KAOT-DAR

2XCM-I DIGITAL COMPASS AND TEMPERATURE MODULE

DATA SHEET

DESCRIPTION:

The 2XCM-I is a high-performance, low-power digital compass module that outputs compass heading via electronic interface (USART) to a host system. It outputs Compass and Temperature readings by host request. The 2XCM-I has a built-in highly advanced calibration routine to compensate for distortion due to nearby ferrous objects and stray fields such as vehicles, etc.

FEATURES:

- Distortion detection: a warning flag displays when magnetic disturbances such as nearby ferrous metals and electrical currents are compromising operation.
- Advance calibration algorithms.

Heading Information:

		n Assign	ment			
Accuracy :	$\pm 2^{\circ}$					
Resolution :	0.5 [°]			N ↑		7
Repeatability:	$\pm 2^{\circ}$			\uparrow		
Range :	0.0 [°] ~ 359.5 [°]			-		
Temperature Information:		10.NC			0	1.VCC
·····		9.GND			0	2.NC
Accuracy : Resolution :	± 1℃ 0.5℃	8.RX	0		0	3.CS
Repeatability :	± 1℃	7.TX				4.NC
Range :	- 40.0°C ~ +85°C					
Distance of remote sensor :	< 10 m	6.T ₁			0	5.T ₂
Power Requirements:						
Supply Voltage:	5V DC					
Current: Normal mode: Sleep mode: Calibration:	3.8 mA (Average) 0.3 mA 17 mA					

Version 2.0

Environmental Characteristics:

Operation Temperature : $-40 \sim 85^{\circ}C$

Storage Temperature : $-50 \sim 125^{\circ}C$

Dimension:

28.5mm*19.8mm*6mm

Interface:

USART 9600.N.8.1

Pin	Name	Description
1	VCC	Power supply voltage
3	CS	Control signal
5	T ₂	Remote Temp. Sensor 2
6	T ₁	Remote Temp. Sensor 1
7	ТХ	Transmitted Data
8	RX	Received Data
9	GND	Ground

DATA FORMAT:

The value of Angle, Temperature and Check sum calculated by the following rules:

Angle = $(\Theta_{MSB} * 256 + \Theta_{LSB}) / 2$. Temperature = $(T_{MSB} * 256 + T_{LSB}) / 2$. Check sum = FFH \oplus Data 1 \oplus Data 2 $\oplus \dots \oplus$ Data N.

Note:

If the data of T_{MSB} first bit (bit7) is "1", it means the temperature is Negative that is represented by 2's complement. Otherwise, it means the temperature is Positive.

Example:

 Θ = 200.5° = 401D = 0191H, then 91H is Θ_{LSB} and 01H is Θ_{MSB} . T₁ = 25.5°C = 51D = 0033H, then 33H is T_{1LSB} and 00H is T_{1MSB}. T₂ = − 30.0°C

 $30^{\circ}C = 60D = 003CH = 0000 0000 0011 1100B$

 $-60D = (003CH \oplus FFFFH) + 0001H$

	0000	0000	0011	1100B	(60D)
\oplus	1111	1111	1111	1111B	
	1111	1111	1100	0011B	
+	0000	0000	0000	0001B	
	1111	1111	1100	0100B	(-60D)

Input		Output
Х	Y	Z
0	0	0
0	1	1
1	0	1
1	1	0
True table: X⊕Y=Z		

So : -60D = FFC4H

 T_2 = - 30.0 $^\circ\!\mathrm{C}\,$ = - 60D = FFC4H , then C4H is T $_{2\text{LSB}}$ and FFH is $T_{2\text{MSB}}$

At H-command :

Check sum = FFH $\oplus \oplus_{LSB} \oplus \oplus_{MSB}$ = FFH $\oplus 91H \oplus 01H$ = 6FH.

So data format is : 91H + 01H + 6FH

At T-command :

 $\begin{array}{rcl} \text{Check sum} &=& \text{FFH} \ \oplus \ T_{1\text{LSB}} \ \oplus \ T_{1\text{MSB}} \ \oplus \ T_{2\text{LSB}} \ \oplus \ T_{2\text{MSB}} \\ &=& \text{FFH} \ \oplus \ 33\text{H} \ \oplus \ 00\text{H} \ \oplus \ \text{C4H} \ \oplus \ \text{FFH} \\ &=& \text{F7H.} \end{array}$

So data format is : 33H + 00H + C4H + FFH + F7H

At M-command :

 $\begin{array}{l} \text{Check sum} = \text{FFH} \ \oplus \ \ominus_{\text{LSB}} \ \oplus \ \ominus_{\text{MSB}} \ \oplus \ T_{1\text{LSB}} \ \oplus \ T_{1\text{MSB}} \ \oplus \ T_{2\text{LSB}} \ \oplus \ T_{2\text{MSB}} \\ = \text{FFH} \ \oplus \ 91\text{H} \ \oplus \ 01\text{H} \ \oplus \ 33\text{H} \ \oplus \ 00\text{H} \ \oplus \ \text{C4H} \ \oplus \ \text{FFH} \\ = 67\text{H}. \end{array}$

