

PRODUCT CATALOGUE

FIGARO GAS SENSORS

1-Series 8-Series

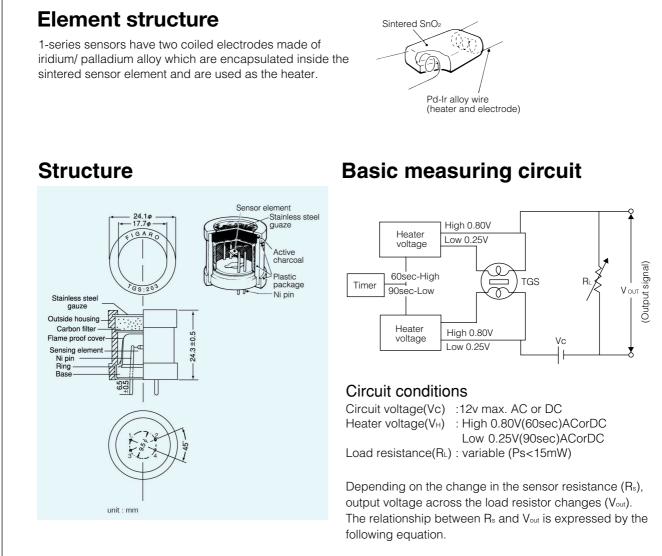
The 1-Series and 8-Series of Figaro Gas Sensors are bulk type metal oxide semiconductor sensors. Field proven metal oxide materials and Figaro's original bulk shape sintered sensor elements ensure high sensitivity, long sensor life and reliability. A wide variety of sensor models are offered to choose from for specific needs of gas detection.

Product List

Application	Target gas	1-Series	8-Series				
			R-type	C-type	M-type		
Combustible gas detection	General hydrocarbons		TGS813	TGS816			
	Methane Natural gas		TGS842				
	Hydrogen			TGS821			
Solvent vapor detection	Alcohol Organic solvents		TGS822	TGS823			
Halocarbon gas detection	R-22			TGS830 TGS831			
	R-134a			TGS832			
Toxic gas detection	Carbon monoxide	TGS203					
	Ammonia			TGS826			
	Hydrogen sulfide			TGS825			
Odor detection	Ammonia/amine			TGS826			
Cooking control	Water vapor				TGS883		
	Fumes from food (alcohol, odor)				TGS880 TGS882		
Air quality control	General air contaminants		TGS800				
Automobile ventilation control	Gasoline exhaust		TGS822				

Sensor structure and packaging

Each sensor requires two voltage inputs. Heater voltage(V_H) is applied to the heater coil to maintain the sensing element at the elevated working temperature required to attain the best sensor performance. A circuit voltage(V_c) is applied to allow measurement of the voltage(V_{out}) across a load resistor(R_L) which is connected in series with the sensor.

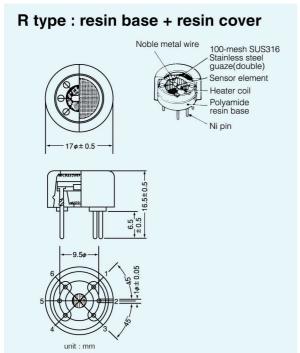

With the exception of TGS203, a common power supply circuit can be used for both V_C and V_H to fulfill the electrical requirements specified for each type of sensor.

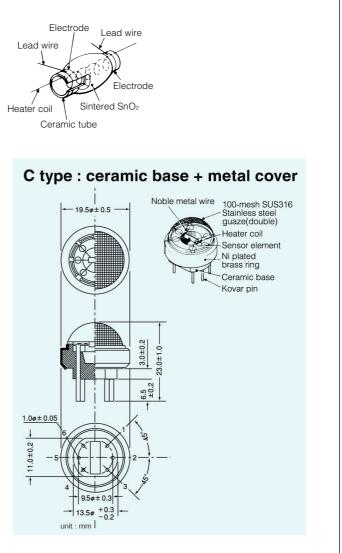
The value of $\mathsf{R}_{\scriptscriptstyle \mathsf{L}}$ can be chosen to optimize the alarm

threshold value or output voltage range for signal processing. The value of R_L should be chosen to keep the power consumption of the metal oxide semiconductor(Ps) below a limit of 15 mW. The value of Ps will be highest when the value of sensor resistance(Rs) is equal to R_L on exposure to gas. The value of Ps is calculated using the following formula:

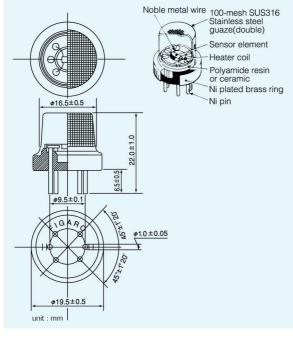
$$P_{s}{=}\frac{(V_{c}{-}V_{out})^{2}}{R_{s}}$$

1-series

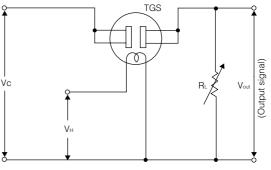

$$R_{s} = \frac{V_{c} - V_{out}}{V_{out}} \times R_{L}$$


8-series

Element structure


8-series sensors have a heater in an alumina ceramic tube on which two gold electrodes are printed, and the semiconductor material is mounted on the tube.

Structure



M type : resin base / ceramic base + metal cover

Basic measuring circuit

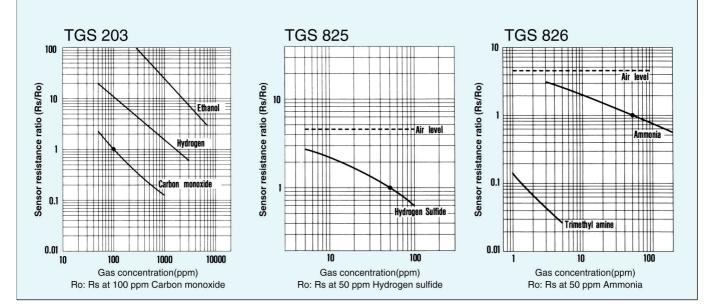
Circuit conditions

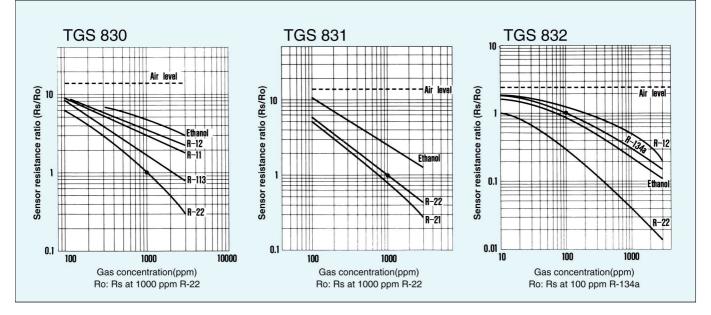
Depending on the change in the sensor resistance (Rs), output voltage across the load resistor changes (V_{out}). The relationship between Rs and V_{out} is expressed by the following equation.

$$R_{s} \!\!=\!\! \frac{V_{c} \!-\! V_{out}}{V_{out}} \!\times\! R_{L}$$

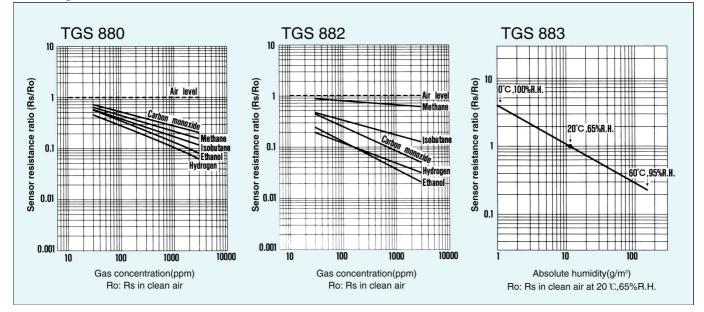
Sensitivity characteristics

The sensitivity of the Figaro Gas Sensor is defined by the relationship between gas concentration changes and sensor resistance changes. This relationship is based on a logarithmic function.

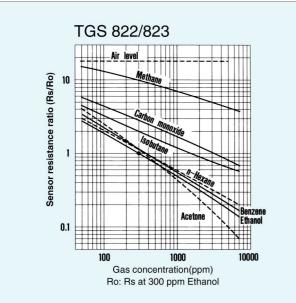

Sensitivity characteristics of Figaro sensors are shown in the following figures. In these figures, the sensor resistance

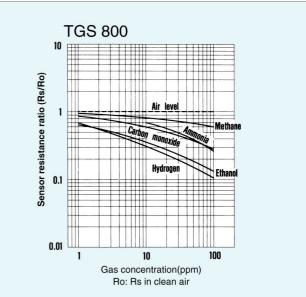

values (Rs) are normalized according to the sensor resistance at specified conditions (Ro) for each model, and the Y-axis is indicated as sensor resistance ratio: Rs/Ro. All the sensor characteristics in this catalogue represent typical characteristics.

