Spartan-3A Evaluation Kit Tutorial

Creating Your First Design with the
Spartan-3A Evaluation Kit

Version 10.1.00

==AVNET

nﬂ

Spartan-3A Evaluation Kit Tutorial

Revision History

Version

Description

Date

10.1.00

Initial release

May 27, 2008

ll

==AVNET

ml

Spartan-3A Evaluation Kit Tutorial

Overview

If you've never designed with an FPGA before, or just need a refresher in using the latest Xilinx
implementation tools, then this tutorial should serve as a starting point for your exciting journey.
Creating a design in an FPGA can be as simple as a 10-minute exercise, or as complicated as
creating a complete system-on-a-chip taking several designers multiple months to complete. It
would be miss-leading to say that you can learn everything you need to know in this short 30
minute tutorial. Instead, this step-by-step guide is simply a way to become familiar with the basics
of the FPGA design process using the Xilinx ISE Foundation tools and the Spartan-3A Evaluation
board. Think of it as the hardware equivalent to that famous “Hello World” design example in
software realm.

This tutorial will take you through the entire design process of creating a very simple “blink-the-
LED” example. The steps covered are as follows:

- Creating a New Project

- Adding a New Source

- Behavioral Simulation

- Adding Timing Constraints
- Adding Pin Constraints

- Implementing the Design

- Verifying the Results

- Configuring the FPGA

- Modifying the Design

- Programming the SPI Flash

In the end you will see the results of your effort through a functioning design running on the
Spartan-3A Eval board. Everything you need to accomplish this is included in the Avnet Spartan-
3A Evaluation Kit.

To get the most from the tutorial, it is assumed that you have a basic understanding of FPGA
architectures and some knowledge of hardware design languages (HDLs). The tutorial is written
with both a VHDL and Verilog design example, although detailed knowledge of either is not
required.

Beyond this tutorial, there are numerous books and training classes available that can help you

hone your design skills. You are just beginning to scratch the surface of the very exciting field of
FPGA design. The possibilities are endless, so read on and enjoy this exciting new world.

Objectives

After completing this tutorial you should be familiar with the following:
1) Anintroductory design flow used in creating simple FPGA designs

2) The basics in using the Xilinx ISE Foundation tools to implement your FPGA design
3) How to use the Avnet programming utility to configure the FPGA and SPI memory

Requirements

This tutorial is written for the Avnet Spartan-3A Evaluation Kit, which contains the Xilinx ISE
Design Suite DVD, a Spartan-3A Evaluation board, a USB cable, and a downloadable FPGA

SoavNET

ml

Spartan-3A Evaluation Kit Tutorial

programming utility called AvProg. The following sections explain the software and hardware
setup that's required to complete the Blink LED design.

Software

You will need to have the ISE WebPACK or Foundation software installed on a Windows
compatible PC. The Installation and registration instructions are provided on the inside of the
DVD jacket. The WebPACK version of the ISE software is free and supports the Spartan-3A
FPGA family, which is what is used on the Spartan-3A Evaluation board. It's recommended that
you install the WebPACK version for now, since it does not have the 60-day time-out limitation of
the ISE Foundation Evaluation.

You will also want to visit the Xilinx web site (www.xilinx.com/support) and download the latest
service pack. Although not required, it's always recommended to have the latest service pack
installed to fix any potential bugs or errata that may exist.

Programming the Spartan-3A FPGA via the included USB cable, requires an Avnet developed
utility called AvProg. This Windows based application takes the implemented FPGA design file
from the ISE tool and downloads it to the FPGA through the USB cable. More details on this will
be covered in the configuration section, so for now you just need to download and install the
AvProg utility. The AvProg utility and installation instructions can be downloaded by clicking on
the Technical Support link at www.em.avnet.com/spartan3a-evl.

Hardware

Besides the Spartan-3A Evaluation board and USB cable, the only other hardware required is a
Windows compatible PC. Although the Xilinx ISE tools will also run under Linux, the AvProg
programming utility is only supported under Windows.

Setup

The Spartan-3A Evaluation board contains several jumpers that can be changed to alter the
board’s functionality. For the purpose of this tutorial, the factory default jumper settings should be
used. Before starting, verify the following jumper settings are in place.

Jumper Function Pin Setting Mode Description
JP1 Flash Write Protect Pins 1-2 Open No write protect
JpP2 Power Source #1 Pins 1-2 Closed USB Power
JP3 Power-On Reset Pins 1-2 Open No Reset
JP4 Mode Pins 1-2 Open |
Pins 3-4 Closed | > Master SPI
Pins 5-6 Closed | Mode
Pins 7-8 Open |
JP5 FPGA Suspend Pins 2-3 Closed Disable suspend mode
JP6 External SPI Pins 1-2 Closed Disable external SPI
JP7 Power Source #2 Pins 1-2 Closed USB Power

Getting Started

In this tutorial, you will create a simple binary counter that drives the LEDs on the Spartan-3A
Evaluation board. A block diagram of the hardware features used on the board is shown below.

Sommer

Spartan-3A Evaluation Kit Tutorial

LED 1
LED 2
Spartan-3A
FPGA
LED 3
LED 4

A 16 MHz clock source will drive the counter. The Push A button will act as a counter disable,
such that when you place your finger on the Push A pad, the counter will stop counting up and
the LEDs will display the current value held. Removing your finger will start the counter. The pin
numbers shown next the FPGA will be important as you develop your design. The FPGA must
use these specific pins since they are physically connected to the input and output devices used
on the Spartan-3A Evaluation board.

So let’s get started in creating your first FPGA design. To start ISE, double-click on the ISE icon,

Kilinx ISE
0.1

Or start ISE from the Start menu by selecting:

Start - All Program - Xilinx ISE 10.1 - Project Navigator

Creating a New Project

First, you need to setup a new project which specifies the parameters of your design and creates
a directory containing all the project files. To create a new project:

1) Select File > New Project... The New Project Wizard window appears.

2) Type blink_led in the Project Name field.

3) Verify the Project location directory is where you want your design to be created. ISE
automatically creates a blink_led directory for your project.

[ES New Project Wizard - Create New Project x|

—Enter a name and location for the project

Project name: Project location

Iblink_led Cadliree_designs's3aevalblink_led |

— Select the type of topdevel source for the project

Topevel source type:

| HOL =

4) Verify that HDL is selected from the Top-level source type list.
5) Click Next.

SoavNET

Spartan-3A Evaluation Kit Tutorial

6) Fill in the properties table as shown below. For the preferred language, you can
select Verilog or VHDL.

E New Project Wizard - Device Properties i[

—Select the device and deszign flow for the project

Property Mame Walue

Product Categary Al |-
Family Spartan3d and Spartan3aM é
Device 354008 =
Package FTZ56 |-
Speed -4 |-
Top-Level Source Type HDL LI
Synthesziz Tool #5T WHDLM erilog) LI
Sirnulatar ISE Simulatar [WHDLAYerilog) 3
Prefered Language Werlog ;l
Enable Enhanced Design Summary [V

Enable Meszage Filtering —

Digplay Incremental Meszages —

More Info | < Back | MHext > I Cancel |

7) Click Next.

8) The Create a new source window appears. Bypass this for now by clicking Next.

9) The Add Existing Sources window appears next. Bypass this by clicking Next.

