
Spartan-3A Evaluation Kit Tutorial

Creating Your First Design with the
Spartan-3A Evaluation Kit

Version 10.1.00

Spartan-3A Evaluation Kit Tutorial

 i

Revision History

Version Description Date
10.1.00 Initial release May 27, 2008

Spartan-3A Evaluation Kit Tutorial

- 1 -

Overview
If you’ve never designed with an FPGA before, or just need a refresher in using the latest Xilinx
implementation tools, then this tutorial should serve as a starting point for your exciting journey.
Creating a design in an FPGA can be as simple as a 10-minute exercise, or as complicated as
creating a complete system-on-a-chip taking several designers multiple months to complete. It
would be miss-leading to say that you can learn everything you need to know in this short 30
minute tutorial. Instead, this step-by-step guide is simply a way to become familiar with the basics
of the FPGA design process using the Xilinx ISE Foundation tools and the Spartan-3A Evaluation
board. Think of it as the hardware equivalent to that famous “Hello World” design example in
software realm.

This tutorial will take you through the entire design process of creating a very simple “blink-the-
LED” example. The steps covered are as follows:

- Creating a New Project
- Adding a New Source
- Behavioral Simulation
- Adding Timing Constraints
- Adding Pin Constraints
- Implementing the Design
- Verifying the Results
- Configuring the FPGA
- Modifying the Design
- Programming the SPI Flash

In the end you will see the results of your effort through a functioning design running on the
Spartan-3A Eval board. Everything you need to accomplish this is included in the Avnet Spartan-
3A Evaluation Kit.

To get the most from the tutorial, it is assumed that you have a basic understanding of FPGA
architectures and some knowledge of hardware design languages (HDLs). The tutorial is written
with both a VHDL and Verilog design example, although detailed knowledge of either is not
required.

Beyond this tutorial, there are numerous books and training classes available that can help you
hone your design skills. You are just beginning to scratch the surface of the very exciting field of
FPGA design. The possibilities are endless, so read on and enjoy this exciting new world.

Objectives
After completing this tutorial you should be familiar with the following:

1) An introductory design flow used in creating simple FPGA designs
2) The basics in using the Xilinx ISE Foundation tools to implement your FPGA design
3) How to use the Avnet programming utility to configure the FPGA and SPI memory

Requirements
This tutorial is written for the Avnet Spartan-3A Evaluation Kit, which contains the Xilinx ISE
Design Suite DVD, a Spartan-3A Evaluation board, a USB cable, and a downloadable FPGA

Spartan-3A Evaluation Kit Tutorial

- 2 -

programming utility called AvProg. The following sections explain the software and hardware
setup that’s required to complete the Blink LED design.

Software

You will need to have the ISE WebPACK or Foundation software installed on a Windows
compatible PC. The Installation and registration instructions are provided on the inside of the
DVD jacket. The WebPACK version of the ISE software is free and supports the Spartan-3A
FPGA family, which is what is used on the Spartan-3A Evaluation board. It’s recommended that
you install the WebPACK version for now, since it does not have the 60-day time-out limitation of
the ISE Foundation Evaluation.

You will also want to visit the Xilinx web site (www.xilinx.com/support) and download the latest
service pack. Although not required, it’s always recommended to have the latest service pack
installed to fix any potential bugs or errata that may exist.

Programming the Spartan-3A FPGA via the included USB cable, requires an Avnet developed
utility called AvProg. This Windows based application takes the implemented FPGA design file
from the ISE tool and downloads it to the FPGA through the USB cable. More details on this will
be covered in the configuration section, so for now you just need to download and install the
AvProg utility. The AvProg utility and installation instructions can be downloaded by clicking on
the Technical Support link at www.em.avnet.com/spartan3a-evl.

Hardware

Besides the Spartan-3A Evaluation board and USB cable, the only other hardware required is a
Windows compatible PC. Although the Xilinx ISE tools will also run under Linux, the AvProg
programming utility is only supported under Windows.

Setup

The Spartan-3A Evaluation board contains several jumpers that can be changed to alter the
board’s functionality. For the purpose of this tutorial, the factory default jumper settings should be
used. Before starting, verify the following jumper settings are in place.

