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The impulse response of a linear system can be determined by exciting the system
with white noise, and cross-correlating the input and output. As contrasted with the
straightforward technique using an impulsive excitation, this approach is owvwEm.&
providing vastly superior dynamic range. In order to minimize the amount. of computation
required by the cross-correlation step, the system can be excited by a binary maximal-
length sequence, and the cross correlation performed using the fast msawiua :‘E._mmo_.n_.
By this means, only additions are required, and the number of additions is approximately
2.5n log, n, where n is the length of the sequence.

0 INTRODUCTION

In measuring the impulse response of a linear system,
the most direct approach is to apply an impulsive ex-
citation to the system and observe the response. There
are two basic difficulties with this approach. The first
is generating the impulsive excitation, and the second
is obtaining adequate dynamic range. If one is dealing
with an electronic system, generating an impulse is
not a severe problem. But there are settings for which
it is difficult, such as measuring the impulse response
of a concert hall. Although techniques exist for pro-
ducing an impulsive acoustical excitation—electronic
spark gaps, pistol shots, or exploding balloons are often
used—it is difficult to assure that the energy is equally
distributed over all frequencies of interest. Because
the duration of the impulse, by definition, is very short,
it is difficult to deliver enough energy to the system to
overcome the noise that is present. The amplitude of
the impulse is limited by the range of lincarity of the
system and its duration by the range of frequencies of
interest. This problem is exacerbated by a nonuniform
distribution of energy in the impulsive excitation be-
cause the linearity limitation to the amplitude is imposed
by the frequency range where most of the energy falls.
In ranges that are shortchanged, it is not even possible
to obtain the dynamic range that is theoretically possible.
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A different approach is to excite the system with
noise. Because the excitation is applied for a longer
period of time, more energy is delivered to the system
for a given amplitude of signal, circumventing the dy-
namic range problem. Further, it is easier to assure the
uniformity of the energy distribution over frequency.
The response is the convolution of the excitation with
the impulse response. The impulse response can be
extracted from the measurement by cross-correlating
the noise input with the output. This paper will discuss
a particularly efficient implementation of this approach
on a digital computer.

The technique to be described is based upona proposal
by Schroeder [1], who observed that techniques de-
veloped in Hadamard spectroscopy by Nelson and
Fredman [2] and Harwit and Sloane [3] could be applied
in this problem. Schroeder originally described the use
of pseudorandom noise for measuring the impulse re-
sponse of a concert hall in [4]. In this work he performed
the cross-correlation operation in the frequency domain.
Because the length of the pseudorandom noise sequence
was one less than a power of 2, it was necessary to
interpolate a sample in order to exploit the fast Fourier
transform. Cabot also reported using a cross-correlation
technique based upon analog bucket-brigade delay lines
[5]. Basing the measurement technique upon a digital
computer offers the greatest potential for maximizing
the dynamic range. Also, having the final result in
digital form makes addjtional manipulations more
convenient.

J. Audio Eng. Soc., Vol. 31, No. 7, 1983 July/August

FPAFEHS

Because the techniques described in this paper are
not widely known in the audio community, this paper
will begin with a brief review of the relevant properties
of maximal-length sequences which are used as the
pseudonoise excitation. After reviewing the cross-cor-
relation operation, we will show how the problem
can be manipulated into a form that makes it possible
to apply an efficient algorithm known as the fast Had-
amard transform. Finally, we will illustrate the appli-
cation of the technique and discuss some practical is-
sues.