10) A Project Summary window will appear next. Verify that your summary matches that
shown below.

E New Project Wizard - Project Summary x|

Project Mavigator will create a new project with the following specifications:

Project:
Project Name: blink led
Project Path: C:ixilinx designsis3aevaliblink led
Top Lewvel Source Type: HDL

Device:
Dewvice Family: Spartandl and Spartand il
Device: xois400a
Package: fr2he
Speed: -4

Jynthesis Tool: XST (VHDL/Verilog)
Fimulator: ISE Simulator (VHDL/Verilog)
Preferred Language: Verilog

Enhanced Design Swmnary: enabled
HMessage Filtering: dissbled
Lisplay Incremental Messages: disabled

< Back | Finigh I Cancel

== eclectranics marketing -4-

Spartan-3A Evaluation Kit Tutorial

11) Click Finish.

ISE creates a blink_led project directory for your FPGA design and shows the targeted FPGA
device (Spartan-3A XC3S400A-4FT256).

Adding a New Source

Next you need to create a top-level “source” file that defines your design. You have the option of
creating either a VHDL or Verilog source file. Pick either the Verilog or VHDL flow and follow the
appropriate section below. Skip the other language option and continue with the Behavioral
Simulation section.

Creating a Verilog Source

Create the top-level Verilog source file for the project as follows:

1) In the Sources window, right-click on the xc3s400a-4ft256 device to pull up the menu
and select New Source...

g Xilinx - ISE - C:\xilin_designs' s3aeval'blink_led'blink_led.ise

File Edit Wiew Project Source Process ‘Window Help

IRELE AR IEEEEE S
x|

Saources far: I Implementatian ;I

-] blink_led
=

Add Source...

Add Copy of Source...

Toggle Paths
Propetties. .

B3 Sources |IE Files]&q Shapshots] E Libraries]
S|

Froceszes for xc3:4005-4ft256 I
[Add Existing Source
[Create Mew Source

ﬁ Dresign Utilities

2) Select Verilog Module as the source type in the New Source dialog box.
3) Type in the top level module name simple_count.v as shown.

=== clectronics morketing

Spartan-3A Evaluation Kit Tutorial

E New Source Wizard - Select Source Type |

J IP [CORE Generator & Architecture \wizard)
] Schematic

Eile narne;

Isimple_count. %

Location:

IE:'\:4iIin:-t_designs'\sSaevaI\innk_led . |

r|'WHDL Package
| WHOL Test Bench
| Embedded Processor

v Add to project
Mare Info | < Back | MHewt » I Cancel

4) Verify the Add to project is checked.

5) Click Next

6) Enter the input and output signals for your simple_count design by completing the
port names and information as shown below. Note that the leds port is a 4-bit output

bus.
E New Source Wizard - Define Module |
tadule name |simple_count
Port Hame Direction M5B LSE =
clock, input
enable inpLt
ledz output 3 0
| inpuit
input
inpLt
inpLt
input
input
inpLt
input _I
-
HMaore Info | ¢ Back | Mest » I Cancel |

7) Click Next, then Finish.

ISE automatically creates your simple_count.v Verilog source file and displays it as a tab in the
Workspace area on the right of Project Navigator. This source file defines the module inputs and
outputs only. Your next step is to add the behavioral description of the simple_count module. If
you don’t have a lot of experience with HDLs (Verilog or VHDL), there is no need to worry. ISE

Spartan-3A Evaluation Kit Tutorial

contains Language Templates with many practical coding examples that you can easily use as a
starting point for creating your design.

il
File Edit ‘iew window
[EERFEEET HLLHXHEPR[EE|_ 22 [4%% %>
1 |‘timescale ins / 1ps ;I
R NN
3 /) Cowpany:
4 // Engineer:
5 A/
6 // Create Date: 17:40:48 05/12/72008
7 // Design Name:
g8 /4 Module Name: Simple count

9 // Project Name:
i0 // Target Devices:
11 // Tool wversions:
iz // Description:

13 A/
14 // Dependencies:
15 S/

16 // Revision:

17 /¢ Bewvision 0.01 - File Created

18 // Additional Comments:

19 //

=L R RN

21 module simple count |

22 input clock,

23 input enable,

24 output [3:0] leds
25 1z

26

27

28 endmodule

z9

=
1 | »

[caPs [UM | SCRUTLOC [Verilog 4

8) Place the cursor on the line below the *); ” and left-click to place a holding spot for
adding new text.
9) Open the Language Templates by selecting Edit > Language Templates...

| E Xilinxt - ISE - C:\palinoc_designs\s3aeval\bli
J File | Edit View Project Source Process Wir

[ID) F & Undo Ciri+Z F
—— ¥ Redo Cirl+ E
Sources g Cut Ctrl+x N
B) copy Ctri+C 1
E"E‘?:@ Paste Cirl+y,
x Delete
{y End... Ctrl+F
Find Next F3
4 Find In Files...
B So—
Replace. .. Cirl+H =
: Comment 3 f

10) Using the “+” symbol, expand the Verilog template list so that you can view the
Binary - Up Counters examples as shown.

AVNET

electranics marketing -7-

Spartan-3A Evaluation Kit Tutorial

E-E3verilog

#l- (771 Common Constiucts
[Device Macro Instaritiation

[Device Primitive Instantiation
[+ (27 Simulation Constructs

EIS Synthesis Constructs

-7 Ay

- [Attributes

=-£3 Coding Eramples

-- [Accumulators

" [Avrithmetic:

-- [Basic Gates

- (27 Bi-dvestional 1/0

-- (17 Comparators

Ea Counters

=-E3 Binary

[(7] Diown Counters
E'S dp Cou

nters
w CE
A CE and Async Active High Reset
Aw CE and dsync Active Low Reset
-|T] A CE and Sync Active High Reset
Aw CE and Sync Active Low Reset

11) Left-click on the first up counter that specifies a Count Enable (CE) function, and
review the example source code for this function in the window to the right.

reg [<upper>:0] <reg hames;

always @ (posedge <clock:)
if (<clock ensblex)

<reg namer <= <reg name> + 1;

12) Insert this source into your simple_count module by right-clicking on the /W CE
counter and selecting Use In File. The example code will be added to your source.

B3 Counters

=~ 9 Binary

-- [Diown Counters
EHE

Up Counters

CE

[Usein File

Aw CE and Async Active Low Reset
Aw CE and Spnc Active High Reset
i [T] Aw CE and Sync Active Low Resel

13) Click on the Language Template tab to again view the template window. Close the
template window by clicking the “X” in the upper right corner of the window.

[

AVNET

T -8-

Spartan-3A Evaluation Kit Tutorial

1o xil
=1€lx
} £ %5 K |

The template provides a starting point for your counter design. You will need to make some minor
edits to the simple_count.v file to make it specific to your design requirements.

14) Edit your simple_count.v file to match the example shown below. In general the

changes required are:

Add module specific signal and port names

Define an internal 4-bit register called count and initialize it to O

Add the “~" symbol in “i ¥ (~enable)” to denote an active low enable signal
- Assign the leds to the same value as the internal register count

o =] o N L Ry

Create Date: 11:02:16e 05/18/2008
/ Design Name:

/ Module Name: simple count
Project Name:

Target Devices:

Tool wersions:
Description:

Dependencies:

Revision:
o ~

Revision 0.01 - File Created
Additional Comments:

module simple count |
input clock,
input enable,
output [3:0] leds
)i

reg [3:0] count = 0O;
always @ (posedge clock)
if (~enable)
count <= count + 1;

assign leds[3:0] = count[3:0]:

endmodule

15) You have now completed the top level source file for your simple count design. Save
the file by selecting File > Save.