Jumper Function Pin Setting Mode Description
JP1 Flash Write Protect Pins 1-2 Open No write protect
JP2 Power Source #1 Pins 1-2 Closed USB Power
JP3 Power-On Reset Pins 1-2 Open No Reset
JP4 Mode Pins 1-2 Open |
 Pins 3-4 Closed | Master SPI
 Pins 5-6 Closed | Mode
 Pins 7-8 Open |
JP5 FPGA Suspend Pins 2-3 Closed Disable suspend mode
JP6 External SPI Pins 1-2 Closed Disable external SPI
JP7 Power Source #2 Pins 1-2 Closed USB Power

Getting Started
In this tutorial, you will create a simple binary counter that drives the LEDs on the Spartan-3A
Evaluation board. A block diagram of the hardware features used on the board is shown below.

Spartan-3A Evaluation Kit Tutorial

- 3 -

LED 1

LED 2

LED 3

LED 4

16MHz
Clock

Push A
Switch

Spartan-3A
FPGA

D14

C16

C15

B15

C10

K3

A 16 MHz clock source will drive the counter. The Push A button will act as a counter disable,
such that when you place your finger on the Push A pad, the counter will stop counting up and
the LEDs will display the current value held. Removing your finger will start the counter. The pin
numbers shown next the FPGA will be important as you develop your design. The FPGA must
use these specific pins since they are physically connected to the input and output devices used
on the Spartan-3A Evaluation board.

So let’s get started in creating your first FPGA design. To start ISE, double-click on the ISE icon,

Or start ISE from the Start menu by selecting:

 Start All Program Xilinx ISE 10.1 Project Navigator

Creating a New Project

First, you need to setup a new project which specifies the parameters of your design and creates
a directory containing all the project files. To create a new project:

1) Select File > New Project… The New Project Wizard window appears.
2) Type blink_led in the Project Name field.
3) Verify the Project location directory is where you want your design to be created. ISE

automatically creates a blink_led directory for your project.

4) Verify that HDL is selected from the Top-level source type list.
5) Click Next.

Spartan-3A Evaluation Kit Tutorial

- 4 -

6) Fill in the properties table as shown below. For the preferred language, you can
select Verilog or VHDL.

7) Click Next.
8) The Create a new source window appears. Bypass this for now by clicking Next.
9) The Add Existing Sources window appears next. Bypass this by clicking Next.
10) A Project Summary window will appear next. Verify that your summary matches that

shown below.

Spartan-3A Evaluation Kit Tutorial

- 5 -

11) Click Finish.

ISE creates a blink_led project directory for your FPGA design and shows the targeted FPGA
device (Spartan-3A XC3S400A-4FT256).

Adding a New Source

Next you need to create a top-level “source” file that defines your design. You have the option of
creating either a VHDL or Verilog source file. Pick either the Verilog or VHDL flow and follow the
appropriate section below. Skip the other language option and continue with the Behavioral
Simulation section.

Creating a Verilog Source

Create the top-level Verilog source file for the project as follows:

1) In the Sources window, right-click on the xc3s400a-4ft256 device to pull up the menu
and select New Source…

2) Select Verilog Module as the source type in the New Source dialog box.
3) Type in the top level module name simple_count.v as shown.

Spartan-3A Evaluation Kit Tutorial

- 6 -

4) Verify the Add to project is checked.
5) Click Next
6) Enter the input and output signals for your simple_count design by completing the

port names and information as shown below. Note that the leds port is a 4-bit output
bus.

7) Click Next, then Finish.

ISE automatically creates your simple_count.v Verilog source file and displays it as a tab in the
Workspace area on the right of Project Navigator. This source file defines the module inputs and
outputs only. Your next step is to add the behavioral description of the simple_count module. If
you don’t have a lot of experience with HDLs (Verilog or VHDL), there is no need to worry. ISE

Spartan-3A Evaluation Kit Tutorial

- 7 -

contains Language Templates with many practical coding examples that you can easily use as a
starting point for creating your design.