1 MAXIMAL-LENGTH SEQUENCE

The first step of the cross-correlation method is to
generate a noiselike test signal to be applied to the
lincar system. Although several techniques exist for
generating noise in a digital computer [2], [3], [6]-
[9], binary maximal-length shift register sequences have
a number of advantages. The most important is that
except for a small dc error, their autocorrelation is a
perfect impulse [9], [10] (see Fig. 1). In other words,
the spectrum of the pseudo noise is flat everywhere
except at direct current. Although a maximal-length
sequence is actually a deterministic signal, it shares
this desirable property with white noise. Another ad-
vantage of maximal-length sequences is that they are
very easy to generate, requiring a minimum of execution
time on a general-purpose computer, or of hardware
in a specialized device. Also, because the sequences
are binary, the cross-correlation operation is particularly
simple. By assigning the values =1 to the two binary
levels, it is clear that the cross correlation requires no
multiplications, only additions and subtractions. (For
simplicity, no distinction will be made in what follows
between additions and subtractions in discussing com-
putational requirements because the requirements as
measured in execution time or in hardware are so sim-
ilar.) Multiplication usually requires much more time
than addition, so eliminating the need for multiplications
greatly speeds the processing. But even more signifi-
cantly, an efficient algorithm based upon the fast Had-
amard transform exists for performing the additions.
Like the more familiar fast Fourier transform, the fast
Hadamard transform requires on the order of n log, n
operations, which in this case are additions. So basing
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Fig. 1. Autocorrelation function of a maximal-length se-
quence with length n.
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the technique upon excitation by a maximal-length se-
quence makes it possible to perform the cross correlation
expeditiously. A final advantage is that although max-
imal-length sequences have statistical properties like
true white noise, they are actually deterministic signals
which can be repeated precisely. Differences in the
response of the system to successive measurements
can be unambiguously attributed to noise in the system.

Several of the references explain how to generate
maximal-length sequences and provide a mathematical
framework based upon primitive polynomials [2], [3],
[71, [9]. The generation of maximal-length sequences
is most easily described by considering a specific case,
such as the three-stage shift register shown in Fig. 2.
The boxes containing z™! represent a unit-sample delay
produced by memory elements or flip-flops. The op-
eration designated by @ is a modulo 2 sum, or exclusive-
or, defined by

0@ 0
0@ 1
1®0
1@ 1

A signal is fed back to the beginning of the shift register
which is a modulo 2 sum of selected outputs. In other
words, the shift register generates a sequence of 1’s
and 0’s that satisfies the recursion relation

0

I
—

)

]
—

0.

Ak + 3) = Atk) @ Atk + 2) . (2)

Recursion relations can be specified for any shift register
length. The sequences produced at each node of the
three-stage shift register in Fig. 2 that are shown in
the figure were produced by initializing the shift register
to all 1’s. Choosing different initial conditions will
change the sequences that are produced in a way which
corresponds to delaying the sequences by some amount.
With m stages in the binary shift register it is theoret-
ically possible to describe 2" states, but if the content
of the shift register is all 0’s, it will be impossible for
a 1 to occur, and the shift register will remain frozen

1110100
1101001
1010011
0100111
Fig. 2. Binary feedback shift register of length m = 3 for
generating a maximal-length sequence of length n = 7.
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in this state. In order to avoid this degenerate case, the
jongest sequence that can be generated using linear
feedback has length 2" — 1. A binary sequence whose
length is 2™ — 1 is called a maximal-length sequence.

2 CROSS CORRELATION

In order to drive the linear system under test, the
Boolean sequence produced by the shift register must
be converted to a signal. It is customary in describing
digital circuits to denote the two logic levels as 1 and
0. For signal processing, the sequence 7i(k)-produced
by the shift register is mapped to n(k) by changing 1
to —1 and 0 to +1. (Any vector or matrix augmented
with the tilde refers to the 1, 0 code.) The sequence
n(k) is the one that is actually applied to the system.
The cross correlation of the input and the output is
related to the autocorrelation of the input by a con-
volution with the impulse response:

o
Y Para o

delta function, the result of convolving &,,( k) with any
function is the function itself, in this case, the impulse
response. Thus the impulse responise can be recovered
by cross-correlating:the noise input 72(k) with the output
y(k) [11]. The desirable impulsive autocorrelation of
maximal-length sequences arises only under circular
autocorrelation, so the indexing of the sequences in
any correlation operation must be performed modulo
n. Using the notation ((j)), for the residue of j modulo
n, or simply (()), where the modulus can be inferred
from the context, the cross-correlation operation is de-
fined by

n—1
Gu®) = 5 3G + B - @

By a change of indices, this expression is equivalent
to

n=

1
bn) = 5 5 = BN - ®)
£

The circularity of the operation can also be achieved
by performing linear cross correlations with periodic
versions of the original sequences defined by

xp(k) = x((K)n - (6)

