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ABSTRACT

Some problems of "unlearning" were encountered when using Fahlman's Recurrent Cascade Correlation
Learning Architecture (RCC) for phoneme recognition. In this paper we present a parallel-modular RCC. The
original RCC is transformed into a modular RCC, trained with natural connectionist glue. This is done in order
to concentrate the "knowledge" about a group of patterns in a module, instead of distributing it across the
whole network. The modules are connected in parallel, in contrast to the completely cascaded structure of the
original RCC. This new approach provides an improvement in the recognition rates for tasks involving large
numbers of features to be learned. The modularity, besides providing a better learning, makes training of large
sample-sets easier and faster.

1. Introduction

The Recurrent Cascade-Correlation Learning
Architecture (RCC) [2] offers several advantages over
other neural networks, such as providing a near
minimal multilayer topology by defining its own
size during training. However, when attempting to
learn large groups of patterns involving a great
number of different features, as in spectrograms for
speech recognition, we observed that this structure
presents some disadvantages. The network has
difficulties to generalize from various inputs and it
tends to forget several previously learned features,
resulting in a low recognition rate.

The Cascade-Correlation architecture was
proposed by Fahlman and Lebiere [1], with the
purpose  to  generate  a   network   where   each  unit
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Figure 1: The RCC architecture. The connections marked
with a black square as well as the self-recurrent links are
frozen and the connections marked with an X are trained
repeatedly [2].

learns a  specific task as fast as possible, avoiding
the random motion of the hidden units in space, as
happens in  standard backpropagation [8]. Later, the
recurrent version of this architecture, the RCC, where
the hidden units have also a self-recurrent link that
feeds the units activation back to itself (see figure 1)
was proposed by Fahlman [2].

The RCC network is created in a cascaded fashion.
It stars without hidden units and adds them one by
one during the training while the error surpasses a
determined threshold.

Each new hidden unit receives the activation from
all the previously installed ones and from its own
recurrent link. Its own activation is, however, never
passed to the previously installed units, thus the
cascaded structure.

Every hidden unit in this kind of network can be
viewed as a new layer, becoming a specialized feature
detector. Since it is not possible to change it after it
was installed, further training becomes cumulative.

This learning architecture eliminates the need to
guess the neural network's size, depth and topology
in advance and provides a near-minimal multilayer
topology fitted to the problem to solve.

The hidden units cooperate in the solution of the
problem, as every new hidden unit is affected by the
activation of all the previous ones, as in the example
of the two spirals problem presented in [1], or in
learning sequences of symbols as in the Reber
grammar [2]. Each new unit specializes even more on
the problem supported by the "knowledge" acquired
by the previous hidden units.

However, when the task to be trained is complex,
like the learning of the spectral representation of all
the phonemes in an alphabet, the original RCC
learning architecture presents some strong difficulties
to generalize. To solve this problem we propose a
parallel-modular RCC, as an alternative to the
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original RCC architecture, which provides a better
recognition rate than the original approach.

The next section introduces the parallel RCC
architecture and our concept of "natural"
connectionist glue. Further, section 3 presents the
experiment performed to show the improvement
achieved by this new approach, applying it to
continuous speech recognition. Finally, section 4
presents the conclusions drawn from the experiment.

2. Modularity in the Recurrent Cascade-
Correlation Network

To train the cascade-correlation network with large
training sets, Fahlman proposed to divide the training
set into a series of short "lessons", and train them
one after the other, going from the simplest to the
most complicated one. Then re-train the network
with all the samples in a single training set [2; 3; 9].
The resulting network structure is shown in figure 2.

The re-training is done in the same way each
lesson was trained, that is, keeping the incoming
connections of the previously installed hidden units
frozen, as well as their respective self-recurrent links.

The groups of hidden units generated during the
training of each lesson grow in a cascaded fashion
one on top of the other. When the network is finally
re-trained with the complete training set, one last
group of hidden units is created. We will refer to each
of these groups of hidden units as modules.

2.1 The Parallel RCC

We propose to alter the way the connections of
the original RCC interrupting the cascade and
locating every new module parallel to the previous
ones, with no connections between the modules. In

this way the cascaded RCC of figure 2 is transformed
into the parallel RCC shown in figure 3. Each
module is totally independent from the activation of
the others. This also opens the possibility to train
the modules separately, which makes training faster
and easier.

When the training of each subset of the training-
set is concluded, the obtained modules are merged
parallely into one single network, which is re-trained
with all the training samples in one single set. This
creates an additional group of hidden units, which we
call natural connectionist glue (see fig. 3).

2.2 Natural Connectionist Glue

The Connectionist Glue is a concept developed
by Waibel et al. for modularity and scaling in large
phonemic neural networks [7; 10]. Several neural
networks can be trained individually for small subsets
of the training set, making them specialized modules.
These modules are merged together into a greater
network with common input and output layers. The
connections from the input layer to these modules are
fixed and an extra group of hidden units, the
"connectionist glue", is added to the network. This
network is then re-trained with that extra group of
hidden units, whose connections are free to learn any
missing features to supplement the features learned
by the frozen modules.