8) Place the cursor on the line below the “); ” and left-click to place a holding spot for
adding new text.

9) Open the Language Templates by selecting Edit Language Templates…

10) Using the “+” symbol, expand the Verilog template list so that you can view the
Binary Up Counters examples as shown.

Spartan-3A Evaluation Kit Tutorial

- 8 -

11) Left-click on the first up counter that specifies a Count Enable (CE) function, and
review the example source code for this function in the window to the right.

12) Insert this source into your simple_count module by right-clicking on the /W CE

counter and selecting Use In File. The example code will be added to your source.

13) Click on the Language Template tab to again view the template window. Close the
template window by clicking the “X” in the upper right corner of the window.

Spartan-3A Evaluation Kit Tutorial

- 9 -

The template provides a starting point for your counter design. You will need to make some minor
edits to the simple_count.v file to make it specific to your design requirements.

14) Edit your simple_count.v file to match the example shown below. In general the
changes required are:

- Add module specific signal and port names
- Define an internal 4-bit register called count and initialize it to 0
- Add the “~” symbol in “if (~enable)” to denote an active low enable signal
- Assign the leds to the same value as the internal register count

15) You have now completed the top level source file for your simple count design. Save
the file by selecting File Save.

To be sure there are no errors or typos you can verify the source file by checking the syntax.

16) Verify that Implementation is selected from the drop-down list in the Sources
window.

Spartan-3A Evaluation Kit Tutorial

- 10 -

17) Select the simple_count.v design in the Sources window to display the related
processes in the Process window.

18) Click the “+” next to the Synthesize-XST process to expand the process group.
19) Double-click on the Check Syntax process.

You can check for errors in the Console tab of the Transcript window along the bottom of the
Project Navigator window. Correct any errors in your source file and repeat the Check Syntax
process.

20) A green check mark signifies that there are no errors.

21) Close the simple_count.v file.

Creating a VHDL Source

Create the top level VHDL source file for the project as follows:

1) In the Sources window, right-click on the xc3s400a-4ft256 device to pull up the menu
and select New Source…

Spartan-3A Evaluation Kit Tutorial

- 11 -

2) Select VHDL Module as the source type in the New Source dialog box.
3) Type in the module name simple_count.vhd as shown.

4) Verify the Add to project is checked.
5) Click Next
6) Enter the input and output signals for your Blink design by completing the port names

and information as shown below. Note that the leds port is a 4-bit output bus.

Spartan-3A Evaluation Kit Tutorial

- 12 -

7) Click Next, then Finish.

ISE automatically creates your simple_count.vhd VHDL source file and displays it as a tab in
the Workspace area on the right of Project Navigator. This source file defines the module inputs
and outputs only. Your next step is to add the behavioral description of the simple_count module.
If you don’t have a lot of experience with HDLs (Verilog or VHDL), there is no need to worry. ISE
contains Language Templates with many practical coding examples that you can easily use as a
starting point for creating your design.

Spartan-3A Evaluation Kit Tutorial

- 13 -

8) Place the cursor on the line below the “begin” statement and left-click to place a
holding spot for adding new text.

9) Open the Language Templates by selecting Edit Language Templates…

Spartan-3A Evaluation Kit Tutorial

- 14 -

10) Using the “+” symbol, expand the VHDL template list so that you can view the Binary

 Up Counters examples as shown.

11) Left-click on the top counter that specifies a Count Enable (CE) function, and review
the example source code for this function in the window to the right.

12) Insert this source into your simple_count module by right-clicking on the /W CE

counter and selecting Use In File. The example code will be added to your source.

Spartan-3A Evaluation Kit Tutorial

- 15 -

13) Click on the Language Template tab to again view the template window. Close the
template window by clicking the “X” in the upper right corner of the window.

The template provides a starting point for your counter design. You will need to make some minor
edits to the simple_count.vhd file to make it specific to your design requirements.

14) Edit your simple_count.vhd file to match the example shown below. In general the
changes required are:

- Add module specific signal and port names
- Define an internal 4-bit register called count and initialize it to 0
- Assign the leds to the same value as the internal register count
- Change the polarity of the enable input. When the enable switch is pressed it

outputs a “1” to the FPGA, which should disable the counter. Normally, the
enable switch is outputting a “0” which should allow the counter to count up.