In other words, each period of the periodic sequence
is equal to the original sequence. Eq. (5) can also be
described in terms of a matrix multiplication:

@, = ~N,Y . ¢y

A n

®,, and Y are vectors whose elements are the d,,(+)
and y(-) of Eq. (5), and the matrix N, contains the
circularly delayed versions of the sequence n(:). The
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noise matrix N, is a right circulant matrix [12] because
successive rows are obtained from the previous one by
rotating it one position to the right. For the specific
case of m = 3, the noise matrix is

~ - - + - +

+ o+

(®

|

|

|
o

|
+
|

- - + - + + =

where the shorthand + and — has been substituted for
+1 and —1.

Because the elements of N, are all =1, only additions
and subtractions are required to perform the matrix
multiplication. Finding each element of the correlation
vector ® requires 7 — 1 additions. There are n elements
in the result vector, so the total number of additions
required is n(n — 1). When n is a large number, the
number of operations can become prohibitively large.
In architectural acoustics one is interested in measuring
the impulse response of concert halls. The duration of
the impulse response, as defined by the reverberation
time, is often as long as 2-3 s. In order to deal with
the entire audio bandwidth of 20 Hz-20 kHz, a sampling
rate of at least 40 kHz is required. As a result, the
number of samples in the maximal-length sequence
could be on the order of 10°, in which case the total
number of operations would be on the order of 10"
Assuming that a computer is capable of performing an
addition in 1 s, several hours of computer time would
be required. Clearly, a more efficient algorithm must
be found when one is interested in dealing with such
long sequences.

3 FAST HADAMARD TRANSFORM

The efficient algorithm for performing the desired
cross correlation is based upon the fast Hadamard
transform. Like the discrete Fourier transform, the
Hadamard: transform can be described in terms of a
matrix multiplication. The matrix that transforms the
input vector is known as the Hadamard matrix H,,
where n gives the number of rows or columns. The
elements of the Hadamard matrix are all %1, and the
matrix must satisfy the relation

HH = nl, . )

The efficient algorithm applies only to the specific class
of Hadamard matrices known as Sylvester type. The
Sylvester-type Hadamard matrix is defined recursively
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by

=
1

(1]

b |HH
2 = »
' H, -H, 10

Only orders 2%, where k is a nonnegative integer, exist.
The Sylvester-type Hadamard matrix of order 8 is

bk +i+ o+ o+ 4]
<+ -+ - 4+ =
+ 4+ = -4+ 4+ = =
Hy = St S b |+.::
+ + + +i- - - =
+ - 4+ =i - 4+ - +
+ + - =i - - 4+ +
[ = = F = & o =

The partitioning emphasizes the structure that evolves
from the recursive definition.

The flow graph for an 8-point fast Hadamard trans-
form is shown in Fig. 3. It should be evident that the
flow graph is identical to the flow diagram for the fast
Fourier transform except that the twiddle factors [13]
are all unity, reflecting the fact that no multiplies are
required. It should also be noted that the bit-reversal
shuffling of the input vector for the decimation in time
algorithm or the output sequence for the decimation in
frequency algorithm is not required in the fast Hadamard

A A+B
mM>.m

BASIC BUTTERFLY ELEMENT

a+h+cedes+g+h

o

a-bsc—dre-lrg—h

atb-c—dtesf-g—h

a-b-c+dre-f-g+h

a+b+etd-e-f-g-h

a-b+c-d-e+f-g+h

atb-c-d-e-f+g+h

a-bocad-cslsgTh

Fig. 3. Flow graph for an 8-point fast Hadamard transform.
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transform. When the bit reversal is performed, the
transformation is often called the fast Walsh transform
because the transform terms fall in order of increasing
sequence [14].