So data format is : 91H + 01H + 33H + 00H + C4H + FFH + 67H

OPERATION :

As soon as power on, the 2XCM-I will be in Normal mode (Normal + H-commend) and start to output heading. **Please note when the device is first setup it may need calibration.**

When calibrating 2XCM-I, be sure that to keep 2XCM-I on the flat and where there is less magnetic interference (not near railroad tracks, metal-framed building, power line or audio speakers).

2XCM-I also provides 3 functions for the users. These are Normal , Sleeping and Calibration mode.

There are three special commands in normal mode, H-command, T-command and M-command. The default is H-commend.

OPERATION TABLE :

Operation	Meaning	Host send	2XCM-I respond	Mode after response
	Distortion notice		1st bit (bit7) of data ⊖ _{MSB =} 1.	
C - command	Start Calibration	'C' (43H)	'O' (4FH) + 'K' (4BH) + 13H	Calibration
D - command	Calibration Done	'D' (44H)	'O' (4FH) + 'K' (4BH) + 13H	Normal
S - command	Sleep	'S' (53H)	'O' (4FH) + 'K' (4BH) + 13H	Sleep
W - command	Wake up	'W' (57H)	'O' (4FH) + 'K' (4BH) + 13H	Normal
H - command	Heading information request	'H' (48H)	'O' (4FH) + 'K' (4BH) + 13H Heading information sent every 0.5 second.	Normal + H-command
T - command	Temperature information request	'T' (54H)	'O' (4FH) + 'K' (4BH) + 13H Temperature information sent every 0.5 second.	Normal + T-command
M - command	Mix information request	'M' (4DH)	'O' (4FH) + 'K' (4BH) + 13H Heading and temperature mixed information sent every 0.5 second.	Normal + M-command

Calibration mode :

When distortion is detected , the first bit (bit7) of heading data Θ_{MSB} will be set "1", then the heading data may be inaccurate.

A distortion warning may be displayed briefly when close to the strong magnetic interference, As soon as the 2XCM-I is moved away, the distortion signal will not be sent and the heading data will be accurate.

The 2XCM-I has a powerful design to shortly against the strong magnetic interference , When distortion is detected , it will temporarily keep on sending the latest accurate heading data.

If the distortion warning displays continuously or display after calibration, then user is suggested to perform calibration again, where there is less magnetic interference.

To perform calibration , Host sends C-command to 2XCM-I and turns the module in two circles. Host sends D-command to 2XCM-I after turning ending.

C-command (Calibration):

When host sends 'C' (43H) through RX pin to 2XCM-I, the 2XCM-I will respond 'O' (4FH) + 'K' (4BH) + 13H to host and will be in calibration mode. Also 2XCM-I will detect new parameter in this mode.

Please turn the module in two circles, then send D-command to 2XCM-I. When 2XCM-I receives the D-command, the following events will happen :

- 1. 2XCM-I respond 'O' (4FH) + 'K' (4BH) + 13H to host.
- 2. 2XCM-I Exit Calibration mode and enter into Normal mode. (The last commend of Normal mode).
- 3. The 2XCM-I can keep the last calibration data in memory which will never lost even power off.

Note: The D-command is the only way to exit the Calibration mode.

D-command (Calibration Done) :

When host sends 'D' (44H) through RX pin to 2XCM-I, the 2XCM-I will respond 'O' (4FH) + 'K' (4BH) + 13H to host. Then, 2XCM-I will be in Normal mode. (The last commend of Normal mode).

S-command (Sleep mode) :

When host sends 'S' (53H) through RX pin to 2XCM-I, the 2XCM-I will respond 'O' (4FH) + 'K' (4BH) + 13H to host and will be in Sleeping mode. The Sleeping mode is also called Power Saving mode.

When host send 'W' (57H) to 2XCM-I, the 2XCM-I will Wake Up.

W-command (Wake-up)

When host sends 'W' (57H) through RX pin to 2XCM-I, the 2XCM-I will respond 'O' (4FH) + 'K' (4BH) + 13H to host. Then, 2XCM-I will be in Normal mode (The last commend of Normal mode).

Host can send the specify commend , H , T or M to change that commend.