Spartan-3A Evaluation Kit Tutorial

- 16 -

15) You have now completed the top level source file for your blink led design. Save the
file by selecting File Save.

To be sure there are no errors or typos, you can verify the source file by checking the syntax.

16) Verify that Implementation is selected from the drop-down list in the Sources
window.

Spartan-3A Evaluation Kit Tutorial

- 17 -

17) Select the simple_count.vhd design in the Sources window to display the related
processes in the Process window.

18) Click the “+” next to the Synthesize-XST process to expand the process group.
19) Double-click on the Check Syntax process.

You can check for errors in the Console tab of the Transcript window along the bottom of the
Project Navigator window. Correct any errors in your source file.

20) A green check mark signifies that there are no errors.

21) Close the simple_count.vhd file.

Behavioral Simulation

Simulating your design’s behavior is an important step that can save time in the long run. The ISE
WebPACK tools include a built-in simulator called ISIM. The WebPACK version of ISIM can be
used to simulate smaller designs, or you can purchase the full ISIM package as an upgrade.

To perform your simulation, you need to create a test bench. A test bench is a description of the
input waveforms or stimulus to your design, simulating what your design would see on its inputs
so you can see the resulting outputs.

Spartan-3A Evaluation Kit Tutorial

- 18 -

The following steps show you how to create a test bench waveform and run a behavioral
simulation on your simple_count top level source file.

1) Right-click on the simple_count HDL file in the sources window.
2) Create a new test bench source by selecting New Source….
3) In the New Source Wizard, select the Test Bench Waveform as the source type,

and enter simple_count_tbw in the file name field.

4) Click Next.
5) The Associated Source window shows that the source will be added to the project,

associated to the simple_count top level source file. Click Next.
6) Click Finish.

The Timing and Clock Wizard window appears next. This wizard provides an easy way to define
the 16 MHz clock that will drive the binary counter in your design. A 16 MHz clock has a period
equal to 62.5 ns. For the purpose of the behavioral simulation, you can define the clock high
period to be approximately half this time, or 31 ns. The clock low time can also be specified at 31
ns.

Inputs to the simple counter should be valid at least 10 ns prior to the clock rising edge, and
outputs from the counter should be valid within 10 ns after the rising edge of clock. These are
somewhat arbitrary values and do not have any significant effect on the behavioral simulation
results. Set the Offset to 0 since you will be using the GSR (Global Set/Reset) function for an
initial 100 ns of the simulation. For additional information on these parameters, click on the More
Info button in the lower left corner of the Clock Wizard window.

You will want to run the simulation for 2000 ns, so set the Initial Length of Test Bench to 2000 ns.

Verify that your wizard settings are the same as that shown in the example below.

Spartan-3A Evaluation Kit Tutorial

- 19 -

7) Click Finish.

A waveform display will appear showing the clock, enable, and led signals. The blue shaded
areas that precede the rising clock edge correspond to the Input setup Time (10 ns) that you set
in the Timing wizard.

8) Define the timing of the enable signal by first clicking on the enable waveform at
approximately 210 ns to toggle the enable signal high. This will disable the counter.

9) Click at 400 ns to toggle the enable low and continue the count
10) Click at 1800 ns to toggle it high.
11) Verify your waveform matches the figure below.

12) Save the waveform.
13) Verify that Behavioral Simulation and simple_count_tbw are selected in the

Sources window.

Spartan-3A Evaluation Kit Tutorial

- 20 -

14) In the processes tab, click the “+” to expand the Xilinx ISE Simulator processes and
double-click on the Simulate Behavioral Model process. This runs the simulator
using your simple_count_tbw testbench.

15) To view the simulation results, select the Simulation tab and zoom in to see the leds
count as expected.

Note: You can ignore the PERIOD, DUTY_CYCLE, and OFFSET signals.

Spartan-3A Evaluation Kit Tutorial

- 21 -

16) Close the simulation view. If you are prompted with the following message, “You
have an active simulation open. Are you sure you want to close it?”, click Yes.

