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1 Introduction

As data converters become faster and faster, the application of narrow-band extraction from
wideband sources, and narrow-band construction of wideband signals is becoming more
important. These functions require two basic signal processing procedures: decimation and
interpolation. And while digital hardware is becoming faster, there is still the need for
efficient solutions. Techniques found in [CR83] work very well in practice, but large rate
changes require very narrow band filters. Large rate changes require fast multipliers and
very long filters. This can end up being the largest bottleneck in a DSP system.

In [Hog81], an efficient way of perfoming decimation and interpolation was introduced.
Hogenauer devised a flexible, multiplier-free filter suitable for hardware implementation, that
can also handle arbitrary and large rate changes. These are known as cascaded integrator-
comb filters, or CIC filters for short.

This paper sumarizes the findings published in [Hog81]. An overview can also be found in
[Fre94]. An extension of CIC filters has been published in [KJW97], and is briefly mentioned
here. When in doubt, the reader should refer to these sources.

2 Building Blocks

The two basic building blocks of a CIC filter are an integrator and a comb. An integrator is
simply a single-pole IIR filter with a unity feedback coeficient:

y[n] = y[n− 1] + x[n] (1)

This system is also known as an accumulator. The transfer function for an integrator on the
z-plane is

HI(z) =
1

1− z−1
(2)
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Using the equations from [OS89] for a single pole system, we can determine that

|HI(e
jω)|2 = 1

2(1−cosω)

ARG[HI(e
jω)] = −tan−1

[
sinω

1−cosω

]
grd[HI(e

jω)] =

{
undefined ω = 0
−1

2
ω 6= 0

(3)

The power response is basically a low-pass filter with a −20 dB per decade (−6 dB per
octave) rolloff, but with infinite gain at DC. This is due to the single pole at z = 1; the
output can grow without bound for a bounded input. In other words, a single integrator by
itself is unstable.
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Figure 1: Basic Integrator

A comb filter running at the high sampling rate, fs, for a rate change of R is an odd-
symetric FIR filter described by

y[n] = x[n]− x[n−RM ] (4)

In this equation, M is a design parameter and is called the differential delay. M can be any
positive integer, but it is usally limited to 1 or 2. The corresponding transfer at fs

HC(z) = 1− z−RM (5)

Again, we can determine that

|HC(ejω)|2 = 2(1− cosRMω)
ARG[HC(ejω)] = −RMω

2

grd[HC(ejω)] = RM
2

(6)

When R = 1 and M = 1, the power response is a high-pass function with 20 dB per decade
(6 dB per octave) gain (after all, it is the inverse of an integrator). When RM 6= 1, then the
power response takes on the familiar raised cosine form with RM cycles from 0 to 2π.

When we build a CIC filter, we cascade, or chain output to input, N integrator sections
together with N comb sections. This filter would be fine, but we can simplify it by combining
it with the rate changer. Using a technique for multirate analysis of LTI systems from [CR83],
we can “push” the comb sections through the rate changer, and have them become

y[n] = x[n]− x[n−M ] (7)
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at the slower sampling rate fs
R

. We accomplish three things here. First, we have slowed down
half of the filter and therefore increased efficiency. Second, we have reduced the number of
delay elements needed in the comb sections. Third, and most important, the integrator and
comb structure are now independent of the rate change. This means we can design a CIC
filter with a programmable rate change and keep the same filtering structure.
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Figure 2: Basic Comb

To summarize, a CIC decimator would have N cascaded integrator stages clocked at
fs, followed by a rate change by a factor R, followed by N cascaded comb stages running
at fs

R
. A CIC interpolator would be N cascaded comb stages running at fs

R
, followed be a

zero-stuffer, followed by N cascaded integrator stages running at fs.
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Figure 3: Three Stage Decimating CIC Filter
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Figure 4: Three Stage Interpolating CIC Filter

3 Frequency Characteristics

The transfer function for a CIC filter at fs is

H(z) = HN
I (z)HN

C (z) =
(1− z−RM )N

(1− z−1)N
=

(
RM−1∑
k=0

z−k

)N

(8)

This equation shows that even though a CIC has integrators in it, which by themselves
have an infinite impulse response, a CIC filter is equivalent to N FIR filters, each having a
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rectangular impulse response. Since all of the coeficients of these FIR filters are unity, and
therefore symetric, a CIC filter also has a linear phase response and constant group delay.

