
Behavioral Modeling of Transmission Gates in VHDL*

Steven S. Leung

Department of Electrical Engineering
Michigan State University
East Lansing, MI 48824

Abstract
This paper presents a technique for describing the behavior

of transmission gates (TGs) in VHDL. The concept of virtual
signal is introdu&d into the TG’s data structure to reprelsent the
nature of the connection. The model’s semantics are coded in
three parts: the state transition, the steady states, and the
connecting protocol. Simulation results indicate that the model is
correct and robust.

I. Introduction
VHDL allows description of hardware behavior down to the

gate level, but modeling of switching elements at the more
primitive transistor level is not supported [l-3]. In real world
designs, especially in bus-oriented hardware designs, however,
the transmission gate is an indispensable component. Thus, a TG
model, even at a functional level, is much more desirable and will
certainly enhance the utility of the language. In this paper, a
technique for modeling the transmission gate in VHDL is
presented. The approach of this technique is based on a critical
observation that data flow is the primary focus of architecture
design, and the direction of the data flow is a property that can
be derived from the connecting circuit itself. The rationale of
this approach is explained in the next section.

The VHDL TG model is presented in Section III. It is
described in terms of data structure and semantics designs. The
data structure reflects the two abstract properties of the
transmission gate I/O ports, namely, the information about the
data type and the nature of the connections. The semantics are
coded in three parts: the state transition, the steady stat’es. and
the connecting protocol. The model has been tested in a bus-
based ASIC processor design. The experiments on the model are
described in Section IV.

II. The Behavior of TG: What do we Want to Model?
In a given circuit, transmission gates are used :in two

different contexts: realization of logic functions and no&
access controls. The former refers to the use of TG circuits to
realize logic functions such as XOR, addition, multiplexing, etc.
For this type of circuits. ‘the lack of a transmission gate model in
VHDL does not seem to be a major obstacle in architecture
designs, since the logical equivalents are readily constructed
through a higher level abstraction [4]. This is also made clear by
the fact that the XOR function itself is a built-in logical operator
provided by the language. Thus, the modeling effort lof this
work is focused on the use of transmission gates in the second
context. The goal is to develop a VHDL model that can be
instantiated in bus-oriented architecture designs. To achieve

* This research was su ported in part by the State of Michigan
Research Excellence or Economic Development Fund. F

Permission to copy without fee all or part of this material is granted provided
that the copies am not made or distributed for direct commercial advantage,
the ACM copyright notice and the title of the publication and its date appear,
and notice is given that copying is by Permission of the Association for
Computing Machinery. To copy otherwise, or to republish, requires a fee
and/or specific Permission.

this goal. the TG’s behavior is Fist investigated by considering
a simple circuit in which an inverter output is connected to an
inverter input through a transmission gate. The result is then
extended to the situation of a general bus architecture.

Fig. 1 shows the flow direction of the transient current when
the transmission gate is turned on. Note that while the current (or

*J&l *l,;$;

-7 -77

Fig. 1. The direction of current flow in an INV-TG-INV circuit.

electron) flow direction depends on the data value, the outcomes
differ. In l(a), both the output node of INV-1 and the input node
of INV-2 will become ‘1’; but in l(b) both nodes will become ‘0’.
This suggests that the key to characterizing the behavior of the
transmission gate lies not in the flow of current, but in the flow
of data, even though the former is the mechanism that realizes the
latter. Furthermore, the difference between the outcomes of I(a)
and l(b) is due to the finite size of the load capacitor. In other
words, the circuit to which the TG is connected. or the nature of
the connection, determines the direction of the data flow.
Obviously, this is a piece of information that should be
combined with the data content and input tlo the transmission
gate model.

In order to encode the nature of the connection into the model
properly, the use of the transmission gates in a more general
setting is considered. Fig. 2 illustrates a hierarchical bus system

I- sq+. . .
Module-2

r’
Fig. 2, A hierarchical bus architecture.