4 PERMUTATIONS

4.1 Using the Fast Hadamard Transform to
Perform the Cross Correlation

The cross-correlation operation is described in terms
of a matrix multiplication in Eq. (7). Unfortunately,
N, is not a Hadamard matrix, so it is not possible to
apply the fast Hadamard transform directly. But it is
possible to manipulate the problem into the required
form by a sequence of matrix multiplications:

Ny = PyS:H,1S\P, (12)

P, and P, are permutation matrices whose purpose is
to permute the rows and columns of H,,. Matrices S,
and S suppress the first row and column of H,,, in
order to reduce the (n + 1) X (n + 1) matrix into one
thatis only n X n. The reader may confirm this equiv-
&n:mo for the specific case of n = 7 by using the
matrices

— 1

©C © ©O © = ©o
- © ©oO © © <o ©
- o O O o ©
S o = o o o)

(13a)

—~1Teo o ©o o o o

o o ©
o
© O O 0 0 0O O O = 0 0 o o

© O - O O O 0O © O 0 0 © ~ o

©C O O © © ~ o
o o o -
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By substituting Eq. (12) into Eq. (7), we obtain the
relation

Ao
-

By = 1 PASuHor(S1P) - (14)

Although the operations can be performed in any order,
the sequence indicated by the parentheses leads to the
following interpretation. The measurement vector Y is
permuted according to P, and a 0 element is affixed to
the beginning of the vector. The resulting vector, which
has the required 2" terms, is transformed by the fast
Hadamard transform algorithm. Then the first element
is dropped, and the final result is obtained by permuting
the vector according to P, and normalizing. This se-
quence of operations is illustrated for the specific case
of a sequence with length 7 in Fig. 4.

4.2 Determining the Permutation Matrices

Once one knows the permutation-matrices P; and
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to the H matrix. The permutations to be described here
are not essentially different from those first presented
by Nelson and Fredman [2]. The relation we seek to
establish is derived from Eq. (12):

G, = SH,,S; = P?'N,P7' . (15)

The new matrix G, is the original H,;, matrix with its
first row and column dropped. The procedure to be
described will actually produce the inverse of the per-
mutation matrices, but inverting a permutation matrix
is accomplished simply by transposing it. The derivation
of the permutations is facilitated by dealing with ¥ as
well as N and seeking permutation matrices that trans-
form it to G. A parallel sequence of operations applied
to N will transform it to G. P7! describes a permutation
of the columns of the N matrix. The columns of N are
versions of the same maximal-length sequence obtained
by progressively delaying each column. The different
versions can also be considered to arise from different
initial conditions in the shift register that generates the
sequences. Once the initial conditions have been spec-
ified, all of the 2 — 1 = n terms-of the sequence are
predestined. Therefore the identity of each column can
be established by using any m consecutive terms of the
column. By assigning binary weights to the terms, a
number is produced that distinguishes the columns,
and so serves as a tag. In computing the tag, the sig-
nificance of the terms can be defined in either order.
The decision about which m consecutive terms to con-
sider and which order of significance to assign is based
upon programming convenience. The matrix P1’ is de-
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eration was performed, with 0 indicating direct rep-
lication and 1 indicating inversion. Thus the first row
of each Hy; has a 0 associated with it, and the second
row has a 1. By placing the bit in the ith position of a
binary word, a word is generated that tags each row.
This procedure is illustrated in Fig. 6.

i tag
321 210 dec
0 O |hjtit*ir++4 500 o
o LI 7 ot Al St T BT
+ohi- =le 4 - o
1 010 2
foin b~ o1 3
4+ o+ = - - = 100 4
! + -t - - 101 5
s el TR R
A A 2t B I T

Fig. 6. Illustration of how the recursive definition of the
Sylvester-type Hadamard matrix leads to the development
of a tag for each row.

To determine P3', we examine the entries of N' to
deduce the corresponding tag. The desired permutation
matrix is defined to be the matrix that arranges the tags
in ascending numerical order. Examining N' in Fig. 7
shows that the tag can be assembled by collecting the
m terms from each row at the positions 2%, where k =
0,1, ...,m — H.. Performing this operation will
produce the matrix G,, as expected (Fig. 7). Applying
the same permutations to N, will result in G,,.
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performed using random noise, there would have been
some uncertainty in the amplitude of the results that
were obtained. The actual impulse responses would
only be approached asymptotically as the measurement
time increased without bound. The near perfection using
pseudorandom noise arises from the fact that the ex-
citation is deterministic. It should perhaps be empha-
sized that in a practical application there will still be
uncertainty in the amplitude due to noise in the system
under test. But unlike measurements based upon truly
random noise, the excitation itself does not contribute
to this randomness.

