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Introduction
This application note details how to calculate a type III compensation network and investigates the relationship between 
phase margin and load transient response for the AnalogicTech family of voltage mode control step-down converters. 
This family includes the AAT1184, AAT1185, AAT1189, AAT2687, AAT2688, and AAT2689. Voltage mode control has 
become a very popular topology for DC to DC converters, especially with low noise output systems including DSL and 
cable modems, notebook computers, satellite set-top boxes, and wireless LAN systems. 

Background
In order to reduce the DC-DC converter’s output voltage ripple, the equivalent series resistance (ESR) of the output 
capacitor needs to be reduced. Ceramic output capacitors have a very small equivalent series resistance (ESR), low 
cost, and small size, making them the ideal output filter solution for DC-to-DC converters. However, the use of low ESR 
ceramic capacitors significantly affects the design of the error amplifier in the feedback loop. The power stage consists 
of a double pole due to the L COUT filter and an ESR zero. The ESR zero is pushed far away from the double pole fre-
quency which results in inadequate phase margin at the cross-over frequency. Therefore, type III compensation is used 
to stabilize the loop and optimize the output transient response to dynamic load changes.

Voltage Mode Control Loop
As illustrated in Figure 1, a typical voltage mode control loop has three main stages: step-down power stage, compen-
sation network, and PWM modulator. The Type III compensation network generates two zeros and two poles. The two 
zeros are placed from 60% to 150% of double pole frequency to counter the 180° phase lag due to the L COUT output 
filter. The two poles are set at the switching frequency of the converter to nullify the ESR zero and attenuate the high 
frequency noise. 
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Figure 1: Closed Loop Step-Down Converter with Type III Network Compensation.
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Step-Down Power Stage Transfer Function

The transfer function of the power stage of the step-down converter can be determined by the voltage division:

Eq. 1: 
VOUT

VIN

ZOUT

ZL + ZOUT
=

Where ZL and ZOUT are the inductor impedance and output impedance of the power stage. The RDCR includes the DC 
winding resistance, the turn-on resistance of the MOSFET, and the trace resistance. RESR is the equivalent series resis-
tor of the output capacitor. ZL and ZOUT are calculated using Equations 2 and 3.

Eq. 2: 
1

sCOUT

s · COUT · RLOAD · RESR + RLOAD

s · COUT · (RLOAD + RESR) + 1
ZOUT = RLOAD //  RESR +  =

Eq. 3: ZL = s · L + RDCR

Where the complex variable s = j · ω and   -1j =
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Figure 2: Step-Down Converter Power Stage.

The step-down power stage open loop gain is given by substituting Equations 2 and 3 into Equation 1. Algebraic 
manipulation yields the following expression for the open-loop transfer function of the power stage:

Eq. 4: 
VOUT

VIN

RLOAD · (s · COUT · RESR + 1)
s2 · L · COUT · (RLOAD + RESR) + s{L + COUT · [RDCR(RLOAD + RESR) + RLOAD · RESR ]} + RLOAD + RDCR

GP = =

A typical Bode plot of the step-down converter power stage is illustrated in Figure 3. A double pole at the cut-off fre-
quency causes the gain to roll off with a -40dB/decade slope (blue) and the phase to exhibit a very sharp slope down-
ward from 0 degree to -180 degree phase lag (red). The ESR zero is observed at a very high frequency due to the 
ceramic output capacitor. 
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Figure 3: The Bode Plot of the Output Stage.

Error Amplifier Transfer Function Calculation

The error amplifier transfer function with type III compensation as shown in Figure 4 is calculated from Equation 5:

Eq. 5: 
VCOMP

VOUT
GE = 

1
s · C2

1
s · C1

//  R1 + 
=

1
s · Cff

Rfbh //  Rff + 
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Figure 4: Error Amplifier With Type III Compensation Network.
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By algebraic manipulation, GE can be explicitly expressed in terms of zeros and poles in Equation 6.

Eq. 6: 
Rfbh + Rff

Rfbh · Rff · C2
GE = 

1
R1 · C1

1
(Rfbh + Rff) · Cff

·  s + s + 
·

(C1 + C2)
R1 · C1 · C2

1
Rff · Cff

s ·  s + ·  s + 

Equation 6 gives two zeroes at frequencies FZ1 and FZ2 and two poles at frequencies FP1 and FP2 in the following expres-
sions:

 

1
2π · (Rfbh + Rff) · Cff

FZ1 = 1
2π · R1 · C1

FZ2 = and

 

1and FP2 = 1
2π · Rff · Cff

FP1 = 
C1 · C2

C1 + C2
2π · R1 · 
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Figure 5: Error Amplifier With Type III Compensation Bode Plot.

Type III compensation provides two zeros and two poles which push the cross-over frequency as high as possible and 
boosts the phase margin greater than 45 degree. A higher bandwidth yields a faster load transient response. The 
faster transient response results in a smaller output voltage spike.

PWM Modulator Stage

The PWM modulator gain is inversely proportional to the peak-to-peak input ramp voltage of the oscillator and is derived 
via Equation 7.