Paper 42.4

26th ACM/IEEE. Design Automation Conference@

0 1989 ACM O-89791-31 0-8/8!3/0006/0746 $1 SO

in which multiple circuit modules communicate with each other
through the bus. The TGs play the role of controlling the bus
access. For generality, it is assumed that each module may have
its own internal bus ss illustrated by Module-l. Comparing Fig.
1 and Fig. 2, it is obvious that the input signal to the TGs that
specifies the nature of the connection must be dynamic.
Moreover, some of the TGs do not directly connect to either a
load or a current source, but serve only as a messenger to pass
along the data. At steady states, however, if a valid path exists.
then it is characterized by one and exactly one driving source
with one or more loads. Accordingly, Fig. 1 can be generalized
to account for this situation by adding intermediate TGs in the
path as shown in Fig. 3. Another generalization is to replace the

. ..+.**

I I I I I u

Fig. 3. A generalized valid data flow path at steady state

inverter circuits at the two ends of the TG in Fig. 1 with two
generic circuits called primary devices so that data can flow in
either direction. The concept of primary device is associated
with the concept of virtual-signal, and both are to be explained
next. With these modifications, the situation of multiple loads
can be viewed as the sum of multiple distinct paths each of which
consists of the same driving source but a distinct load.

Based on the foregoing analysis. a type virtual-signal is
defined to represent the nature of the connection, and thus the
direction of the data flow. The allowed values and their meanings
are specified in Table 1. A virtual-signal value of 1 designates a
data source (driver) and a value of -1 designates a load (reader).

Table 1. Virtual-Signal Values and Connection Types.

Open

driver
request status

A value of 0 indicates physically an open connection, electrically
a high-impedance state. and logically a don’t care condition. The
value 2 does not specify a connection type, rather, it is used by
the TGs as an interrogation signal to configure the data flow
dynamically. In addition, the circuit devices to which the TGs are
connected can be classified either as primary device or
secondary &vice. Primary device can originate a virtu&signal
value that specifies a connection type while secondary device
can only pass along the virtual-signal value. Five basic primary
devices and their ranges of virtual-signal values are listed in
Table 2.

Table 2. Primary Devices and their Ranges.

Primary Device I Virtual-Signal Value Range

gate input

gate output

tristate output

I bidirectional buffer I I-1.11 I

bi-directional buffer
with tristatc output I-1.0, 11

III. A VHDL Model of TG
With the question of what to be modeled settled, we now

proceed to describe how the model is built. The VI-IDL model of
the transmission gate is constructed in terms of data structure
and semantics. The data structure represents the static abstract
properties, i.e.. information about the type of data and the nature
of the connections. of the transmission gate, while the semantics
describe operations on the data structure. The interpretation of
the semantics constitutes the dynamic behavior of the
transmission gate.

3.1 Data Structure
Without loss of generality, the TG circuit is considered as a

three-port device with two I/O ports controlled by a single
signal ctrl. Fig. 4 shows the TG model’s VHDL entity
declaration and the corresponding graphic representation. The

(a) Circuit Symbol

’ ctrl
(b) VHDL Entity Declaration

entity Transmission-Gate is
port (Data-O, Data-l : buffer INTEGER := 0;

DO-in, Dljn : In INTEGER;
state0 out, state1 out : out VIRTUAL-SIGNAL := 0;
stateO~n, statel-K : in VIRTUAL-SIGNAL;
ctrl : in BIT);

end Transmission-Gate;

(c) Graphic Representation of the Data Structure

Port-0 Port-l

D;m + zs;

+---. -0 state0 out

\
0 * f+tat&~~n

statel-out O..... ---.*
State l-in 4

ml f

. 0

Fig. 4. The TG’s entity declaration and data structure.

control signal ctrl is of type BIT and each I/O port is translated
into four signals accessible from the outside world. Among these
four signals, Data-i of an appropriate type in interest represents
the “official’ value of Port-i. The buffer mode is used for this
signal so that it can be read from both inside and outside but can
only be driven within the TG. An auxiliary input port and a
resolution process are created to resolve the “official” value.
Since the language has no restriction on reading a port value from
outside an entity, accomplishment of the “official” status of
Data-i can only rely on progr amming discipline. In other words,
it is the programmer’s responsibility to refrain from reading
Di-in anywhere in the program.

In addition, each I/O port also has two virtual-signals as
indicated by the dotted lines in the figure. They do not
correspond to physical wires but are used for encoding the
connection types so that information of the data flow direction
can be specified in the semantics of the TG body and derived
dynamically.