Because the measurement technique is discrete time,
the temporal resolution is limited by the sample period.
Consequently there is always a small uncertainty in
the group delay. In some cases there is also uncertainty
in the amplitude due to the fact that the impulse response
is only determined to the number of points in the ex-
citation. However, as long as the system is strictly
bandlimited to the Nyquist frequency, the intermediate
values are available by interpolation.

6 PRACTICAL CONSIDERATIONS

6.1 Choosing the Length of the Maximal-Length
Sequence

When the maximal-length sequence is injected into
a linear system, the output of the system is the con-
volution of the input with the impulse response. The
convolution is described mathematically by

Py, their validity can always be checked by assuring  fined to be the matrix that permutes the columns of N e nooon ®) = nk L= .
that Eq. (12) roEmu To find Em.v@nicﬁ»:onm inthe g that the keys are in ascending numerical order. n_v w “ m n_u n_v “ 1 1010101 1 y(k) = n(k) x h(k) = Ww h(jpn(tk — 7)) . (16)
first place, we start with the N matrix and work backward Performing this operation produces the matrix N' = 0 oeo M A_V __ h_v w w “ Mv w )
. NPT'. The operations performed so far are illustrated = (1100110 3~8&: 0001111 4 As mentioned @.:wio:mi. the desirable autocorrelation
o . w in Fig. 5. o1 11100| s 1011010 5 property of maximal-length sequences arises only under
w “ / Now we must determine the second permutation. __ n_v ﬁ_u “ m m n_v 7 0111100 6
Y =14 PY =|g spy =|b The matrix P3' is the matrix that permutes the rows of 2 1o 1o @
e M w N' to Q.. E order to derive this @SE:S:A.VP we start Fig. 7. Permutation matrix P73 rearranges the rows of N' 1.0
J d by examining H for a way to tag each row in a manner so that the tags are in ascending numerical order. F
g ¢ cl analogous to the procedure used before for rearranging r
the columns. The nature of the tag is suggested by the L
recursive definition for the Sylvester-type Hadamard Ina — ; . 0.5
_ - ) h (DYIVESTE practical implementation, the permutations can ¥
MHMH“ + wH 9+ MH m HM matrix, Eq. (10). This definition indicates that the first be generated once in a separate onWam:o: from e ”
Otao—T—bt m P entry in each row of Hy; is simply the Hadamard matrix cross correlation and stored on disk. By this means -
Hys,Py = |070=[+b+g— e—d+c of the next lower order, H;. The second entry is also repeated cross correlations for the same sequence length T30 30 @0 86 e 7o
O+a+f+b—g—e—d—c obtained from H; either by direct replication or by in- do not require that th .
O—a+f—-b—g+te—d+c . X X ; q t the permutations be generated re- (a)
o+n| e ul td o version. We can use a single bit to record which op- peatedly.
0—a—f+b—g+e+d—c] 0.2
5 DEMONSTRATION E
1376 1236567 . .
r—a—b—c+d—e+/f+g RPN 1010101 :da algorithm can be demonstrated by measuring ~ o.1f
+a—b—ecmd¥e= 49 ol h it 0110011 the impulse responses of known systems. Fig. 8 shows r
+a+ olalmlu+\ -9 . g0t ) 00011 “ 1 the measured impulse responses for a simple delay, ok
P,S,HS\P,Y = Hnww.ﬁmﬂaunu“w“ = N.Y¥ N = ﬁ_V A_u m n_v : _o __ w w “ ow and an 8th-order Butterworth low-pass filter. These F
e 0100 S 1100 Mmeasurements were obtained using a maximal-length o & T 3 L
l—a—bt+c—d+e+[—g 1101 1011010 i SEQuence of length n = 1023. Aside from a small dc 0 40 50 60 70

error (see Sec. 6.2) that is imperceptible on the scale ®
of the plots, the impulse responses are exactly correct.
One should be aware that if the measurements had been