To be sure there are no errors or typos you can verify the source file by checking the syntax.

16) Verify that Implementation is selected from the drop-down list in the Sources
window.

Spartan-3A Evaluation Kit Tutorial

17) Select the simple_count.v design in the Sources window to display the related
processes in the Process window.

18) Click the “+" next to the Synthesize-XST process to expand the process group.

19) Double-click on the Check Syntax process.

E Xilinx - ISE - C:'xilinx_designs‘s3aeval'blink_led’

File Edit View Project Source Process ‘Window Help

EEEEIEEEEEIE)
x|

Sources for: I Implenertation LI
b &1 blirk_led
- €73 wo3e400a-41t255
ﬁmﬁsimple_count [simple_caount.w)]

g Sources ||u_“| Files Im Shapshots I [Libraries I
=

Frocesses for: simple_count
- Add Existing Source
- Create Mew Source

- Wiew Design Summary
B-3F Desian Utiities
-3 User Corstraints
E-Pd Spnthesize - ®5T
Wiew Synthesis Report

£
[E] viewRTL Schematic

&

..
You can check for errors in the Console tab of the Transcript window along the bottom of the
Project Navigator window. Correct any errors in your source file and repeat the Check Syntax
process.

20) A green check mark signifies that there are no errors.

- P Check Syntax

21) Close the simple_count.v file.

Creating a VHDL Source

Create the top level VHDL source file for the project as follows:

1) Inthe Sources window, right-click on the xc3s400a-4ft256 device to pull up the menu
and select New Source...

-10 -

Spartan-3A Evaluation Kit Tutorial

= Xilinx - ISE - C:\ wilink_designs' s3aeval'blink_led'blink_led.ise

File Edit Wiew Projectk Source Process Window Help

IDPEHE &R X wa|R]22X:
x|

Sources for; I |mplementation ;I

- (5] blink_led

Add Source..,

Add Copy of Source. ..

Toggle Paths
Properties. ..

B3 Sources ||E Files Iﬁ Snapzhats I E Libraries I
|

Frocesses for: #c3z400a-4ft256 I
[Add Existing Sounce

-1 Create Mew Source

W% Design Ltiities

2) Select VHDL Module as the source type in the New Source dialog box.
3) Type in the module name simple_count.vhd as shown.

E= New Source Wizard - Select Source Type x|

L IP [CORE Generator & Architecture YWwWizard)
&) Schematic

File name:

Isimple_cu:nunt.\-'hd

Location:

7| WVHOL Pack
HDL T::t ggﬁch [vsiin_designsts3aevaliblink,_led |
| Embedded Processar

[Addto project

Mare Info | ¢ Back | Mext » I Cancel

4) Verify the Add to project is checked.

5) Click Next

6) Enter the input and output signals for your Blink design by completing the port names
and information as shown below. Note that the leds port is a 4-bit output bus.

AVNET

=== clectronics morketing -11-

Spartan-3A Evaluation Kit Tutorial

E MNew Source Wizard - Define Module |

Entity name Isimple_count

Architecture name IBehavioraI

Part Hame [Dhrechion M5B L5B =
clock in
ehable in
leds oLt 3 0
in
in
in
in
in —
in
i |

More Info | < Back | Hewt » I Cancel |

7) Click Next, then Finish.

ISE automatically creates your simple_count.vhd VHDL source file and displays it as a tab in
the Workspace area on the right of Project Navigator. This source file defines the module inputs
and outputs only. Your next step is to add the behavioral description of the simple_count module.
If you don’t have a lot of experience with HDLs (Verilog or VHDL), there is no need to worry. ISE
contains Language Templates with many practical coding examples that you can easily use as a
starting point for creating your design.

==AVNET

=—— eclectronics marketing -12 -

Spartan-3A Evaluation Kit Tutorial

1 __
= —— Company:

3 —— Engineer:

4 J—

5 —- Create Date: 21l:16:19 0O5/25/2008

) —— Design MName:

¥ —- Module Name: Zimple count - Behavioral
38 —— Project MName:

2l —— Target Devices:

10 —— Tool wersions:

11 —— Description:

1z ==

13 —— Dependencies:

14 ==

15 —— Rewvision:

16 —-— BRewision 0.01 - File Created

17 —— Additional Comments:

15 ==

B —
20 library IEEE:

21 use IEEE.STD LOGIC 1164.ALL:

22 use IEEE.STD_LOGIC ARITH.ALL:

&3 use IEEE.3TD LOGIC UNIIGNED.ALL:

24

25 ———— Uncomment the following library declaration if instantiating
26 ———— any Xilinx primitives in this code.

27 ——library UNISIN;

28 ——use MNISIM.VComponents.all;

29

30 enticy sSimple count is

31 Fort [elock @ in STD_LOGIC;

3z enable : in 3TD LOGIC:

33 leds : out STD_LOGIC VECTOR (3 downto 0)):
34 end simple count;

35

36 architecture Behavioral of simple count is
3

35 hegin

39

40 end EBehavioral:

41

4z

8) Place the cursor on the line below the “begin” statement and left-click to place a
holding spot for adding new text.
9) Open the Language Templates by selecting Edit 2 Language Templates...

| E Xilinoxc - ISE - C:\xilim:_designs\s3aeval)bli
1 File | Edit View Project Source Process Wir

”D 7 & Undo Cirl+Z E
— @ Redo CHri+Y »
Sources g Cut Ctrl+% B
Copy Ctrl+C 1
Paste Cirl +v
Delete
Find... Cirl+F
Find Mext F3
% Find In Files...
]
g 5o -
Replace... Ctrl+H —
: Comment 3 f

-13 -

Spartan-3A Evaluation Kit Tutorial

10) Using the “+” symbol, expand the VHDL template list so that you can view the Binary
- Up Counters examples as shown.

- EVHDL

- (7] Common Constructs

-- [Dewvice Macro Instantiation

-- [FIDevice Primitive |nstantiatiorn

-- (27 Simulation Constructs

EI'S Synthesiz Constructs
G- [C1 Assartions & Functions
-- [isttributes
EIS Coding Examples
-- [Accumulators
-- [Arithrmetic
-- [Basic Gates
- [0 Bi-directional 120
-- [7 Comparators
-3 Counters
=13 Binary
-- [Down Counters
E'S Up Counters

= By A CE

A CE and Asvnc Active High Reset
A CE and Ssync Active Low Reset
A CE and Sync Active High Reset

11) Left-click on the top counter that specifies a Count Enable (CE) function, and review
the example source code for this function in the window to the right.

process (<o lock:)
bhegin
if <oclocks='_' snd <clock:>'ewvent then
if <olack enshlex='1!' then
<cnunt; <= <count> + 1:
end if:
enc if:
end process;

12) Insert this source into your simple_count module by right-clicking on the /W CE
counter and selecting Use In File. The example code will be added to your source.