3.2 Semantics
The semantics of the TG’s behavior are partitioned into

three parts of the state transition, the steady states, and the
connecting protocol. The first two are realized by the process

Paper 42.4

747

statements within the TG architecture body. The third part
stipulates how the outside world interacts dynamically with the
TG and is implemented by both the TG and the connecting
processes.

3.2.1 The State Transition
The state of the TG is defined by the signal ctrl and the four

virtual-signals. Since changes in data signals are ultimately
originated from the external world, these data signals are not
considered as constituents of the TG’s internal state. The state
transition (Fig. 5) is implemented by a VHDL process staltement
in the TG’s architecture body (Fig. 6).

-5 I

Port 1
driviiig

l so-i(o) = stateO_in(out)
sl-i(0) = stateljn(out)

Fig. 5. The state transition of the TG.

Initially, the TG is in a state of open connection
characterized by a ctrl signal value of ‘0’ and all four virtual-
signals equal to 0. This is also the state to which the TG wiIl
return from other non-error states whenever the signal ctrl
experiences a ‘1’ to ‘0’ transition. When the signal ctrl rises from
‘0’ to ‘l’, the TG will set the output virtual&naIs of both I/O
ports to 2 and then monitor the responses on the two input
virtualYsignaIs. A single driving signal (virtual-signal value 1)
from erther port will cause the TG to enter one of the two
connecting (driving) states. At any time, the two input
virtual-signals having the same value of 1 (both driving) or -1
(both reading) will render the TG to enter the error state and the
simulation will terminate. Essentially, this process performs
constraint violation checking and executes the protocol on the
part of the TG to configure the data flow direction.

3.2.2 The Steady States
Among the four allowed states in the state transition

diagram, only three correspond to physical configurations. They
are the open state and the two driving states - one from Port-1
to Port-O, and the other from Port-0 to Port-l. The. two
driving states can be visualized as effects on the data structure
as illustrated in Fig. 7. Thus, the implementation of the s.teady
states is manifested as the problem of assigning the right value
at the right time to the I/O port’s “official” value holder. This is
done by a process statement for each port. The process
statement for Port-0 @S-O) is listed in Fig. 8. Essentially, this
process responds to the driving condition of the other port
(Port-l) by assigning the value of Data-l to Data-O. When
Port-1 is not driving, it then responds to the change of DO-in
and assigns it to Data-O.

ST: process
variable SO, sl : VIRTUAL-SIGNAL:

begin
stateO_out <= 0; - TG in open state
statel-out <= 0;
wait until ctrl = ‘I’;
while ctrl = ‘1’ loop

steteo~out <= 2; - Request status
statel~out <= 2;
wait on stateO_in, stateljn, ctrt;
If cM = ‘1’ then

so := state0 in;
sl := statel2n;
assert not ((SO = I) and (sl = 1)‘)

report “Roth ends of the TG are driving*
severity ERROR;

assert not ((SO = -1) and (51 = -I))
report “Both ends of the TG are reading”
severity ERROR;

If sl = 1 then -- Port 1 driving
stateo~out <= 1;
statel-out -z= -1;
while ctrl = ‘1’ loop

wait on state0 in, statel-in, ctrl;
assert stateo-G I= 1

report “Both ends of the TG are driving”
severity ERROR;

if statel-in I= 1 then exit; end if;
end loop;

elsif SO E 1 then - Port 0 driving
stateo~out <= -1;
statel-out <= 1;
while ctrl = ‘1’ loop

wait on state0 in, statel-in, ctrl;
assert statel-in I= 1

report “Both ends of the 1-G are driving”
severity ERROR;

if stateO_in I= 1 then exit; end if;
end loop;

end if;
end if;

end loop;
end process ST;

Fig. 6. The process statement implementing the state transition.

(a) Port-1 Driving

Port-0 Poti-

\

-1
0 + stat&-in

d

state l-in jg 0

ctrl I

(b) Port-0 Driving

Port-0 Port-1

0
t

........ &! stateO_in

1

stateljn 35..
/

. 0

ctrl

Fig. 7. The data path of the two driving steady states.

Paper 42.4

748

ss-0: procesr
begin

if ctrl = ‘0’ then - TG OFF
welt on cttf, DO-in:
if not DO-in’STABLE then

Data-0 <= DO-in:
end If;

else -TGON
if stateljn = 1 then -- Port 1 driving

Data-0 <= Data-l ;
wait on Data-l, state1 -in, ctri;

else
wait on DO-in, statelin, ctrl;
If not DO-in’STABLE then

Data-0 <= DO-in;
end if;

end if;
end If;

end process SS-0;

Fig. 8. The process statement imlementing the steady states.