Design simulation is an important step in the design process that often gets over-looked.
Spending some simulation time up front can often pay for itself in saving time during hardware
debug. For more information on the many capabilities and simulation options that ISE contains,
use the built-in ISE help information at Help > Help Topics > FPGA Design > Simulation.

Adding Timing Constraints

The ISE tools implement your design based on specific timing parameters, or constraints that you
provide it. If you do not provide ISE with any timing specifications for your design, the tool will
implement the design to the best of its ability. Often this is adequate, however, it’s better to
provide some level of timing constraints for the design so you can be sure the actual
implementation will meeting your timing needs.

For the simple_count design, there is a 16 MHz input clock, which specifies that the design
implementation must work at that clock speed or higher. To guide the ISE implementation tools
into meeting this specification, you need to provide a clock period timing constraint for the 16
MHz clock. The ISE tools provide a timing constraints editor to assist in creating these
specifications.

1) Verify that the Sources option is showing Implementation.
2) Expand the User Constraints processes by click on the “+”.
3) Double-click on the Create Timing Constraints process.

ISE runs the Synthesis and Translate steps and automatically creates a User Constraints File
(UCF). You will be prompted with the following message:

4) Click Yes to add the UCF file to your project.

Spartan-3A Evaluation Kit Tutorial

- 22 -

The simple_count.ucf file is added to your project and is visible in the Sources tab under the
top-level simple_count HDL file. The Timing Constraints Editor automatically opens as shown in
the following figure.

5) Double-click in the clock Period cell and enter 62.5 ns to define the board input clock
frequency of 16 MHz. The 50% duty cycle and other default setting are fine as shown
in the following figure.

Spartan-3A Evaluation Kit Tutorial

- 23 -

6) Note the TIMESPEC Name of TS_clock. ISE is creating a timing specification for the

clock signal such that the implementation tools will try to meet the 16 MHz speed
requirement.

7) Click OK.

8) Save your timing constraints by clicking the Save icon .
9) Close the timing constrains editor.

The clock period timing constraint is just one of many different timing constraints that you can
place on your FPGA design. For additional information on timing constraints, select Help > Help
Topics > FPGA Design > Constraints and review the topics covered in this section.

Adding Pin Constraints

Besides timing constraints, pin constrains are also very important in achieving a successful FPGA
design. In the case of the Spartan-3A Evaluation board, the I/O pins of the FPGA are already
connected to various circuits on the board. As you create your FPGA design, you need to tell the
ISE tools what pins these signals are connected to. There are several ways you can enter I/O or
pin constraints into your design UCF file. You will use the Floorplan IO – Pre-Synthesis process
in this tutorial.

For the simple_count example, there are two input signals and four output signals that require pin
constraints. They are:

LED 1

LED 2

LED 3

LED 4

16MHz
Clock

Push A
Switch

Spartan-3A
FPGA

D14

C16

C15

B15

C10

K3

Inputs:
clock Pin C10
enable Pin K3 Normally Low, goes High when pushed

Outputs:
 led 1 Pin D14 |
 led 2 Pin C16 | “1” turns LED on
 led 3 Pin C15 |
 led 4 Pin B15 |

1) In the Process window, double click on the Floorplan IO – Pre-Synthesis process.

Spartan-3A Evaluation Kit Tutorial

- 24 -

2) If a Pin Ahead message window appears, click OK.
3) The center Package view tab shows the FPGA pins with the various color and

symbol codes depending on the pin features. In the upper left window, the
Translated netlist tab shows the I/O pins contained in the simple_count design.

4) To place the input and output signals at the specified pin locations, simply select a
signal from the list in the upper left Translated window and drag it over to the correct
pin location in the Package view. Do this for all the input and output pins listed.

Note that your 16 MHz clock signal goes into one of the 16 Global Clock pins on the FPGA. Clock
input signals should connect to global clock pins to utilize the internal global clock buffers inside
the FPGA.

5) In the Design Objects tab, you should notice the addition of the pin numbers to the
LOC cells of the corresponding signals. To view more of the Design Objects window,
place your cursor along the line dividing the Design Objects tab and the Package
window. Drag the window to the right to extend the Design Objects window and
shrink the Package window.