=125 Counters

B3 Binary

G- [Down Counters

ES Up Counters

Mﬂ L Use in file F
[T] A CE and Ay (G k

Aw CE and Async Active Low Reset
fw CE and Sync Active High Feset
& |T] fw CE and Sync Active Low Reset

[

AVNET

-14 -

Spartan-3A Evaluation Kit Tutorial

13) Click on the Language Template tab to again view the template window. Close the
template window by clicking the “X” in the upper right corner of the window.

o) 1l
=141 x|

The template provides a starting point for your counter design. You will need to make some minor
edits to the simple_count.vhd file to make it specific to your design requirements.

o e

14) Edit your simple_count.vhd file to match the example shown below. In general the
changes required are:

- Add module specific signal and port names

- Define an internal 4-bit register called count and initialize it to O

- Assign the leds to the same value as the internal register count

- Change the polarity of the enable input. When the enable switch is pressed it
outputs a “1” to the FPGA, which should disable the counter. Normally, the
enable switch is outputting a “0” which should allow the counter to count up.

-15-

Spartan-3A Evaluation Kit Tutorial

5 —- Create Date: 21:16:19 05/25/2008

3 -— Design MNawme:

7 —— Module Nagoe: gimple count - Behavioral
g —-— Project HName:

=] —-—- Target Devices:

10 —-— Tool wersions:

11 —-— Description:

12 -

13 —-— Dependencies:

14 ——

15 —-— BRewvision:

16 —-— Bevision 0.01 - File Created

17 —-— ALdditional Comments:

18 -

iz -—

20 library IEEE;

21 use IEEE.3TD LOGIC 1164.ALL:

22 use IEEE.3TD LOGIC ARITH. ALL:

23 use IEEE.3TD LOGIC UNIIGHNED.ALL;

24

25 ———— Uncomwent the following library declaration if instantiating
26 ———— any Xilinx® primitiwves in this code.

27 ——library UMNIZIN;

28 ——use UNISIM.VComponents.all;

29

30 entity simple count is

31 Fort [clock @ in STD_LOGIC;

32 ensble : in STD LOGIC:

33 leds : out ETD_LOGIC VECTOR (3 downto O)):
34 end simple count;

35

36 architecture Behavioral of simple count is

37

38 Signal count: std logic wvector (3 downto 0) = "00007;
39

40 hegin

41 process [(clock)

42 hegin

43 if clock='1' and clock'ewvent then

44 if enable='0' then

45 count <= count + 1;

46 end if:

47 end if:

45 end process;

49

=1n] leds <= count i3 downto 0);

51

52 end Behawvioral;

15) You have now completed the top level source file for your blink led design. Save the
file by selecting File - Save.

To be sure there are no errors or typos, you can verify the source file by checking the syntax.

16) Verify that Implementation is selected from the drop-down list in the Sources
window.

-16 -

Spartan-3A Evaluation Kit Tutorial

17) Select the simple_count.vhd design in the Sources window to display the related
processes in the Process window.

18) Click the “+" next to the Synthesize-XST process to expand the process group.

19) Double-click on the Check Syntax process.

E Xilinx - ISE - C:x®ilink_designs's3aeval’blink_led'bli

m File Edit Miew Project Source Process ‘Window Help
IREET: IEFEEEIEE]
Jes|[— 22428 0%

x
Sources for:l Implementation LI
i] blink_led
- £3 #c3:4005-41256
simple_count - Behavioral [zimple_count. vhd)

E Sources |1H_LI File:s ITH Snapshats I [Libraries I
S

Proceszes for: simple_count - Behavioral
- Add Existing Source
- Create Mew Source

- 8 Wiew Design Summary
B3 Design Utilties
[]"ﬁ Ulzer Canstraints
E-f2 Sunthesize - 5T
Wiew Synthesiz Report
Wiew RTL Schematic
Wiew Technology Schematic

Check Syntax

D

You can check for errors in the Console tab of the Transcript window along the bottom of the
Project Navigator window. Correct any errors in your source file.

20) A green check mark signifies that there are no errors.
- B ED Check Syntax

21) Close the simple_count.vhd file.

Behavioral Simulation

Simulating your design’s behavior is an important step that can save time in the long run. The ISE
WebPACK tools include a built-in simulator called ISIM. The WebPACK version of ISIM can be
used to simulate smaller designs, or you can purchase the full ISIM package as an upgrade.

To perform your simulation, you need to create a test bench. A test bench is a description of the
input waveforms or stimulus to your design, simulating what your design would see on its inputs
S0 you can see the resulting outputs.

-17 -

Spartan-3A Evaluation Kit Tutorial

The following steps show you how to create a test bench waveform and run a behavioral
simulation on your simple_count top level source file.

1) Right-click on the simple_count HDL file in the sources window.

2) Create a new test bench source by selecting New Source....

3) Inthe New Source Wizard, select the Test Bench Waveform as the source type,
and enter simple_count_tbw in the file name field.

[EE New Source Wizard - Select Source Type x|
EMM File

C{‘ ChipScope Definition and Connection File
P [CORE Generator & Architecture \Wizard)

| MEM File
"c | Implemerntation Constraints File
| Schematic File name:
<% State Diagram -
BN T ext Bench i avefom IS"T'I:'lE—':':'"’Ir"t—“:"""‘I
Location:
IE:'\:-:iIin:-:_designs‘\ﬂaeval\blink_led |

F|%HDL Package
| YHOL Test Bench
¥ | Embedded Processar

[&dd to project

More Info | 4 Back | Meut » I Cancel

4) Click Next.
5) The Associated Source window shows that the source will be added to the project,

associated to the simple_count top level source file. Click Next.
6) Click Finish.

The Timing and Clock Wizard window appears next. This wizard provides an easy way to define
the 16 MHz clock that will drive the binary counter in your design. A 16 MHz clock has a period
equal to 62.5 ns. For the purpose of the behavioral simulation, you can define the clock high
period to be approximately half this time, or 31 ns. The clock low time can also be specified at 31
ns.

Inputs to the simple counter should be valid at least 10 ns prior to the clock rising edge, and
outputs from the counter should be valid within 10 ns after the rising edge of clock. These are
somewhat arbitrary values and do not have any significant effect on the behavioral simulation
results. Set the Offset to 0 since you will be using the GSR (Global Set/Reset) function for an
initial 100 ns of the simulation. For additional information on these parameters, click on the More
Info button in the lower left corner of the Clock Wizard window.

You will want to run the simulation for 2000 ns, so set the Initial Length of Test Bench to 2000 ns.

Verify that your wizard settings are the same as that shown in the example below.

-18 -

Spartan-3A Evaluation Kit Tutorial

E Initial Timing and Clock Wizard - Initialize Timing x|

Ml airmnurm
autput delay‘i

_ Clock —— Clock -

high for lawy for
—Clock Timing Information —————— —Clock Information
Inputs are assigned at "Input Setup Time" and & Single Clock I clack LI
outputs are chechked at "Output Valid Delay™”.
{+ Rising Edge (" Falling Edge

¢ Dual Edgs (DDR or DET) ™ Combinatorial {or intemal clock)

Clock High Time |31 ns | —Combinztorial Timing Information
I— Inputs are assigned, outputs are decoded then
=y ns checked. A delay between inputs and outputs avoids
Input Setup Time |1|} = assignment/checking conflicts.
Output Valid Delay Im— ns Check Outputs IED ns After Inputs are Assigned
Offast ID— ns Assign Inputs IED ns After Outputs are Checked

[T erEs intial Length of Test Bench: [2000 ne

[~ PRLD (CPLDY [¥ GSR (FPGA)
High for Initial: |1DD ns

Time Scale: | ns -

[~ Add Asynchronous Signal Support

Mare Info | < Back | Finish I Cancel |

7) Click Finish.