Eq. 7: 
VIN

VRAMP
GM =
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Step-Down Converter Loop Gain with Type III Compensation

The loop gain of the system is expressed in terms of GM, GE, and GP factors as shown in Equation 8.

Eq. 8: GLOOP = GM · GE · GP

The magnitude in dB and the phase in degree of the converter loop gain are derived from Equations 9 and 10.

Eq. 9: GLOOP (dB) = 20.log (GLOOP) = 20.log (GM · GE · GP)

Eq. 10: 
180
π

PLOOP = arg(GLOOP) · 

The magnitude and phase Bode plots of the converter loop gain with type III compensation are shown in Figure 5. By 
placing the two zeros close to the output double pole and the two poles at switching frequency, the crossover fre-
quency is pushed to 10% to 60% of switching frequency and in the vicinity of maximum phase boost in order to achieve 
an optimum phase margin Φ M. 
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Figure 6: Step-Down Converter Loop Gain With Type III Compensation Bode Plot .
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Type III Compensation Design Process
For Voltage Mode Control Step-Down Converter:
For example, assume the voltage mode step-down converter has the following specifications:

VIN = 6V to 24V
VOUT = 3.3V

VOUT - VREF

VREF

3.3V - 0.6V
0.6V

RFBL = 6.04KΩ, RFBH = RFBL ·  = 6.04K ·  = 27.4KΩ

VIN

12
VRAMP =

L = 4.7μH
COUT = 2x22μF, ESR = 2mΩ
IOUT = 2.5A
FSW = 490KHz

1. Set the crossover frequency in the range of 1/6 to 1/10 of switching frequency to avoid the Niquist pole:

Eq. 11: 
FSW

10
FC = = 49KHz

2. Place the first zero from 60% to 150% of the double pole frequency of the L COUT filter:

Eq. 12:   L · COUT

 K · Rfbh
= = 481pFCff =

  4.7μH · 44μF
 1.1 · 27.4KΩ

Where the value of factor K is within the range of 0.6 to 1.5.

3. Set the first pole at switching frequency and calculate Rff from:

Eq. 13: 
1

2π · Cff · FSW

1
2π · 481pF · 490KHz

Rff = = = 675Ω

4. At cross-over frequency (FC) the loop gain is unity. Setting |GLOOP|= 1 at s = jωc, the value of R1 is given by Equation 
14.

Eq. 14: 
(2π · FC)2 · L · COUT + 1

2π · FC · Cff

(2π · 49KHz)2 · 4.7μH · 44μF
2π · 49KHz · 481pF

VRAMP

VIN
R1 = · = = 11.6KΩ

5. Set the second zero to coincide with the first zero, and solve for C1:

Eq. 15:   L · COUT

 K · R1
= = 112pFC1 =

  4.7μH · 44μF
 1.1 · 11.6KΩ

6. Place the second pole from switching frequency to one decay higher for adequate phase margin, and solve for C2:

Eq. 16: 
1

2π · R1 · FSW

1
2π · 11.6KΩ · 490KHz

C2 = = = 28pF
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The Relationship between Frequency Domain
and Time Domain in a Step-Down Converter

Knowing the relationship between the phase margin in the frequency domain and load transient response in time 
domain is beneficial to achieving the best results. In this way, we can select either a slow output transient response 
but without any overshoot or, a faster output transient response with a small amount of overshoot. Let’s concentrate 
on the small area in the vicinity of the cross over frequency (see Figure 7). The curve has two different slopes (-20dB/
decade and -40dB/ decade) due to the location of the original pole ω0 and the high frequency pole ω2. Assuming the 
other compensation pole ω1 and the ESR zero are cancelled out. The open loop transfer function in this region can be 
approximated by Equation 17:

Eq. 17: T(s) ≈ 
1

1 +
s
ω0

s
ω2

The close loop transfer function can derive from T(s):

Eq. 18: 
1

1 + T(s)
GLOOP (s) = 

+
= 1

s2

ω0 · ω2
+ 1

s
ω0

+
= 1

s2

ωr2

s
ωr · Q

+ 1

Where the quality coefficient Q and the resonant frequency ωr are defined using Equations 19 and 20.

Eq. 19: 
ω0

ω2
Q =

Eq. 20:   ω0ω2ωr =

The cross-over frequency ωc can be solved by equating Equation 18 to unity at the crossover frequency:

Eq. 21: 

ω0

ω2

2
1 + 4 - 1

  2
ωc = ω2 = ω2

21 + 4(Q) - 1

  2
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Figure 7: The Gain Curve Has Two Different Slopes (-20dB/decade and -40dB/decade) at Crossover
Frequency due to the Location of the Original Pole ω0 and the High Frequency Pole ω2.
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Eq. 22: 

ωC

ω0

0
ωC

ω2

ωC

ω2

π
2

-1 -1-1arg T(ωC) = -  tan         + tan = -tan        -

Eq. 23: 
ω2

ωC

2
1 + 4Q4 - 1

-1 -1ϕM = π + arg T(ωC) = tan        = tan

The relationship between the phase margin and the quality coefficient can be derived from Equation 23: 

Eq. 24: Q = = 
1 + tan(ϕM)2

  tan(ϕM)

cos(ϕM)

  sin(ϕM)

The percent overshoot and quality factor in the second order system are given by Equation 25.