Spartan-3A Evaluation Kit Tutorial

- 25 -

6) In addition to the pin location constraints, you will also want to define the I/O standard
that each pin should use. In the case of the Spartan-3A Evaluation board, you should
set these to LVCMOS33 as shown in the figure below. Click your cursor in the IO
Standard cell of each pin and select the LVCMOS33 option from the drop-down
menu.

7) Click the Save icon to save your I/O constraints to the UCF file.
8) Close the Package and FloorPlan tabs.
9) To verify that the timing and pin constraints are accurately added to the user

constraints file, select the simple_count.ucf file in the Sources window.
10) Double-click on the Edit Constraints (Text) option in the Process window and verify

the constraints match those shown below.

11) Close the constraints file.

Spartan-3A Evaluation Kit Tutorial

- 26 -

Implementing the Design

You are now ready to implement your design. Instead of just running the Implement Design
process, you can run the Generate Program File process instead. This will automatically run the
Implement Design processed first, and then create the programming file you will need to load into
the FPGA.

Because the Spartan-3A Evaluation kit uses a separate low cost USB cable and the AvProg
programming utility to program the FPGA, you should not run the Configure Target Device
process. If you happen to have a special Xilinx USB JTAG that connects to the J5 header on the
Spartan-3A board, then you could run this process.

1) Double-click on the Generate Programming File process to implement your design.

Verifying the Results

Once your design has been implemented, you will want to verify the completed results to make
sure the timing and I/O constraints where met and to get a feel for the FPGA design resources
required.

1) Double-click on the View Design Summary process to view the implementation
results.

Spartan-3A Evaluation Kit Tutorial

- 27 -

2) This will bring up the Design Summary window as shown below.

3) In the upper right section of the Project Status, you can quickly get a feel for the
implementation results by seeing there were no Errors or Warnings, all signals
routed, and the timing constraints were met.

4) In the Device Utilization Summary section you can see that the design required 4 flip-
flops, 6 I/Os, and 1 BUFGMUX. It is always a good sanity check to compare this with
what you think the design should be.

5) In the FPGA Design Summary window along the left of the window, click on the
Static Timing Report under the Detailed Reports section. If you scroll to the bottom
of this report, you should see something similar to what is shown below. All timing
constraints should be met and the maximum clock frequency for the design should be
something much greater than the specified 16 MHz.

Spartan-3A Evaluation Kit Tutorial

- 28 -

6) Next, click on the Pinout Report and verify that the I/O assignments are what you
specified.

Spartan-3A Evaluation Kit Tutorial

- 29 -

As you can see from the Design Summary window, there is an abundance of information
available for the implemented design. For this simple design example, there is not much need to
explore them all in detail. However, if you have a design that is not working, they can prove
invaluable in helping to debug a problem.

7) Close the Design Summary window when you are done reviewing the different
design reports.

Configuring the FPGA

The output of the Generate Programming File process is a configuration file, or a bit file. For the
simple_count design, the ISE tools created a simple_count.bit file that you will use to configure
the FPGA.

Since the Spartan-3A Evaluation board has its own FPGA programming capability built-in, you
will use the Avnet utility called AvProg to program the FPGA with the simple_count.bit file
created in ISE.

1) Be sure the board jumper settings are as specified in the Hardware setup section of
this tutorial.

2) Connect the USB cable to the Spartan-3A Evaluation board (Connector P1) and then
connect to the USB port of your PC.

3) As a minimum, the 5V power LED (D1) should illuminate.
4) Start the AvProg programming utility with Start > All Programs > Avnet > AvProg.

Spartan-3A Evaluation Kit Tutorial

- 30 -

5) Click the Connect to COMx button to establish a communications link between
AvProg and the Spartan-3A board. The actual COM port number can vary depending
on how Windows assigns the USB port to a specific serial port. AvProg automatically
detects the correct COM port number assigned to the Spartan-3A Evaluation board.

6) Click on the Browse button to select the simple_count.bit file from your design.
Browse to the directory of our ISE project and select the bit file.