A waveform display will appear showing the clock, enable, and led signals. The blue shaded
areas that precede the rising clock edge correspond to the Input setup Time (10 ns) that you set
in the Timing wizard.

8) Define the timing of the enable signal by first clicking on the enable waveform at
approximately 210 ns to toggle the enable signal high. This will disable the counter.

9) Click at 400 ns to toggle the enable low and continue the count

10) Click at 1800 ns to toggle it high.

11) Verify your waveform matches the figure below.

End Time:
2000 ns
I s gy g i gy i gipipigugipipipuyipipipipigipipipigigipipigiyhy
fN enable 1 l—‘ l—
¢ leds[3:0] ann 4'h0

12) Save the waveform.
13) Verify that Behavioral Simulation and simple_count_tbw are selected in the
Sources window.

-19 -

Spartan-3A Evaluation Kit Tutorial

S|
Sources for: I Behavioral Simulation ;I
b B biink_led
- £ #c3s400a-41t25E

=5 zimple_count_thw [zimple_count_thw. thw)
ey JUUT - simple_count [gimple_count.w)

B3 Sources |‘-‘_"| Files Im Shapshots I |® Libraries I
|

Processes for. simple_count_tbw I
) Add Existing Source

Create New Source

Wiew Generated Test Bench &g HDL

Add Test Bench To Project
Kiline 15E Sirmulator
B Simulate Behavioral Model

2000

14) In the processes tab, click the “+” to expand the Xilinx ISE Simulator processes and
double-click on the Simulate Behavioral Model process. This runs the simulator

using your simple_count_tbw testbench.
15) To view the simulation results, select the Simulation tab and zoom in to see the leds

count as expected.

nulation

== AVNET 20

Spartan-3A Evaluation Kit Tutorial

16) Close the simulation view. If you are prompted with the following message, “You
have an active simulation open. Are you sure you want to close it?”, click Yes.

Design simulation is an important step in the design process that often gets over-looked.
Spending some simulation time up front can often pay for itself in saving time during hardware
debug. For more information on the many capabilities and simulation options that ISE contains,
use the built-in ISE help information at Help > Help Topics > FPGA Design > Simulation.

Adding Timing Constraints

The ISE tools implement your design based on specific timing parameters, or constraints that you
provide it. If you do not provide ISE with any timing specifications for your design, the tool will
implement the design to the best of its ability. Often this is adequate, however, it's better to
provide some level of timing constraints for the design so you can be sure the actual
implementation will meeting your timing needs.

For the simple_count design, there is a 16 MHz input clock, which specifies that the design
implementation must work at that clock speed or higher. To guide the ISE implementation tools
into meeting this specification, you need to provide a clock period timing constraint for the 16
MHz clock. The ISE tools provide a timing constraints editor to assist in creating these
specifications.

1) Verify that the Sources option is showing Implementation.
2) Expand the User Constraints processes by click on the “+”.
3) Double-click on the Create Timing Constraints process.

E

Proceszes for: zsimple_count

- Add Existing Source

[Create Mew Source

-5 Wiew Design Sumnmarn
-3 Design Utiities

[—ZI--%‘ User Constraints

B8 Create Timing Constraints
Floorplan 10 - Pre-Synthesis

Floorplan Area /10 / Logic - Post-Synthesis

ISE runs the Synthesis and Translate steps and automatically creates a User Constraints File
(UCF). You will be prompted with the following message:

x

@ This process requires that an Implementation Constraint File (UCF) be added
\'\I) to the project and associated with the selected design module. Would vou like
Project Mavigator to automatically create a UCF and add it to the project at
this kime?
If vou select "No" vou will need to create or add an existing UCF ko the project
before running this process.

4) Click Yes to add the UCF file to your project.

AVNET

-21 -

Spartan-3A Evaluation Kit Tutorial

The simple_count.ucf file is added to your project and is visible in the Sources tab under the
top-level simple_count HDL file. The Timing Constraints Editor automatically opens as shown in
the following figure.

| S xlinx - ISE - C:\xilinx_designs\s3aeval\blink_led\blink_led.ise - [Timing Constraints]
1{% Fle Edit view Project Source Process Window Help

IopEg LB x]wa QL= LR (A% E o =[]~ 5]k] =l IS & & & = Hep e~
E

Constraint Flss Clock Net Name [Period [Pad o Setup [Clock to Pad |

[simple_sount uct | ook | | | ‘

" Show Constraints from Specified File only
© Show Constraints from Al Files

Constraint Type
B T Constraints

al

Advanced
Group Constraints
Miscellaneous

513 Sources | ([Ales | gy Srapshots | [y Lbranes | 5 Tming Constrrts |
=

Processes for: simple_count |
[Add Edsting Source
[Create New Source
E View Design Summary
g? Design Utilties
% User Constraints
Create Timing Constraints
Floomlan 10 - Pre-Synthesis
Floomlan Area / 10 / Logic - Post-Synthesis

5) Double-click in the clock Period cell and enter 62.5 ns to define the board input clock
frequency of 16 MHz. The 50% duty cycle and other default setting are fine as shown
in the following figure.

S Clock Period x|
Initial active edge used for
OFFSET velug is setto MIGH |6— PERIOD —3)] =

\' Cancel
—| — WPUTITTER Help

TIMESPEC Mame:
[T5_clack
Clock Net Mame:

I clock ;I

—Clock Signal Definition

+ Specify Time

Tirne: |52.5 Urits: I Fe ;I
&+ Start HIGH " Start LOW
Time HIGH: [50 Units: | % =]

" Relative to other PERIOD TIMESPEC

Reference TIMESPEL: ¥

€ b ultiply by = Divide by

Factors: 1.0

PHASE:

* Flus Minus

ialue Writs: I hz ;I
—Input Jitter

Tirne: I Unriks: Ins ;I

Priarity:
Comment

electranics marketing

Spartan-3A Evaluation Kit Tutorial

6) Note the TIMESPEC Name of TS_clock. ISE is creating a timing specification for the
clock signal such that the implementation tools will try to meet the 16 MHz speed
requirement.

7) Click OK.

8) Save your timing constraints by clicking the Save icon H .
9) Close the timing constrains editor.

The clock period timing constraint is just one of many different timing constraints that you can
place on your FPGA design. For additional information on timing constraints, select Help > Help
Topics > FPGA Design > Constraints and review the topics covered in this section.

Adding Pin Constraints

Besides timing constraints, pin constrains are also very important in achieving a successful FPGA
design. In the case of the Spartan-3A Evaluation board, the I/O pins of the FPGA are already
connected to various circuits on the board. As you create your FPGA design, you need to tell the
ISE tools what pins these signals are connected to. There are several ways you can enter 1/O or
pin constraints into your design UCF file. You will use the Floorplan 10 — Pre-Synthesis process
in this tutorial.

