Part
larly, the technique employing reciprocal and preferred M
pairs, as discussed in this paper is of practical significa

FIG. 8. Segments of room impulse responses simultaneously measured
auditorium using a reciprocal MLS pair of degree 20 as excitation sig
driving two stereo loudspeakers of a sound system, respectively. Two
crophones are used for the sound receivers. Each of two microphone si
is, in turn, fed into two inputs of the FMT pair~illustrated in Fig. 4! yielding
four room impulse responses (h11 , h12 , h21 , andh22).
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especially for the simultaneous source channel measurem
a limited measurement time period is often critical in spec
applications.

The separation of individual impulse responses from
dividual simultaneous sources is due to the excellent cro
correlation properties of reciprocal and preferred MLS pa
The separation at the receiving ends, however, is not a
concern at all, since individual receiving channels inheren
possess the separation ability. Increasing the number o
ceiving channels does not significantly influence the figure
achievable P/N ratio in the measured impulse responses
increasing the number of simultaneous source channels d
Generally one more source channel leads to at least 3
degradation of achievable P/N ratio depending on the M
selected.

More preferred MLS pairs need to be added to the
multaneous mode if a specific application requires m
source channels given the limited measurement period. S
MLS-related sequences22 can be employed if the number o
available preferred MLS pairs cannot meet the need.

VI. CONCLUSION

The two-valued autocorrelation function of bina
maximum-length sequences~MLS! has long been exploited
for various applications, while considerably less attent
has been given to the excellent cross-correlation propert
binary MLS, particularly of reciprocal MLS. The cross
correlation function between a pair of reciprocal MLS exh
its relatively smaller values than the peak value of their au
correlation function. It is this excellent property that mak
the simultaneous dual-source measurements feasible.
measurement technique simultaneously obtains impulse
sponses of an acoustical system under test with two sepa
sound sources and one or several receivers with each o
reciprocal MLS pair exciting each of dual source channe
The impulse response measurements are based on a
cross-correlation technique called the Fast MLS Transfo
In this paper we have proposed the fast reciprocal M
transform~FRMT! pair. The efficiency of the FRMT pair lies
both in exploitation of the fast Hadamard transform alg
rithm and in the requirement of a single permutation matr
In addition to the cross-correlation property, in this paper
have applied some fundamental properties of the bin
MLS for a derivation of the permutation matrix from th
MLS pair, including decimations, characteristic MLS, tra
operations, and a trace orthogonal basis. The principle of
simultaneous dual source measurements is discussed an
efficient technique and potential acoustical applications h
been demonstrated using exploratory experimental res
The technique proposed in this paper is especially of pra
cal significance when impulse responses of acoustical
tems with multiple sources and receivers have to be de
mined in a limited time period.
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