Fig. 5. Permutation matrix P7' rearranges the columns of

Fig. 4. Illustration of the efficient algorithm for the specific
N so that the tags are in ascending numerical order.

case of a sequence of length n = 7. Fig. 8. Computed impulse responses. (a) Simple delay of

10 samples. (b) 8th-order Butterworth low-pass filter.
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circular operations. But as a practical matter, it is usually
more straightforward to deal with a linear convolution.
Fig. 9 gives a pictorial representation of the convolution
operation. The periodic pseudo noise excitation is de-
layed and then weighted by the corresponding term of
the impulse response. The final output is obtained by
summing all of the partial results. It can be seen in
this figure that the effect of circular convolution can
be obtained by retaining the data from any period of
the output after the first. This illustration also clearly
shows the effect of attempting to deconvolve an impulse
response that is longer than the input maximal-length
sequence. If there were an additional term in the impulse
response, h(7), its delayed sequence would overlap the
repetition of the first undelayed term. There is no way
of resolving the ambiguity, so an error will result. The
error will be insignificant, though, if the amplitude of
the impulse response has decayed to a small value.
Clearly no error results if the length of the maximal-
length sequence is longer than the impulse response,
but there is a disadvantage in the additional computation
that is required. For a finite impulse response (FIR)
filter the overlap error can always be avoided by choos-
ing the duration of the pseudo noise excitation to exceed
that of the impulse response. But for an infinite impulse
response (IIR) filter there will always be some overlap.
The severity of the error that results can be reduced by
choosing the duration of the pseudo noise sequence to
be long enough that the amplitude of the impulse re-
sponse has decayed to a small value.

6.2 Effect of dc Error in Autocorrelation

As discussed in Eq. (3), the convolution also relates
the input autocorrelation to the cross correlation. This
relationship is what makes it possible to recover the
impulse response by way of the cross correlation when
the input autocorrelation is a delta function. Unfor-
tunately the autocorrelation of the maximal-length se-
quence is not a perfect impulse, as can be seen in Fig.
1. Rather, the autocorrelation is actually

+ 1 1
buk) = =8 — an
np (k) _period 1 ,_Pperiod 2 o

h(OIng(k) . -

h(1)np(k=1) -
h(2)np(k-2)
h(3)np(k-3)
h(4)np(k-4)
h(5)np(k-5)
h(6)np(k-6)

¥p(k) i s 2.5

Fig. 9. Pictorial representation of the convolution operation
showing the relative timing of the partial results.
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Thus the cross correlation has an error that can be found
as follows:

n—=1 1
k) = 3, w2 s - wy - ]
p:
S LS oeG - by - LS )
no & n &
n+ 1 R
il G LR (18)

The summation term in Eq. (18), which is the dc com-
ponent of the actual impulse response, is also the dc
error in the computed impulse response. We can cal-
culate the error in the computed impulse response by
adding together the terms of the cross correlation:

n—1 n—1
2ELS ho - 3 h)
k=0

j=0

n—1

>, duyk)

k=0

I

Il

1 n—1
= 2, h(k) . (19)
The impulse response can be found exactly by correcting
the cross correlation:

n—1
= P P a(h] . Q0

In practice it is rarely necessary to perform this cor-
rection. Most practical systems in audio have no trans-
mittance at direct current, so that the error term in Eq.
(18) is nil. As long as the impulse response does not
have a strong dc component, the error term will be
negligible.