For the simple_count example, there are two input signals and four output signals that require pin
constraints. They are:

LED 1
Push A
Switch (20
Spartan-3A
FPGA
LED 3
LED 4
Inputs:
clock Pin C10
enable Pin K3 Normally Low, goes High when pushed
Outputs:
led 1 Pin D14 |
led 2 Pin C16 | “1" turns LED on
led 3 Pin C15 |
led 4 Pin B15 |

1) Inthe Process window, double click on the Floorplan 10 — Pre-Synthesis process.

==AVNET

mi

-23 -

Spartan-3A Evaluation Kit Tutorial

2)

4)

Procezzes for simple_count

- Add Existing Source
-] Create New Source

- ﬁ
F

_:I..

Wiew Dezign Summarn

=l

Dezign Utilities
Usger Constraints
@ Create Timing Constraints

Tl

Floorplan 10 - Pre-Synthesis

If a Pin Ahead message window appears, click OK.
3) The center Package view tab shows the FPGA pins with the various color and
symbol codes depending on the pin features. In the upper left window, the
Translated netlist tab shows the I/O pins contained in the simple_count design.

To place the input and output signals at the specified pin locations, simply select a
signal from the list in the upper left Translated window and drag it over to the correct
pin location in the Package view. Do this for all the input and output pins listed.

Floorplan drea /10 # Logic - Post-Synthesiz

]

=] slmple_cuunt

- B enable
i Blleds<>
i Blleds<t>
i Bleds<
Bl

g Seure] [Fles | gy Srap] [y v [Transtatec |

Top View for xc3s400a-4ft256

New Eunstlaints.l simple_count.ucf

Ll ix

a0

D]

Hame

Met Name:

L]

clock

clock

enahle

enahle

leds<0>

leds<0>

leds<1>

leds<1>

leds<2>

leds<2>

leds<3>

leds< 3>

KT
2 Processes Design Objects I

i

|l ole O
° H EOER B E O
¢ _ 1@ ole O

e OO0 O

c OROOROOENR m

Je 00 | (000000

“1O0 oe || 0. O

"OERO ¢ | o0 ooee
jJeoeie o6 | ¢oe o @
ge veee | | | 00000 e
-0 000000 m
IO BEROOROORIID

" () (] m
’ m ole m

: H BOEROER N

il QOO0 O

- T TV Z T r X « I o0 M m O o @ >»

4
Floarplan - simple_count® Package - simple_count® I

Symbal | Pin Type

User 10

Ol User Prohibit
u GND
u WECCINT
WAL
u veoo
CONFIG
JTAR
] Global Clock
] IRDY / TRDY
o Leit Hand Clock
o] Riight Hand Clock
] Input Only 10
) YREF

Bark0
Barkl
Bank2
Bark3

Note that your 16 MHz clock signal goes into one of the 16 Global Clock pins on the FPGA. Clock
input signals should connect to global clock pins to utilize the internal global clock buffers inside

the FPGA.

5)

In the Design Objects tab, you should notice the addition of the pin numbers to the
LOC cells of the corresponding signals. To view more of the Design Objects window,
place your cursor along the line dividing the Design Objects tab and the Package
window. Drag the window to the right to extend the Design Objects window and
shrink the Package window.

-24 -

Spartan-3A Evaluation Kit Tutorial

6) In addition to the pin location constraints, you will also want to define the I/O standard
that each pin should use. In the case of the Spartan-3A Evaluation board, you should
set these to LVCMOS33 as shown in the figure below. Click your cursor in the 10
Standard cell of each pin and select the LVCMOS33 option from the drop-down
menu.

Processes

Mew Eonstrainls:l simple_count.uck

Al =jos
MName / Met Hame | Type | 10 Direction | LOC Bank 10 Standard | Wief
MCMO533 -
enahle ehatle FAD | Input K3 BANK3 LYCMOS1
ledz< 0 ledss 0 Fal Output 014 BAMET LYCMO525
leds< 1> ledz<1> PAD | Output C16 BAMK1
leds<2> |leds<Z> |PAD | Output CI5 |Bankt |LYDS_5
LvD5_33
ledsz< 3 ledze 3> FAD | Output B15 BAMKD LVFPECL 2F
LwPECL_3:
. — LYTTL
@t Processes Design Objects I MIMI LYDS

7) Click the Save icon H to save your I/O constraints to the UCF file.

8) Close the Package and FloorPlan tabs.

9) To verify that the timing and pin constraints are accurately added to the user
constraints file, select the simple_count.ucf file in the Sources window.

10) Double-click on the Edit Constraints (Text) option in the Process window and verify
the constraints match those shown below.

E Xilinx - ISE - C:\uilink_designsts3aeval'blink_led'\blink_led.ise - [simple_count.ucf] - |EI|5|
m File Edit Wew Project Source Process Window Help _|5|1|
E =N T = .
IDPEHALIsDREX pa [BPAHXHEAR[[AIRE OT|[|A N
= e 2 = = — =
(/58 a8] Sl e @Sexxaxlez]— 22+ % 0%
X
A 1 HET "clock” THM MNET = clock; =]
Sourees for: | Implementation =] 2 TINESPEC T3 clock = PERIOD "clock” 62.5 ns HIGH 50%;
-] blik_led 3 NET "clock" LOC = C10;
- €3 #c3s400a-40t255 © EUEES T A D
: oo . 5 HET "leds<O:x" LOC = D14;
[simple_count (simple_count.s
= f’é .Dl‘ t[fp o]t f 6 NET "leds<1>" LOC = CL6:
gimple_count.ucf (gsimple_count.ucf) 7 NET "leds<Z:" LOC = C15s
g MNET "leds<3=" LOC = B15:
S HNET "clock" IOSTANDARD = "LVCHMOIS3™;
i0 NET "enable”™ IO3TANDARD = "LWVCHOIZ3":
11 NET "leds<0>" ICOSTALNDARD = "LVCMOIZ3™:
iz MNET "leds<1>" IOSTALANDARD = "LVCHMOZZIM™:
o . 13 HET "leds<2:" IOITANDARD = "LVCMOZZ3";
g . H
=83 Sources ||\ Fles | sy Snapshols |) Libraris | 14 NET "leds<3»" IOSTANDARD = "LVCHOS33";

x| 15

Frocesses for: zsimple_count. uct
M Add Existing Source
: [Create Mew Source
E‘g Uszer Conztraints
@ Edit Constraints [T ext)

11) Close the constraints file.

-25-

Spartan-3A Evaluation Kit Tutorial

Implementing the Design

You are now ready to implement your design. Instead of just running the Implement Design
process, you can run the Generate Program File process instead. This will automatically run the
Implement Design processed first, and then create the programming file you will need to load into
the FPGA.

Because the Spartan-3A Evaluation kit uses a separate low cost USB cable and the AvProg
programming utility to program the FPGA, you should not run the Configure Target Device
process. If you happen to have a special Xilinx USB JTAG that connects to the J5 header on the
Spartan-3A board, then you could run this process.

1) Double-click on the Generate Programming File process to implement your design.

=

Processes for: simple_count
Add Existing Source
Create Mew Source

WView Design Surmmary
Dezign Utilities
User Constraints
@ Create Timing Constraints
Floorplan 10 - Pre-Synthesis
Floorplan &rea /10 / Logic - Post-Synthesis
- 8 2D Surthesize - X5 T
- B Q) Implement Desian
A® 1 Generate Programming File
]..