The magnitude response at the output of the filter can be shown to be

|H(f)| =

∣∣∣∣∣sin πMf

sin πf
R

∣∣∣∣∣
N

(9)

By using the relation sinx ≈ x for small x and some algebra, we can approximate this
function for large R as

|H(f)| ≈
∣∣∣∣RM sin πMf

πMf

∣∣∣∣N for 0 ≤ f <
1

M
(10)

We can notice a few things about the response. One is that the output spectrum has nulls
at multiples of f = 1

M
. In addition, the region around the null is where aliasing/imaging

occurs. If we define fc to be the cutoff of the usable passband, then the aliasing/imaging
regions are at

(i− fc) ≤ f ≤ (i+ fc) (11)

for f ≤ 1
2

and i = 1, 2, · · · , bR
2
c. If fc ≤ M

2
, then the maximum of these will occur at the

lower edge of the first band, 1− fc. The system designer must take this into consideration,
and adjust R, M , and N as needed.

Another thing we can notice is that the passband attenuation is a function of the number
of stages. As a result, while increasing the number of stages improves the imaging/alias
rejection, it also increases the passband “droop.” We can also see that the DC gain of the
filter is a function of the rate change.

4 Bit Growth

For CIC decimators, the gain G at the output of the final comb section is

G = (RM)N (12)

Assuming two’s complement arithmetic, we can use this result to calculate the number
of bits required for the last comb due to bit growth. If Bin is the number of input bits, then
the number of output bits, Bout, is

Bout = dN log2 RM +Bine (13)

It also turn out that Bout bits are needed for each integrator and comb stage. The input
needs to be sign extended to Bout bits, but LSB’s can either be truncated or rounded at
later stages. The analysis of this is beyond the scope of this tutorial, but is fully described
in [Hog81].

For a CIC interpolator, the gain, G, at the ith stage is

Gi =

{
2i i = 1, 2, · · · , N
22N−i(RM)i−N

R
, i = N + 1, · · · , 2N

(14)
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As a result the register width, Wi, at ith stage is

Wi = dBin + log2 Gie (15)

and
WN = Bin +N − 1 (16)

if M = 1. Rounding or truncation cannot be used in CIC interpolators, except for the result,
becuase the small errors introduced by rounding or truncation can grow without bound in
the integrator sections.

It is now worth revisiting the unstable aspect of the integrator stages. It turns out that
it is not a problem. For decimators, integrator overflow is not a problem as long as two’s
complement math is used and we don’t expect an overall system gain > 1. For interpolators,
the comb stages and zero stuffing will prevent integrator overflow.

5 Implementation Details

Because of the passband droop, and therefore narrow usable passband, many CIC designs
utilize an additional FIR filter at the low sampling rate. This filter will equalize the passband
droop and perform a low rate change, usually by a factor of two to eight.

In many CIC designs, the rate change R is programmable. Since the bit growth is a
function of the rate change, the filter must be designed to handle both the largest and
smallest rate changes. The largest rate change will dictate the total bit width of the stages,
and the smallest rate change will determine how many bits need to be kept in the final stage.
In many designs, the output stage is followed by a shift register that selects the proper bits
for transfer to the final output register. A system designer can use the equation for Bout
for a decimator and W2N for an interpolator to calculate proper shift values.

For a CIC decimator1, the normalized gain at the output of the last comb is given by

g =
(RM)N

2dN log2 RMe
(17)

This lies in the interval (1
2
, 1]. Note that when R is a power of two, the gain is unity. This

gain can be used to calculate a scale factor, s, to apply to the final shifted output.

s =
2dN log2 RMe

(RM)N
(18)

which lies in the interval [1, 2). By doing this, the CIC decimation filter can have unity DC
gain.

6 Sharpened CIC Filters

Filter sharpening can be used to improve the response of a CIC filter. This technique
applies the same filter several times to an input to improve both passband and stopband

1This paragraph is an generalization of equations found in the datasheet for the Harris/Intersil HSP50016.
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charecteristics. If H(z) is a symetric FIR filter, then a sharpened version, HS(z), can be
expressed as

HS(z) = H2(z)[3− 2H(z)] (19)

The magnitude response of a sharpened CIC filter would then be

|H(f)| =

∣∣∣∣∣∣3
(

sin πMf

sin πf
R

)2N

−

(
2

sin πMf

sin πf
R

)3N
∣∣∣∣∣∣ (20)

The interested reader is referred to [KJW97] for more details. Please note that it uses
different parameters and implements a CIC filter a bit differently than [Hog81].

7 Conclusion

Since their inception, CIC filters have become an important building block for DSP systems.
They have found a particular niche in digital transmitters and receivers. They are currently
used in highly integrated chips from Intersil, Graychip, Analog Devices, as well as other
manufacturers and custom designs. This paper has attempted to summarize key points
found in [Hog81] and provide some insight into designs. While many journal submissions
are of limited value to an engineer, this paper was written for designers. As such, the reader
should try to locate [Hog81] as the definitive reference for CIC filters.
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