Combustible gas detection



Toxic gas detection




Cooking control

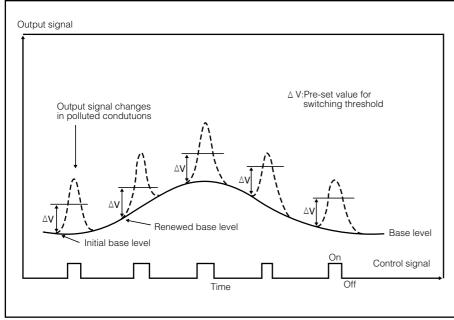
Solvent vapor detection

Air quality control

Specifications

The electrical characteristics in this table represent typical values and characteristics.

1. Target gases & Standard Circuit conditions


Model	Target gases	Typical detection	Heater voltage	Circuit voltage	Load resistance	Sensor power consumption
		ranges	Vн	Vc	R∟	Ps
TGS 813/816	Combustible gases	500ppm~ 10,000ppm	5V±0.2V(AC/DC)	≤24V(AC/DC)	Variable	≦15mW
TGS 842	Methane	500ppm~ 10,000ppm	5V±0.2V(AC/DC)	≤24V(AC/DC)	Variable	≦15mW
TGS 821	Hydrogen	30ppm~1,000ppm	5V±0.2V(AC/DC)	≤24V(AC/DC)	Variable	≦15mW
TGS 822/823	Solvent vapor	50ppm~5,000ppm	5V±0.2V(AC/DC)	≤24V(AC/DC)	Variable	≦15mW
TGS 830	R-22	100ppm~ 3,000ppm	5V±0.2V(AC/DC)	≤24V(AC/DC)	Variable	≦15mW
TGS 831	R-22,R-21	100ppm~ 3,000ppm	5V±0.2V(AC/DC)	≤24V(AC/DC)	Variable	≦15mW
TGS 832	R-134a,R-22	100ppm~ 3,000ppm	5V±0.2V(AC/DC)	≦24V(AC/DC)	Variable	≦15mW
TGS 203	Carbon monoxide	50ppm~1,000ppm	High 0.8V±0.08V (60sec)(AC/DC) Low 0.25V±0.025V (90sec)(AC/DC)	≦12V(AC/DC)	Variable	≦15mW
TGS 825	Hydrogen sulfide	5ppm~100ppm	5V±0.2V(AC/DC)	≦24V(AC/DC)	Variable	≦15mW
TGS 826	Ammonia and amine compounds	30ppm~300ppm	5V±0.2V(AC/DC)	≤24V(AC/DC)	Variable	≦15mW
TGS 880	Vaporized gases, Water vapor	10ppm~1,000ppm	5V±0.2V(AC/DC)	≦24V(AC/DC)	Variable	≦15mW
TGS 882	Alcohol vapor	50ppm~5,000ppm	5V±0.2V(AC/DC)	≦24V(AC/DC)	Variable	≦15mW
TGS 883	Water vapor	1g/m³~150g/m³	5V±0.2V(AC/DC)	≦24V(AC/DC)	Variable	≦15mW
TGS 800	Gaseous air contaminants	1ppm~30ppm	5V±0.2V(AC/DC)	≤24V(AC/DC)	Variable	≦15mW

2. Electrical characteristics

Standard test conditions : 20 $^\circ\!\!C$ $\pm2\,^\circ\!\!C$, 65% $\pm5\%$ R.H.