Fern B ra B

P2 Configure Target Dewice
¥ Update Bitstream with Pracessar Data
-G8 Analyze Design Using Chipscope

Verifying the Results

Once your design has been implemented, you will want to verify the completed results to make
sure the timing and 1/O constraints where met and to get a feel for the FPGA design resources
required.

1) Double-click on the View Design Summary process to view the implementation
results.

|

Proceszes for: simple_count
-] Add Existing Sounce
-] Create New Source

e gn Summary
[]"‘%‘ Design Utilities
EI"% Uszer Constraints

Q_'Ej Create Timing Constraints
; Floorplan [0 - Pre-Synthesiz
Floorplan Area /10 / Logic - Post-Spnthesiz

- {}O Synthesize - #5T
- @ () Implement Design
- @ 2 Generate Programming File
#-fd Configure Target Device
Update Bitstream with Processor Data
-3 fnalyze Design Using Chipscope

-26 -

Spartan-3A Evaluation Kit Tutorial

2) This will bring up the Design Summary window as shown below.

E FPGA Design Summary | blink_led Project Status [05/12/2008 - 18:30:41)

- Design Overview Project File: blink_led.ize Cumrent State: Programming File Generated
(8 Summany Module Name: imple_caunt Enors: NoE
- [10B Properties odule Name: simple_counl mors: o Emors
@ Madule Level Utilization Target Device: xc3sd00a-4it256 * Warnings: Mo amings
@ Timing Constraints Product Yersion: ISE 10.1.07 - Foundation Simulator + Routing Results: All Signals Completely Bouted
-~ [£] Finout Rieport Design Goal: Balanced + Timing Constraints: Al Constraints bet
- [2] Clock Report Design Strategy: Hiline Default [unlocked] + Final Timing Score: 0 [Timing B eport

[=1-Errors and Warrings

STW F?S ;ssages blink_led Partition Summary | I-1

ranslation Messages
@ Map Messages Mo partition information was found.
- [2] Place and Route Messages
- [2) Timing Messages Device Utilization Summary | 1
@ Bitgen Messages Logic Utilization Used Available Utilization Mote(s])
2] &1l Curent Messages Nurnber of Slice Flip Flops 4 7168 1%

& De‘a'éd;‘e;””? . Number of 4 input LUTs 3 7168 %
ynthesis Repor S
- [2] Trarwlation Feport Lo/t (Pl
@ WMap Frepart Mumber of occupied Slices 2 3584 1%
@ Flace and Route Report Mumber of Slices containing only related logic 2 2 100%
-~ [2] Static Timing Fepart Mumber of Slices containing unrelated logic 0 2 0%
[Bitgen Riepor Total Number of 4 input LUTs 3 7168 1%

- Shi Hide Reports...
BueLEE Renats Number of bonded I0Bs B 195 3%
Mumber of BUFGMLUs 1 24 4%

Project Properties Performance Summary I-1
: Enable Enhanced Design Summary Final Timing Score: 1] Pinout Data: Finout Feport
_ O Epable Message Filtering Routing Results: All Signal: Completely Routed Clock Data: Clock Report
[Display Incremental Messages — = =

Enhanced Design Summary Cantents Timing Constraints: All Constraints bet
Show Partition Data

O Show Enars Detailed Reports | 8]
g g:ow :\u"?.mlngs _— Report Hame Status Generated Errors Warnings Infos
i ow Failing Constraints _
. [Show Clack Report Synthesis Report Current Mon bay 12 18:30:35 2008 |0 1] 1]
Tranglation Feport Current Fri bday 16 10:48:12 2008 1] 1] 1]
Map Report Current Fri bday 16 10:51:59 2008 1] 1] 2lnfoz
Flace and Route Report | Current Fri bday 16 10:52:32 2008 1] 1] 1]
Static Timing Report Current Fri bday 16 10:52:38 2008 1] 1] 2lnfoz
Bitgen Report Current Fri bday 16 10:52: 46 2008 1] 1] 1]
Date Generated: 05/16/2008 - 10:53:43

3) Inthe upper right section of the Project Status, you can quickly get a feel for the
implementation results by seeing there were no Errors or Warnings, all signals
routed, and the timing constraints were met.

In the Device Utilization Summary section you can see that the design required 4 flip-
flops, 6 1/0s, and 1 BUFGMUX. It is always a good sanity check to compare this with
what you think the design should be.

In the FPGA Design Summary window along the left of the window, click on the
Static Timing Report under the Detailed Reports section. If you scroll to the bottom
of this report, you should see something similar to what is shown below. All timing
constraints should be met and the maximum clock frequency for the design should be

something much greater than the specified 16 MHz.

4)

5)

-27 -

Spartan-3A Evaluation Kit Tutorial

All constralnts were met.

Dats Sheet report:

211 walues displayed in nanoseconds [(ns)

Clock to 3etup oh destination clock clock

——————————————— it e e anit e DLt

| 3rc:Rise| 3rc:Fall| 3rc:Rise| 3rc:Fall|
Source Clock |Dest:Rize|DestiRise|DestiFall|DestiFall|
——————————————— it e e anit e DLt
clock | 2.121) | | |
——————————————— Bt et e e o

Timing errors: 0 3Soore: 0O
Constraints cover 10 paths, 0 nets, and 13 connections

ezign statistics:

Minimwuwn period: 2.121ns{1} [Maximum freguency: 471.476MH=)
———————————————————————————————————— Footnotes—————————————"———"—"———"———————————————
1) The minimun pericd statistic assumes all single cycle delays.

6) Next, click on the Pinout Report and verify that the 1/0 assignments are what you
specified.

i FPGA Design Summary

— Deszign Overview

{ b [2] Summary

[OB Propzrties

Module Level Utiizaion
Tirnng Constrants
Pirout Report

- [2] Clack Repart

— - Ermarg and Warnings
T Surthesiz Mesrages
Translation Meszages

AVNET

-28 -

Spartan-3A Evaluation Kit Tutorial

L LIFFM I B IU_L IUF_UfaLLMb UMUEEL u
c10 clock |IBUF 10_L09FP_0/GCLEA INPUT LWCMOS33 0 IBUF
C1 DIFFMTE 10_LO7F_0 UMUSED 0

c12 DIFFMTE 10_L0O3F_0 UMUSED 0

C13 DIFFSTE 10_LOMMN_0 LUMUSED 0

C14 GMD

C1a leds<2> (IOB 10_L24M_1/525 OUTPUT |LWCMOS32 1 12|50L0w |NOME™

C16 leds<1> (IOB 10_L24F_1/824 OUTPUT |LWCMOS32 1 12|50L0w |NOME™

ma MICCRAI O L I) = LIKILICC M <

As you can see from the Design Summary window, there is an abundance of information
available for the implemented design. For this simple design example, there is not much need to
explore them all in detail. However, if you have a design that is not working, they can prove
invaluable in helping to debug a problem.

7) Close the Design Summary window when you are done reviewing the different
design reports.

Configuring the FPGA

The output of the Generate Programming File process is a configuration file, or a bit file. For the
simple_count design, the ISE tools created a simple_count.bit file that you will use to configure
the FPGA.

Since the Spartan-3A Evaluation board has its own FPGA programming capability built-in, you
will use the Avnet utility called AvProg to program the FPGA with the simple_count.bit file
created in ISE.