6.3 Additional Inprovement of Dynamic Range

When measuring the impulse response of a linear
system using an impulsive excitation, a technique that
is often used to improve the signal-to-noise ratio is to
average together the response to a number of impulses
[15]. The desired response adds coherently, but the
noise adds incoherently, providing an improvement in
the signal-to-noise ratio of VN, where N is the number
of periods being averaged together. This procedure has
the disadvantage of consuming considerable time due
to the fact that one must wait until the system has
returned to its quiescent state before initiating the next
measurement. If the impulse response has a duration
of T seconds, a total of NT seconds will be required
for the measurement. The cross-correlation method
starts with a tremendous advantage in dynamic range.
The advantage is exactly the same as that which would
be obtained by averaging together n impulse responses,
but the measurement only requires time T to perform.
However, in extremely noisy environments it would be
possible to combine the averaging technique with the

- cross-correlation method in order to obtain an additional

J. Audio Eng. Soc., Vol. 31, No. 7, 1983 July/August

PAPERS

improvement in dynamic range. Schroeder reports [4]
that this technique has been used to measure the impulse
response of a lecture hall while the hall was being used
by exciting the hall with a quiet pseudo noise signal.
It might be possible to apply the same concept to mea-
suring the response of a concert hall during a perform-
ance while an audience is present. This approach would
circumvent the difficult problem of relating the behavior
of the empty hall to its response with an audience pres-
ent.

6.4 Estimate of Computational Requirements

It is more difficult to develop a convenient rule of
thumb for the number of computations required by the
fast Hadamard transform than for the fast Fourier
transform. In analyzing the fast Fourier transform it is
customary to consider only the number of multiplica-
tions, because the multiplications usually dominate the
computations. However, the elemental operation in the
fast Hadamard transform is addition, which will not
dominate the other computations that are required. Each
stage of the fast Hadamard transform requires n ad-
ditions for the butterfly operation. Since there are
log,n stages, the total number of additions required by
the butterfly to evaluate an n-point fast Hadamard
transform is nlogyn. However, in addition to the but-
terfly, it is also necessary to compute the indices of
the two terms being applied to the butterfly—two more
additions—and to test for the completion of a loop.
The compare in the loop completion test is basically a
subtraction, so five additions are required for every
two points, increasing the number of additions per stage
from n to 2.5n. Disregarding assignments, the best
estimate for the number of operations required is
2.5nlogyn. Note that in the example we considered pre-
viously of a 3-s sequence sampled at 40 kHz, the number
of additions is reduced from approximately 10'° to about
5 % 10°, a decrease of more than 10°. Assuming the
same computation rate as before of 10° additions per
second, the time required to compute the impulse re-
sponse will be reduced to the much more manageable
figure of about 6 s.

6.5 Calculating the Frequency Response

One way to obtain the frequency response of the
system under test is to apply the method described in
this paper to determine the impulse response, and then
to transform the impulse response to the frequency
domain using a discrete Fourier transform. But if one
is only interested in the frequency response, then another
approach worth considering is to perform the compu-
tations in the frequency domain. It is well known that
the correlation of two sequences can be related to a
convolution:

Puy(k) = n(—k) x y(k) . 2n

The z transform of the convolution of two sequences
is the product of their z transforms:
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n(k) x y(k) & N@2)Y(z) . (22)

We also have the relation

x(—k) © xA_v . (23)

7z
Combining Egs. (21)-(23) we obtain
du®) < 8(1)¥e) | e

Because we are interested in the frequency response,
we substitute z = e to obtain finally

(k) © N )1 (e) = NxEe)rEely . (25)

In practice, the Fourier transform would be computed
as a discrete Fourier transform. All of the terms of
N*(e’) can be calculated beforehand and stored. To
find the frequency response one need only transform
the measurement y(k) and multiply its transform term
by term with the stored values of N*. Note that although
the magnitude of Z*Ao?v will be constant (except for
the dc term), the phase will vary, so the multiplications
will not be trivial.

As far as the amount of computation is concerned,
the transformation of y(k) required by the frequency
domain approach is equivalent to the transformation
of the impulse response in the time domain approach.
In addition, the frequency domain approach requires
n complex multiplications (4n real multiplications),
and the time domain approach requires 2.5nlogyn real
additions. To compare the amount of time required for
the two approaches, we can suppose that multiplication
takes 10 times as long as addition, and find the value
of n at which the computation times are equivalent:

2.5nlogon = 10 X 4 X n
loggn = 16 > n = 216 (26)

For n > 2'S the frequency domain approach will require
less time, and for n < 2'S the time domain approach
is faster. If one is interested in the impulse response,
it would also be possible to find the frequency response
using the frequency domain approach and inverse
Fourier transforming the result. Clearly, this approach
will require a great deal more computation than the
algorithm presented in this paper that finds the impulse
response directly in the time domain.