Normal mode

Normal mode means CS pin is kept at high. The 2XCM-I will send specify information to the host every 0.5 second. **The default command is H-command.**

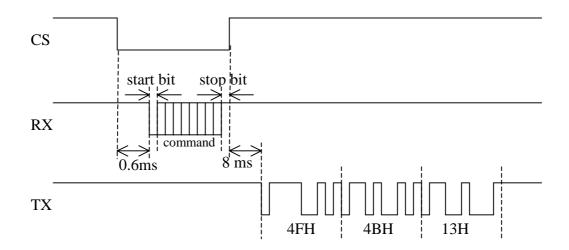
H-command (Heading information):

When host sends 'H' (48H) through RX pin to 2XCM-I, the 2XCM-I will respond 'O' (4FH) + 'K' (4BH) + 13H to host and will be in Normal mode with H-command.

The 2XCM-I sends heading information through TX pin to host at normal mode with H-command every 0.5 second if CS pin is at high.

T-command (Temperature information):

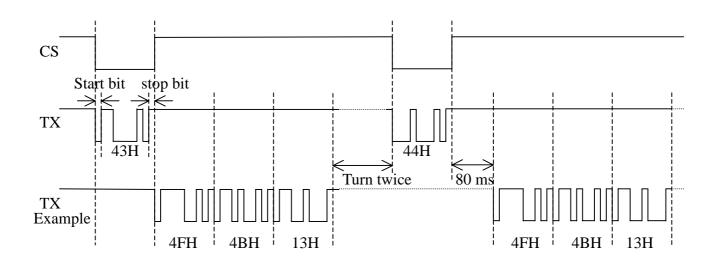
When host sends 'T' (54H) through RX pin to 2XCM-I, the 2XCM-I will respond 'O' (4FH) + 'K' (4BH) + 13H to host and will be in Normal mode with T-command.


The 2XCM-I sends temperature information through TX pin to host at normal mode with T-command every 0.5 second if CS pin is at high.

M-command (Mixed information):

When host sends 'M' (4DH) through RX pin to 2XCM-I, the 2XCM-I will response 'O' (4FH) + 'K' (4BH) + 13H to host and be in Normal mode with M-command.

The 2XCM-I sends mixed heading and temperature information through TX pin to host at normal mode with M-command every 0.5 second if CS pin is at high.


Timing chart (command)

NOTE:

When host sends command through RX pin to the 2XCM-I , the 2XCM-I will respond 'O' (4FH) + 'K' (4BH) + 13H to host.

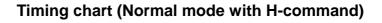
Timing chart (Calibration mode)

KAOT-DAR

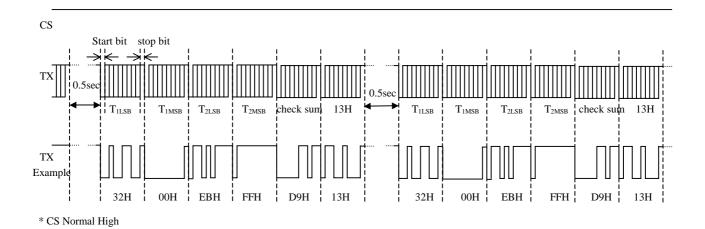
CS start bit stop bit ΤХ 0.5s 0.5se $\Theta_{LSB} \parallel \Theta_{MSB} \parallel check sum \parallel 13H$ Θ_{LSB} Θ_{MSB} check sum 13H Example ΤX 68H 01H 68H 01H 96H 13H 13H 96H į. ļ

* CS: Normal High

NOTE :


 $\Theta = (\Theta_{\text{MSB}} * 256 + \Theta_{\text{LSB}}) / 2.$

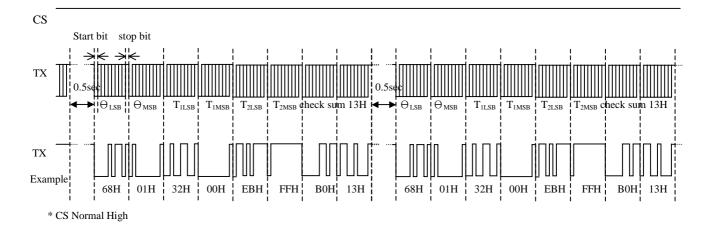
Check sum = FFH $\oplus \ \Theta_{LSB} \oplus \ \Theta_{MSB}$


At this example :

 $\Theta = (01H * 256 + 68H) / 2.$ = (1 * 256 + 104) / 2. = 180.0°

Check sum = 96H.

NOTE :


At this example:

The data of T_{1MSB} first bit (bit7) is "0", it means the temperature is Positive.

The data of T_{2MSB} first bit (bit7) is "1 ", it means the temperature is Negative that is represented by 2's complement.