1) Be sure the board jumper settings are as specified in the Hardware setup section of
this tutorial.

2) Connect the USB cable to the Spartan-3A Evaluation board (Connector P1) and then
connect to the USB port of your PC.

3) As a minimum, the 5V power LED (D1) should illuminate.

4) Start the AvProg programming utility with Start > All Programs > Avnet > AvProg.

.. Avnet Board Frogramming Uil a3 3.3, @ @
File Options Mode Help
Serial Port Bit File FPGA Operations
';L'M% . 1] L.me,_ J |N|:|I|E Selected

|None

=—=AVNET

= electronics marketing

Send Console

Send Mode
) Char
® Block
Gty | O]
Receive Console Receive Mode
® Ascl
) Hex
@ E»&haw]

AVNET

== clectronics morketing -29 -

Spartan-3A Evaluation Kit Tutorial

5) Click the Connect to COMXx button to establish a communications link between
AvProg and the Spartan-3A board. The actual COM port number can vary depending
on how Windows assigns the USB port to a specific serial port. AvProg automatically
detects the correct COM port number assigned to the Spartan-3A Evaluation board.

6) Click on the Browse button to select the simple_count.bit file from your design.
Browse to the directory of our ISE project and select the bit file.
= e g it 7 e @
PFiles Options Mode Help
Serial Port Bit File FPGA Operations
| Disconnect flom COM3 | —————— Isimple_cuunt.bit f 3
Device | Corfigure FRGA:

7) AvProg reads the bit file and displays the FPGA information contained in the bit file
under the Device window. Verify that this is the 3s400aft256.

8) Click the Configure Device button to program the FPGA.

9) Click Yes when asked if the bit file is for the 3s400aft256 device.

10) AvProg will download the simple_count.bit file to the FPGA and once configured the
blue LED should turn on, signifying that the FPGA is configured. The Receive
Console window should display “FPGA programmed successfully!” message when
complete.

11) The four LEDs should be counting. However, since the counter is running at 16 MHz,
the LEDs are actually toggling so fast, that you cannot see the counting and they all
appear as if they are on.

12) Place you finger on the Push_A CapSense switch. The LEDs should stop counting
and hold a fixed value. Release your finger and then press again. The value should
change. Given the high speed of the counter, your random stops of the counter are
all you can expect.

Obviously, having the LEDs display the counter values at a 16 MHz rate is not very practical. It
would be better if we could slow this down to something that the human eye could perceive. An
easy way to do this is to increase the counter size to something like a 26-bit counter, and connect
the LEDs to the upper 4-bits of this counter. A quick modification to the design should fix the
problem.

Modifying the Design

1) From the Sources window in ISE, double-click on the top level simple_count HDL
file.

2) Modify the source code to increase the counter registers from 4-bits to 26-bits. The
examples below show the code changes for both the VHDL and Verilog versions.

-30 -

Spartan-3A Evaluation Kit Tutorial

enticy simple count i3

PFcrt | clock in ST LOGIC;
epable : Ln ﬁTh_Iﬁ-H'J
led : out 3ITP LOGIC VECTOR (3 downto O0)):

end aimple_cnunc;

ACCNATE&CTUCE FERnAY1Oral OL Jimple Count 13

=ignal count: 3td_loglc wvector (25 downco 0) = e
begin
process (clock)
begin
if clock='1l' and clock'ewvent then

if enable='0' then
count <= count + 1:
end if;
enct 1f:
end process:

led <= count (25 downto 22);

end Behawvioral;

VHDL Modifications

module simple count |
input clock,
input enable,
cutput [3:0] leds
)2

reg [25:0] count = 07
always @ (posedge clock)
if (~enable)
count <= count + 1;

assign leds[3:0] = count[25:22];

endmodule

Verilog Modifications
3) Click the Save button.

In Spartan-3A FPGAs, it is possible to compress the bit file to reduce the size. This is useful when
you are storing the bit file in some external configuration memory since you will not need as much
storage space for the FPGA configuration data. To see the size of the previous simple_count.bit
file, browse the ISE design directory using Windows Explorer and note the file size. It should be
about 200K bytes.

4) To compress the bit stream, right-click on the Generate Programming File and

select Properties.
5) Click on the Enable Bit Stream Compression value to select it.

-31-

Spartan-3A Evaluation Kit Tutorial

x

Category

General Options

Configuration Options Property Name Value

;t:::‘fagit g:tsions Run Design Rules Checker (DRC) ¥

Suspend/Wake Options Create Bt File ~
Create Binary Configuration File -
Create ASCII Corfiguration File r
Create IEEE 1532 Corfiguration File -
Enable BitStream Compression i
Enable Debugging of Serial Mode BitStream [
Enable Cyclic Redundancy Checking ([CRC) W

Property display level: IStandar\:I vl Default |
ok | comcd | moy | Hep |

&

6) Click OK.

7) Double-click on the Generate Programming File to re-compile the design.

8) When completed, go back to AvProg, re-select the new simple_count.bit file and
press the Configure FPGA button.

9) The new design should now show the counting LEDs at a much slower rate.

10) Notice that the configuration download from AvProg was significantly faster. Browse
to the design directory using Windows Explorer and note the files size of the
compressed simple_count.bit file. It's about 7x smaller (~30KB).

Programming the SPI Flash

The Spartan-3A Evaluation board contains a 128 Mbit Spansion SPI Flash memory that can be
used to store a FPGA bit file. With the SPI memory programmed, that FPGA will configure itself
on power-up, assuming the MODE jumpers are set for Master SPI mode.

Your final step in the tutorial will be to program the Spansion SPI memory and verify that the
FPGA can configure from it.

1) From AvProg, select Mode > Program SPI Flash from the menu items along the top
bar.

2) Browse to the same simple_count.bit file you used in the last step. Note the file size
is displayed in the Bytes to Write/Read cell.

3) Select the Spansion avt_s25f1128p_64kb SPI from the Flash Device drop down
menu.

S

-32-

I

Spartan-3A Evaluation Kit Tutorial

Q.
\“Files Options Mode Help
Serial Port Flash File SPI Operations

- irom COMS. | - .:]lsimple_cuunt.bit m heck:

Flash Device (é gim:]

—_— \’NETQ avt_s25fl128p_64kb| (= m

—_— A Offset (Hex) Bytes to Write/Read
—— electionics marketing | Red
g Ox | o 33643

Send Console

[Send Mode
O Char
® Block
(i ﬁ:n&mdu:! ﬁ;ml
Receive Console 3 Receive Mode
® asCl
© Hex

4) If you are not sure if the SPI memory is erased or not, be safe and click on the Bulk
Erase button to erase the SPI flash.

5) Once the SPI is erased, click the Program button.

6) When the SPI Flash is done being programmed, close AvProg, unplug the USB cable
from the PC, then plug the cable back in.

7) On power-up, the FPGA should configure itself from the Spansion SPI memory and
your simple_count design should be functioning.

You have now successfully completed your first design for the Spartan-3A Evaluation kit. There is
much more to learn and explore, and the Help menu in ISE is a great place to start. You will also
see there are many more features and ways of doing things than what was shown in this tutorial.
As you become more familiar with the tools, you will likely find your preferences. In addition, there
are other reference designs and tutorials available for this board through the Avnet Reference
Design Center at www.em.avnet.com/spartan3a-evl.

-33-