3.2.3 The Connecting Protocol
The simulated behavior of the TG inherently depends on the

nature of the connection, and the connecting protocol defines
how this information is passed to the TG during simulation. The
protocol involves both the TG and the connecting device, with
the connecting device playing a passive role. That part of the
protocol for the connecting device is also divided into the two
processes of state transition and steady states. The implement-
ation can be described algorithmically as follows:

. State_Transition Process:
(if state-out (from TG) changes to 2 then

report connectionJype via state-in;
elsif value of state-out drops from 1 then

send the current state-out value to readers;
end if;)

l Steady-States Process:
(if state-out (from TG) = 1 then

assign Data value of TG to readers:
elsif a driver exists then

assign the current driver’s value to D-in;
endif;).

IV. Simulation Experiments
VHDL programs have been developed to test the TG model

in three different contexts. The VHDL Programs were run on the
Intermetrics VHDL simulator installed on a MicroVax II. In the
first experiment, the TG is tested as a stand-alone device with
integer as the data type for the I/O ports which are connected to
separate controlled driving sources. The TG’s control port is
connected to a clock signal which turns on for 30 11s every 100
ns starting at 50-ns. Data are then driven to the two ports with
different timing characteristics to test various dataflow cases,
and the simulation results have confirmed that the model exhibits
the intended behavior. To further test the robustness of the TG
model, two TGs are instantiated and connected in series. The TG-
to-TG connections are directly made from one TG’s out-mode
port to the other’s in-mode port as shown in Fig, 9. The control
ports of both TGs are tied to the same clock signal and the same
input pattern of the one-TG experiment is applied to the open
ends of the two-TG circuit. As expected, the simulation result is
the same as before except that some of the signals settle down at
a greater delta cycle.

In the second experiment, a TG entity is instantiated in a
circuit module to control the connectivity between a register’s
I/O port and a bus so that a second source (directly from another
circuit module) can write to the register [S]. The three signals -
the register’s I/O port, the second source, and one end of the TG

ctl F
I

I I

Port 0 of TG2
3 Port-l of TGl

Fig. 9. The TG-to-TG connection.

forms an internal bus. To resolve the value of the internal bus, a
resolution mechanism consisting of a transition process and two
steady state processes is developed to implement the
connecting protocol described previously. The module is then
tested for its functional specifications which involve both read
from and write to the register through the TG.

The third experiment involves instantiation of the TG
models in different circuit modules (one of which is the register
module just described). These modules, as part of the datapath in
a special ASIC processor design, communicate with each other
via a bus. Simulation results have again confirmed that the TG
model correctly produces the intended behavior.

V. Summary
A VHDL TG model for architecture design has been

presented. The basic idea of this work is to characterize the
types of a TG’s connections with the concept of virtual-signal
so that the TG can configure the data flow dynamically. 7’he
major focus is on providing constmcts and mechanisms for
modeling TGs in the context of controlling node access. The
model has been tested in a special ASIC processor design [5]
and simulation results indicate that the TG model is both correct
and robust.

As the model is developed based on a general bus
architecture and the connecting process is algorithmically
defined, the model can be generated automatically from circuit
schematics and can be incorporated in existing CAD
tools/systems transparent to the user. Extending the results of
this work to the cases where TGs are used to realize logic
functions appears promising. Also, timing delays in this work
are implicitly assumed to be lumped at external connecting
signals. A more elaborate model incorporating accurate timing
information will certainly enhance the utility of the model.

References
[l] VHDL Language Reference Manual, IEEE, 1988.
[2] VHDL User’s Manual, vol. II, User’s Reference Guide,

Intermetrics, IR-MD-065-1, Aug. 1985.
[3] M. Shahdad, “An overview of VHDL: language and

technology,” 23rd DAC, 1986, pp. 32W326.
[4] J. Armstrong, Chip Level Modeling with VHDL. NJ:

Prentice Hall, 1989.
[5] S. S. Leung and M. A. Shanblatt, ASIC System Design with

VHDL: A Paradigm. MA: Kluwer Academic, 1989.

Paper 42.4

749