7) AvProg reads the bit file and displays the FPGA information contained in the bit file
under the Device window. Verify that this is the 3s400aft256.

8) Click the Configure Device button to program the FPGA.
9) Click Yes when asked if the bit file is for the 3s400aft256 device.
10) AvProg will download the simple_count.bit file to the FPGA and once configured the

blue LED should turn on, signifying that the FPGA is configured. The Receive
Console window should display “FPGA programmed successfully!” message when
complete.

11) The four LEDs should be counting. However, since the counter is running at 16 MHz,
the LEDs are actually toggling so fast, that you cannot see the counting and they all
appear as if they are on.

12) Place you finger on the Push_A CapSense switch. The LEDs should stop counting
and hold a fixed value. Release your finger and then press again. The value should
change. Given the high speed of the counter, your random stops of the counter are
all you can expect.

Obviously, having the LEDs display the counter values at a 16 MHz rate is not very practical. It
would be better if we could slow this down to something that the human eye could perceive. An
easy way to do this is to increase the counter size to something like a 26-bit counter, and connect
the LEDs to the upper 4-bits of this counter. A quick modification to the design should fix the
problem.

Modifying the Design

1) From the Sources window in ISE, double-click on the top level simple_count HDL
file.

2) Modify the source code to increase the counter registers from 4-bits to 26-bits. The
examples below show the code changes for both the VHDL and Verilog versions.

Spartan-3A Evaluation Kit Tutorial

- 31 -

VHDL Modifications

Verilog Modifications

3) Click the Save button.

In Spartan-3A FPGAs, it is possible to compress the bit file to reduce the size. This is useful when
you are storing the bit file in some external configuration memory since you will not need as much
storage space for the FPGA configuration data. To see the size of the previous simple_count.bit
file, browse the ISE design directory using Windows Explorer and note the file size. It should be
about 200K bytes.

4) To compress the bit stream, right-click on the Generate Programming File and
select Properties.

5) Click on the Enable Bit Stream Compression value to select it.

Spartan-3A Evaluation Kit Tutorial

- 32 -

6) Click OK.
7) Double-click on the Generate Programming File to re-compile the design.
8) When completed, go back to AvProg, re-select the new simple_count.bit file and

press the Configure FPGA button.
9) The new design should now show the counting LEDs at a much slower rate.
10) Notice that the configuration download from AvProg was significantly faster. Browse

to the design directory using Windows Explorer and note the files size of the
compressed simple_count.bit file. It’s about 7x smaller (~30KB).

Programming the SPI Flash

The Spartan-3A Evaluation board contains a 128 Mbit Spansion SPI Flash memory that can be
used to store a FPGA bit file. With the SPI memory programmed, that FPGA will configure itself
on power-up, assuming the MODE jumpers are set for Master SPI mode.

Your final step in the tutorial will be to program the Spansion SPI memory and verify that the
FPGA can configure from it.

1) From AvProg, select Mode > Program SPI Flash from the menu items along the top
bar.

2) Browse to the same simple_count.bit file you used in the last step. Note the file size
is displayed in the Bytes to Write/Read cell.

3) Select the Spansion avt_s25fl128p_64kb SPI from the Flash Device drop down
menu.

Spartan-3A Evaluation Kit Tutorial

- 33 -

4) If you are not sure if the SPI memory is erased or not, be safe and click on the Bulk
Erase button to erase the SPI flash.

5) Once the SPI is erased, click the Program button.
6) When the SPI Flash is done being programmed, close AvProg, unplug the USB cable

from the PC, then plug the cable back in.
7) On power-up, the FPGA should configure itself from the Spansion SPI memory and

your simple_count design should be functioning.

You have now successfully completed your first design for the Spartan-3A Evaluation kit. There is
much more to learn and explore, and the Help menu in ISE is a great place to start. You will also
see there are many more features and ways of doing things than what was shown in this tutorial.
As you become more familiar with the tools, you will likely find your preferences. In addition, there
are other reference designs and tutorials available for this board through the Avnet Reference
Design Center at www.em.avnet.com/spartan3a-evl.