7 SUGGESTIONS FOR ADDITIONAL WORK

The length of the impulse response that can be re-
covered by cross correlation is limited by the amount
of available main memory. Two arrays must be main-
tained in core simultaneously, each as large as the
maximal-length sequence. For acoustical measurements
it is often of interest to measure impulse responses as
long as 2-3 s. In order to deal with the entire audio
spectrum up to 20 kHz, the sampling rate must be at
least 40 kHz. Accordingly, each array could be as long
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as 120 000 samples, requiring that 240 000 samples
be stored in core. In computer systems which do not
have such prodigious memory capacity, or in cases
when one is interested in measuring longer impulse
responses, or when the sampling rate must be consid-
erably higher, the resulting abundance of samples might
overwhelm the resources available. In such cases it
would be desirable to modify the algorithm to reduce
the amount of core storage required. There is a fairly
straightforward way to halve the memory requirements.
The only reason that two arrays are required is to allow
the permutation to transfer data from the unpermuted
array to the permuted array. The permutation infor-
mation is retrieved from disk in small segments so as
not to deplete further the memory capacity. The memory
requirements could be halved by performing the per-
mutation in place. In-place permutation is possible when
the permutation matrix is symmetrical, which unfor-
tunately is not the case here. However, it is always
possible to factor a permutation matrix into the product
of two symmetric permutation matrices {16]. For ex-
ample, the permutation matrices in Eq. (13) can be
factored as follows:

T 000 0 0 O M1 0 o0
0000010 00 1
0100000 010
p,=1l0o00000 1l =1[000
0000100 00 0
0001000 000
0 0 1 0 00 0 Foo
qoooooﬂ 1 0 0
01 0000TO 010
0001000 000
P,=100 10000 =001
0000010 000
0000001 000
o 0 0 0 1 0 0 0 00

The penalty for halving the memory requirements by
this technique is that the permutation must be performed
in two passes.

Beyond this simple modification, it becomes more
difficult to reduce the amount of memory required.
Algorithms have been developed for performing a fast
Fourier transform off disk [17], and it should be
straightforward to adapt these to performing the fast
Hadamard transform in the same manner. But it will
also be necessary to devise a means of performing the
permutation off the disk in a reasonably efficient manner.
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These modifications would make the technique com-
pletely general, being able to deal with any quantity
of data.

It is also intriguing to consider hardware implemen-
tation of this cross-correlation technique. Because of
the triviality of the arithmetic operations required, the
hardware would be much more straightforward than
for the fast Fourier transform. It is completely within
reason to imagine real-time operation of the algorithm
using the appropriate hardware.

8 CONCLUSIONS

Measuring the impulse response using a noiselike
excitation is capable of providing much greater dynamic
range than can be obtained using an impulsive exci-
tation. When the noiselike excitation is chosen to be
a binary maximal-length shift register sequence, several
other advantages accrue. Foremost among these is that
the cross correlation can be performed very efficiently.
Because the excitation is binary, only additions are
required. Furthermore, an efficient algorithm based upon
the fast Hadamard transform exists for minimizing the

0 0 0] T 000 0 0 O
000 0100000
000 0000010
000 000000 Il 272
100 0000100
001 0010000

0 1 0 Foo_oo@
ooﬂ i o000 0 O
00 0 0100000
000 0010000
00 0 0001 00 0f 27b)
001 0000100
01 0 0000001

1 0 0 BOooo_ou‘

number of additions. A straightforward cross-correlation
technique would require the evaluation of approximately
n? multiplications. But this efficient algorithm requires
only about 2.5nlog,n additions, which represents a re-
duction in the execution time of several orders of mag-
nitude for most values of n. There are also advantages
to using maximal-length sequences due to the fact that
they are deterministic signals. Measurements are exactly
repeatable so that additional improvement in the dy-
namic range can be obtained by averaging together the
responses to several measurements.
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