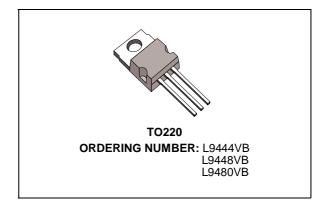
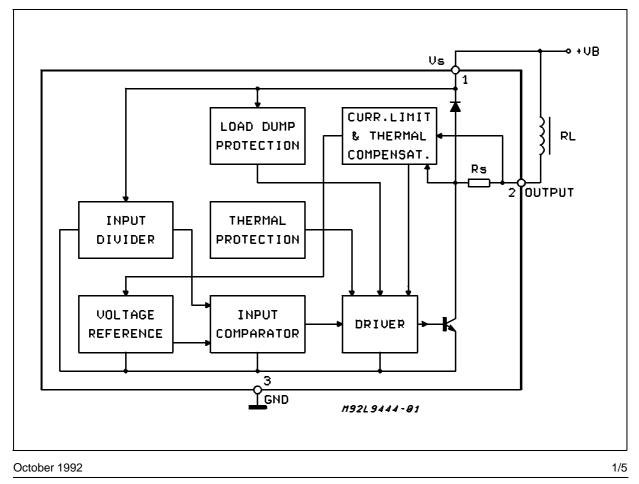


L9444VB/L9448VB L9480VB

ONE CHIP CAR ALTERNATOR REGULATOR


ADVANCE DATA

- NO EXTERNAL COMPONENTS
- PRECISE TEMPERATURE COEFFICIENT
- PRECISE REGULATED VOLTAGE
- HIGH OUTPUT CURRENT
- SHORT CIRCUIT PROTECTED
- REVERSE BATTERY PROTECTION
- +80 V LOAD DUMP PROTECTION
- LOW ENERGY SPIKE PROTECTION
- THERMAL SHUTDOWN
- VERY LOW START UP VOLTAGE


DESCRIPTION

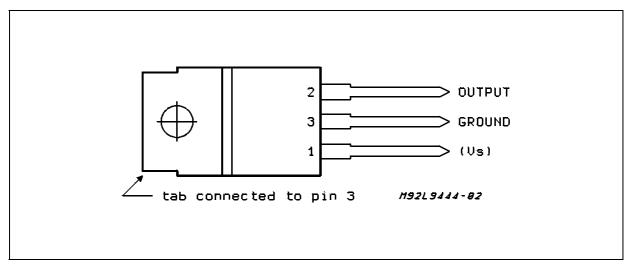
The devices are a "single function" self-oscillating voltage regulator for car alternators. Integrating both the control section and the output power

BLOCK DIAGRAM

stage on a single chip, the devices require no external components, reducing significantly the cost of the system and increasing reliability.

This is advanced information on a new product now in development or undergoing evaluation. Details are subject to change without notice.

L9444VB -L9448VB - L9480VB


ABSOLUTE MAXIMUM RATINGS

Symbol	Parameter	Value	Unit
Vs	$\begin{array}{l} \mbox{Transient Overvoltage :} \\ \mbox{Load Dump : } 5ms \leq T_{rise} \leq 10ms, \\ τ_f Fall Time Constant \leq 100ms, $$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$	80	V
I _{clamp}	Current into Low Energy Clamping Zener ($T_{rise} = 5\mu s$; $T_{decay} \le 2ms$; duty cycle $\le 5\%$)	100	mA
l _{out}	Maximum Output Current	5.5	А
T _j ,T _{stg}	Junction and Storage Temperature Range	– 55 to + 150	°C

THERMAL DATA

Symbol	Parameter	Value	Unit
R _{th i-case}	Thermal Resistance Junction-case Max.	3	°C/W

PIN CONNECTION (top view)

DEVICE OPERATION

The alternator voltage, rectified by the auxiliary diode trio, is compared with an external reference and the resulting signal switches the output stage, driving the alternator field coil.

As the regulator is a self-oscillating type, the switching frequency depends on the whole system parameter set (including the alternator characteristics).

The regulator has an integrated filter in the voltage sensing path. Consequently it doesn't need in the standard application- any external component.

Anyway an external capacitor $(0.1 - 1\mu F)$ must be inserted between V_S and Ground guaranteeing the correct behaviour of the device when the rectifying diodes feature very high switching spikes that are not filtered by the devices.

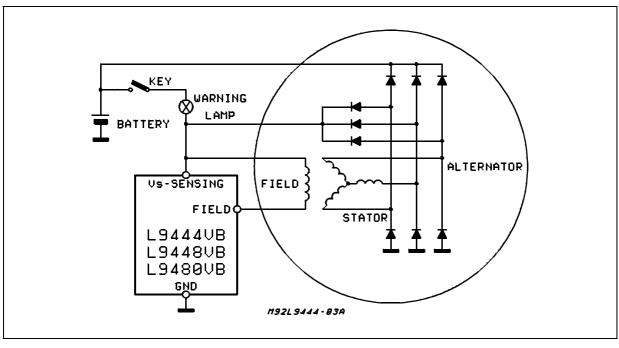
This external capacitor must also be used when the impedances of the cables connecting the alternator to the battery are so high to cause a superimposed ripple on the alternator voltage higher than 3-4V.