Model	Heater resistance at room temp	Heater current	Heater power consumption	Sensor resistance	Resistance ratio of sensor	Standard test gas
	R⊦	Ін	Рн	R₅	βγ	
TGS 813/816	30 Ω	167mA	835mW	5kΩ~15kΩ in 1,000ppm	$\beta(CH_4 \ 1,000 - 3,000) \\= 0.55 \sim 0.65$	Methane
TGS 842	30 Ω	167mA	835mW	5kΩ~20kΩ in 1,000ppm	$\beta (CH_4 \ 1,000 - 3,000) \\= 0.55 \sim 0.65$	Methane
TGS 821	38 Ω	132mA	660mW	1kΩ~10kΩ in 100ppm	β(H ₂ 100-1,000) =0.6~0.25	Hydrogen
TGS 822/823	38 Ω	132mA	660mW	1kΩ~10kΩ in 300ppm	β (EtOH 50–300) =0.3~0.5	Ethanol
TGS 830	30 Ω	167mA	835mW	1kΩ~5kΩ in 1,000ppm	$\beta(R-221,000-3,000) = 0.2\sim 0.4$	R-22
TGS 831	30 Ω	167mA	835mW	1kΩ~10kΩ in 1,000ppm	$\beta(R - 22 \ 300 - 1,000) = 0.25 \sim 0.55$	R-22
TGS 832	30 Ω	167mA	835mW	4kΩ~40kΩ in 100ppm	β(R-134a 100-300) =0.5~0.65	R-134a
TGS 203	1.9 Ω	369/133mA	295/33mW ×2	1kΩ~15kΩ in 100ppm	β(CO 100-300) =0.19~0.45	Carbon monoxide
TGS 825	38 Ω	132mA	660mW	3kΩ~30kΩ in 50ppm	β(H ₂ S 10-50) =0.3~0.6	Hydrogen sulfide
TGS 826	30 Ω	167mA	835mW	20kΩ~100kΩ in 50ppm	β(NH ₃ 50–150) =0.4~0.7	Ammonia
TGS 880	30 Ω	167mA	835mW	$20k_{\Omega} \sim 70k_{\Omega}$ in Air	β (EtOH 50-300) =0.4~0.6	Air and ethanol
TGS 882	38 Ω	132mA	660mW	$10k_{\Omega} \sim 100k_{\Omega}$ in Air	γ(EtOH 300) =0.03~0.09	Air and ethanol
TGS 883	25 Ω	200mA	1,000mW	$10k_\Omega \sim 100k_\Omega$ in Air	γ(EtOH 300) =1.00~0.71	Air and ethanol
TGS 800	38 Ω	132mA	660mW	$10k\Omega \sim 130k\Omega$ in Air	γ (H ₂ 10) =0.2~0.6	Air and hydrogen

Signal processing technique for air quality sensors

Basic diagram for air quality control system

Air quality control

Detection of low concentrations of air pollution, eg. cigarette smoke, cooking fumes, etc. is possible with the combination of TGS800 or AMS800, and exclusively designed microprocessors 93619A.

The microprocessor calculates the average value of the sensor resistance in ambient air over a certain period and renews the base level. This reduces influence from humidity, temperature and basic environmental changes. This method is effective for automatic controls in ventilation systems by detecting rapid changes in the atmosphere from the base levels.

Figaro Engineering Inc. (Figaro) reserves the right to make changes without notice to any products herein to improve reliability, functioning or design. Information contained in this document is believed to be reliable. However, Figaro does not assume any liability arising out of the application or use of any product or circuit described herein; neither does it convey any license under its patent rights, nor the rights of others.

Figaro expressly disclaims any implied warranties of merchantability, fitness for a particular purpose or use, infringement in any affirmation of fact or quality not contained herein.

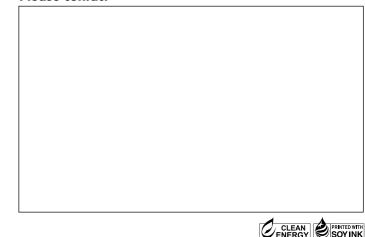
Figaro's products are not authorized for use as critical components in life support applications where in a failure or malfunction of the products may result in injury or loss of life.

FIGARO GROUP

HEAD OFFICE **FIGARO ENGINEERING INC.** 1-5-11 Senbanishi, Mino, Osaka 562-8505, Japan Tel. (81)72-728-2561

Fax. (81)72-728-0467 Email:figaro@figaro.co.jp

OVERSEAS FIGARO USA, INC. 3703 West Lake Avenue, Suite 203 Glenview, IL 60025-1266, U.S.A. Tel. (1)847-832-1701 Fax. (1)847-832-1705 Email: figarousa@figarosensor.com ISO POOI JCQA-0165


www.figarosensor.com

LIMITED WARRANTY

Figaro Engineering Inc. warrants its products to be free from defects in materials and workmanship for a period of one (1) year from the date of the original retail purchase of its products. Figaro will, at its option, either repair or replace any products returned to the factory which Figaro shall, upon inspection, determine to be defective. The foregoing shall constitute the sole remedy for any breach of Figaro's warranty.

THERE ARE NO WARRANTIES WHICH EXTEND BEYOND THE DESCRIPTION ON THE FACE HEREOF.

Please contact