Due to the nature of the RCC learning algorithm,
the new hidden units are added one by one during the
training process. This creates a naturally added
connectionist glue (figure 3). The size of this
module, the natural connectionist glue, depends on
the problem being trained, in contrast to the
connectionist glue used for the TDNN, where its size
is fixed and determined before training starts [10].
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Figure 2 : Original RCC trained with the training set
divided into "lessons". (The boxed connections as well
as the self-recurrent links are frozen and the rest are
trained repeatedly.)
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Figure 3 : The new RCC with parallel modules and
Natural Connectionist Glue. (The boxed connections as
well as the self-recurrent links are frozen and the rest are
trained repeatedly.)
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3. Experiment

To compare the performance of a non-modular
cascade-correlation network, the traditional cascaded
architecture and the proposed parallel structure, an
experiment was performed using the following three
approaches:

1) A non-modular network (trained with all the
samples in one single training set);

2) the cascaded RCC (original version) where the
training set is split into groups which are trained
one after the other, and the resulting modules are
built up in a cascade;

3) the parallel RCC where the training set is divided
in exactly the same way as for the cascaded net,
but the modules are built up in parallel.

These three approaches were trained to recognize a
subset of the phonemes of the Japanese language /a/,
/i/, /u/, /e/, /o/, /b/, /d/, /g/, /p/, /t/ and /k/ using the
Time-Sliced Paradigm [5]. Since some of these
phonemes sound very similar, it is desirable to teach
the neural network to recognize the subtle differences
between phonemes like /b/ and /d/. Thus the
phonemes were divided between 3 groups according
to their coarseness (based on [6; 10]). These three
groups are : vowels (/a//e//i//o//u/), voiced stops
(/b//d//g/) and unvoiced stops (/p//t//k/). By training
each of these groups separately the networks will be
able to learn the differences between similar sounding
phonemes.

With this training set the performance and
learning of the three neural networks, as well as their
resulting sizes were compared.

All three networks have 217 input units plus a
bias unit, and 242 output units [4]. Table 1 shows
the sizes of the networks. Clearly there is no
difference between the non-modular and the cascaded
network, only the parallel network has 1200
connections less than the others.

All three networks were trained with the same
samples, i.e. seven samples for each phoneme
randomly extracted from a set of 43 different words,
and they were tested to spot the phonemes inside the
words. The testing set consisted of a list of 143
words, including those from which the training
samples were extracted. We are including those words
into the test-set because a small fraction of only one
phoneme of the whole word was extracted for the
training set, and the rest of the phonemes of the word
could be used for testing. Naturally, for the
recognition statistics the trained samples were not
included into the counting.
Each network was trained and its progress recorded.
Figure 4 compares the decrease of the overall error
vs. the number of installed hidden units during the
training  for each network. While  the error  curve  of
the non-modular net descends smoothly, the other
two jump up at the moment the network is presented
with the complete training set and retrained.
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Figure 4 : Error curve for the three different approaches.

Network : Non-

Modular

Cascaded Parallel

Total No. of Units 520 520 520

Total No. of Hidden

Units

60 60 60

With Natural

Connectionist Glue

No Yes Yes

Total No. of

Connections

82,186 82,186 80,986

Table 1 : Comparing the sizes of the networks.

# of samples Recognition Rates

Phoneme

Group

(test set

only)

Non-

Modular

Cascaded Parallel

Vowels 313 93.93 % 96.49 % 96.81 %

Stops 81 34.57 % 40.74 % 43.21 %

Total 394 81.73 % 85.03 % 85.79 %

Table 2 : Recognition rates for correctly spotted
phonemes. To test the network the complete words of
the test set were passed through the net and the correctly
spotted phonemes were registered. The test-results do
not include the training samples.
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Increment in the recognition

rate compared to :

Group:\Architecture: Non-Modular Cascaded

vowels + 2.88 + 0.32

stops + 8.64 + 2.47

average + 4.06 + 0.76

Table 3: Improvement obtained by the Parallel
Architecture.

While it is adding the connectionist glue, the
error decreases again. It shows that in essence,
considering the total output error, all three networks
have the same tendency. However, the difference is in
their performance.

Interestingly, even though the three networks
have the same level of output error, the results,
shown in Table 2, show an increase in the
recognition rate for the parallel network above the
other two. The amount of this improvement can be
seen more clearly in Table 3.

4. Conclusion

As the number of units increases during the
training of large and complex training sets, the
cascaded network looses generalization and
recognition capability, producing even a null
recognition for some phonemes. The modular
training (or by lessons) gives each module a chance
to specialize on a small group of patterns. However,
due to the cascaded structure of the modules, the
influence of one module on the next can be negative,
as it filters out information and enhances other
features that can confuse the following modules.

Thus, the proposed parallel-modular RCC lets
each module learn to distinguish a specific group of
patterns independently from whatever the other
modules learned. Then the modules are merged and
retrained adding the natural connectionist glue. This
permits the modules to cooperate better with the
others combining their very specific "expertise". In
other words, it proves better to train the RCC in a
parallel-modular fashion, so that the independently
acquired "knowledge" is "localized" in each module,
instead of distributing it through all the network. The
result is an improvement in the recognition rate of
phonemes in continuous speech recognition.

The RCC learning algorithm was originally
chosen because it generates a near minimal
multilayer neural network, which provides us with a
speech  recognition system small enough to run even
on a PC.

The /b//d//g/-/p//t//k/ distinction task in speech
recognition is well known as to be difficult because

of the similitude between the phonemes. The low
recognition rate itself only indicates that there are
still several changes that need to be done to achieve
good continuous speech recognition.
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