The devices regulation voltage and the temperature coefficient may be independently set by suited metal mask selections ; furthermore the regulation voltage is trimmed within \pm 1% of the nominal value @ 25°C.

The devices have an unique -and patented- system to compensate the self-heating of the die due to the power dissipated in the output stage. In this way the internal reference voltage tracks the case temperature rather than the die one.

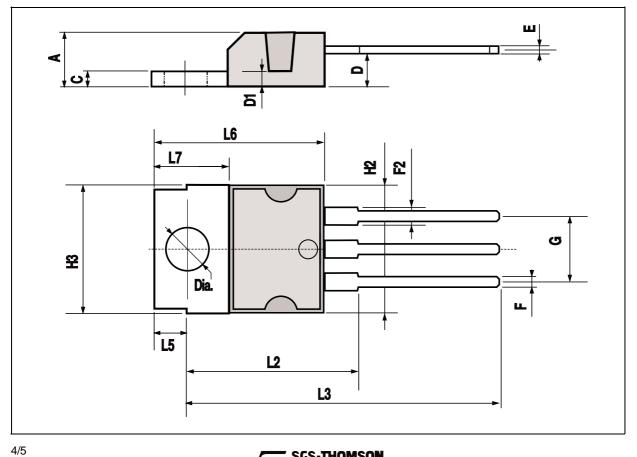
The device can withstand the reverse battery and the load dump (up to 80V); They can absorb, into the internal clamping zeners, low energy spikes up to a level of 100mA and its output is short circuit protected.

Finally the internal thermal shutdown avoids any possible device damage due to overtemperature problems.



Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
Vr	Regulation Voltage	$ \begin{array}{l} T_{j}=-40^{\circ}C & \mbox{ for }L9444VB \\ \mbox{ for }L9448VB \\ \mbox{ for }L9480VB \end{array} $	14.49 14.36 14.75	14.79 14.66 15.05	15.05 14.96 15.35	V V V
		$T_i = 25^{\circ}C$	14.10	14.40	14.70	V
		$\begin{array}{l} T_{j} = 125^{\circ}C & \mbox{for } L9444VB \\ \mbox{for } L9448VB \\ \mbox{for } L9480VB \end{array}$	13.50 13.70 13.10	13.80 14.00 13.40	14.10 14.30 13.70	V V V
Ст	Temperature Coeff. of the Regulation Voltage	for L9444VB for L9448VB for L9480VB		- 6 - 4 - 10		mV/°C mV/°C mV/°C
eCT	Error on Nominal Temperature Coeff.			± 30		%
Vr	Load Regualtion	0.1 I _n < I _{alt} < 0.9 I _n (note 1)		250		mV
V _{su}	Control Circuit Minimum Start up Voltage	Measured at Supply Pin		2	3	V
V _{sd}	Shutdown Voltage (dump protection threshold)			22		V
V _{sat 1}	Output Saturation Voltage	I _{field} = 4 A _p		1.2	2	V
V _{sat 2}	Start Up Saturation Voltage	I _{field} = 200 mA		0.7	1	V
lq	Quiescent Current	Field Off		20		mA
ls	Supply Current	I _{field} = 4 A _p		50		mA
l _{fs}	Field Pin Sink Current	Field Off Field Pin @ 16 V			5	mA
V _{1 CLAMP}	Low Energy Clamping Zener Voltage	I _{clamp} = 50 mA		120		V
f _{sw}	Switching Frequency	01 $I_n < I_{alt} < 0.9 I_n$	30		1000	Hz

ELECTRICAL CHARACTERISTICS (– 40 °C \leq TJ \leq 125 °C unless otherwise noted)


Note1: measured on an alternator with the following characteristics: $I_n = <90A$; $I_{alt}/I_{field} >= 23$

APPLICATION CIRCUIT

TO220 PACKAGE MECHANICAL DATA

DIM.	mm			inch			
	MIN.	TYP.	MAX.	MIN.	TYP.	MAX.	
А			4.8			0.189	
С			1.37			0.054	
D	2.4		2.8	0.094		0.110	
D1	1.2		1.35	0.047		0.053	
E	0.35		0.55	0.014		0.022	
F	0.8		1.05	0.031		0.041	
F2	1.15		1.4	0.045		0.055	
G	4.95	5.08	5.21	0.195	0.200	0.205	
H2			10.4			0.409	
H3	10.05		10.4	0.396		0.409	
L2		16.2			0.638		
L3	26.3	26.7	27.1	1.035	1.051	1.067	
L5	2.6		3	0.102		0.118	
L6	15.1		15.8	0.594		0.622	
L7	6		6.6	0.236		0.260	
Dia	3.65		3.85	0.144		0.152	

SGS-THOMSON MICROELECTRONICS

Information furnished is believed to be accurate and reliable. However, SGS-THOMSON Microelectronics assumes no responsibility for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of SGS-THOMSON Microelectronics. Specifications mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. SGS-THOMSON Microelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of SGS-THOMSON Microelectronics.

© 1994 SGS-THOMSON Microelectronics - All Rights Reserved

SGS-THOMSON Microelectronics GROUP OF COMPANIES

Australia - Brazil - France - Germany - Hong Kong - Italy - Japan - Korea - Malaysia - Malta - Morocco - The Netherlands - Singapore - Spain - Sweden - Switzerland - Taiwan - Thaliand - United Kingdom - U.S.A.