 $(\ \mathsf{FFEBH} \ \oplus \ \mathsf{FFFFH} \) + 0001 H = 0015 H \\ \mathsf{T}_2 \ = - (\ 00H \ ^* \ 256 \ + \ 15H \) \ / \ 2. \\ = - (\ 0 \ ^* \ 256 \ + \ 21 \) \ / \ 2. \\ = - \ 10.5^\circ \mathbb{C}$

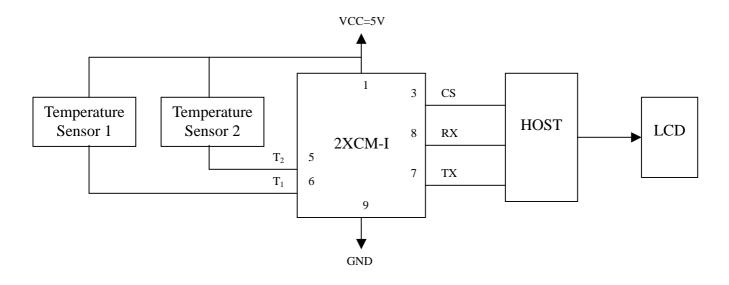
Check sum = D9H.

Timing chart (Normal mode with M-command)

NOTE :

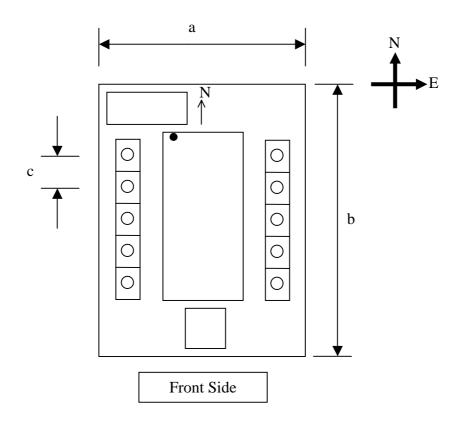
 $\begin{array}{l} \ominus = \left(\begin{array}{ccc} \ominus_{MSB} * 256 \end{array} + \begin{array}{c} \ominus_{LSB} \end{array} \right) / 2. \\ T_1 = \left(\begin{array}{c} T_{1MSB} * 256 \end{array} + \begin{array}{c} T_{1LSB} \end{array} \right) / 2 \\ T_2 = \left(\begin{array}{c} T_{2MSB} * 256 \end{array} + \begin{array}{c} T_{2LSB} \end{array} \right) / 2 \\ \end{array}$ Check sum = FFH $\begin{array}{c} \ominus \end{array} \begin{array}{c} \ominus \end{array} \begin{array}{c} \ominus_{LSB} \oplus \end{array} \begin{array}{c} \ominus_{MSB} \oplus \end{array} \begin{array}{c} T_{1LSB} \oplus \end{array} \begin{array}{c} T_{1MSB} \oplus \end{array} \begin{array}{c} T_{2LSB} \oplus \end{array} \begin{array}{c} T_{2MSB} \end{array}$

At this example:

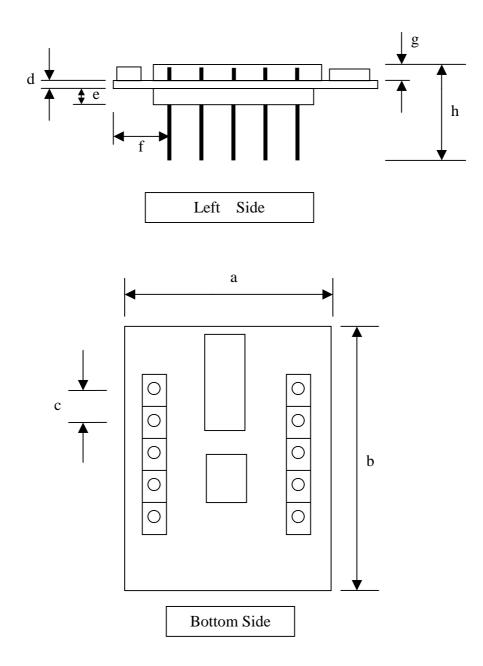

 $\Theta = (01H * 256 + 68H) / 2.$ = (1 * 256 + 104) / 2. = 180.0°

The data of T_{1MSB} first bit (bit7) is "0", it means the temperature is Positive.

The data of T_{2MSB} first bit (bit7) is "1 ", it means the temperature is Negative that is represented by 2's complement.


 $(\ \mathsf{FFEBH} \ \oplus \ \mathsf{FFFFH} \) + 0001 H = 0015 H \\ \mathsf{T}_2 \ = - (\ 00H \ ^* \ 256 \ + \ 15H \) \ / \ 2. \\ = - (\ 0 \ ^* \ 256 \ + \ 21 \) \ / \ 2. \\ = - \ 10.5^\circ \mathbb{C}$

Check sum = B0H.



Application circuit showing 2XCM-I external Connections :

Package drawing :

KAOT-DAR

Symbol	Millimeters	Inches (10 ⁻³)
Cymbol	mm	Mil
а	19.8	780
b	28.5	1122
С	2.6	102
d	0.6	24
е	2.6	102
f	8.8	347
g	2.8	110
h	12.2	480