Eq. 25: %OS = 100 · e = 100 · e
-π

4Q2 - 1 - 1

-π
4cosϕM

sin2ϕM

Figure 8 plots the percent overshoot versus phase margin of a typical second order system. 
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Figure 8: Percent Overshoot vs. Phase Margin for Second Order System.

The output transient response of a 3.3V output step-down converter with different phase margin is measured in Figure 
9. The step load is generated from 200mA to 2.5A with 2A/μs slew rate. The red curve corresponding to 68° phase 
margin has 160μs recovery time without overshoot and a transient voltage spike of 404mV. The black and green curves 
experience very fast recovery time (40μs) with very small overshoot and a small transient voltage spike of 280mV. 
Finally, the blue and pink curves reveal an unstable system due to the phase margin of less than 45°.
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Figure 9: The Relationship Between Phase Margin, Overshoot and Recovery Time
of the Output Transient Response of a 3.3V Output Buck Converter.

Phase Margin and Transient Response vs. DC Gain (FC = 50KHz)

Based on the discussion above of the frequency domain and time domain, the recovery time can be adjusted faster to 
reduce the peak-to-peak output transient response of a step-down converter. This can be done by pushing the zeros a 
bit above the double poles frequency (K = 1.1) in order to boost the DC gain from 65dB to 75dB. Figure 10 illustrates 
the relationship between the phase margin and load transient response for K = 0.6 and K = 1.1 at the same crossover 
frequency of 50KHz. A higher DC gain along with a smaller phase margin of 58° yields a faster recovery time of 60μs, 
which results in a smaller peak-to-peak output transient response (280mV) for a 200mA to 2.5A dynamic load.
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Figure 10: Phase Margin and Transient Response For Differing K Factors (K = 0.6 and K = 1.1).
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Phase Margin and Transient Response vs. Bandwidth (K = 1.1)

As illustrated in Figure 11, the output voltage spike can be further improved by pushing the crossover frequency (FC) 
to 80KHz if a small amount of overshoot is acceptable. However, further increasing the bandwidth reduces the phase 
margin below 45°, resulting in an unstable system. In addition, increasing the bandwidth to exceed the effective control 
bandwidth no longer reduces the output voltage spike due to the voltage drop across the ESR of the output capacitor 
which dominates the transient voltage spike.

For a 3.3V output voltage buck converter using a 4.7μH inductor during a load transient step from 200mA to 2.5A, the 
effective control bandwidth is derived from Equation 26.

Eq. 26: 
VO

4 · ΔIO · L
3.3V

4 · 2.5A · 4.7μH
= = 76KHzFCE =  

PM=58º

PM=55º

K=1.1
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  C2 = 27pF

Figure 11: Frequency Domain vs. Time Domain For Different Bandwidth (FCO = 50KHz and FCO = 80KHz)
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Loop Gain Measurement

The following guidelines show the method used to measure the loop gain of a DC-DC converter: 

1. Break the feedback loop and insert a 50Ω resistor between the broken original connection. Insert the secondary 
winding terminal of the one-to-one isolation transformer between the 50Ω resistor. Configure the specified test 
equipment as shown in Figure 11.

2. Inject a sinusoidal signal from SOURCE OUT of the network analyzer to the loop through the primary winding ter-
minal of the transformer while monitoring the ratio of CHA and CHB on the network analyzer.

3. Set the converter output current to heavy load while monitoring the LX node of the converter on the oscilloscope 
(to obtain a good result the converter must be in continuous PWM mode).

4. Sweep the frequency from SOURCE OUT of the network analyzer from 10Hz to 1MHz and adjust the magnitude of 
the injected signal (around 10mV to 100mV) in order to have a clean PWM waveform at the LX node.
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Figure 12: Loop Gain Measurement Set-up.
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Conclusion
Using low ESR ceramic output capacitors for voltage mode controlled buck converters yields very low output voltage 
ripple, but requires type III compensation for adequate phase margin. The type III compensation network provides two 
zeros and two poles that push the crossover frequency to a possible maximum value with adequate phase margin for 
the control loop. The trade-off between the stability and output transient response can be adjusted by using the factor 
K, which represents the position of zeros in the vicinity frequency of the output double poles. In applications which 
require no overshoot, the two zeros are placed at 60% (K = 0.6) of the output double poles frequency to achieve 
approximately 70 degrees of phase margin. However, if the transient output voltage spike is critical, the two zeros can 
be placed up to 150% (K = 1.5) of the output double pole frequency if a small amount of overshoot is acceptable. In 
addition, a higher bandwidth yields a faster transient response. However, a bandwidth higher than the critical bandwidth 
can no longer reduce the transient output voltage spike. A typical bandwidth for type III compensation is in the range 
of 10% to 60% of switching frequency. 


