
XAPP780 (v1.0) August 17, 2005 www.xilinx.com 1

© 2005 Xilinx, Inc. All rights reserved. XILINX, the Xilinx logo, and other designated brands included herein are trademarks of Xilinx, Inc.
All other trademarks are the property of their respective owners.

NOTICE OF DISCLAIMER: Xilinx is providing this design, code, or information "as is." By providing the design, code, or information as one possible implementation of this feature,
application, or standard, Xilinx makes no representation that this implementation is free from any claims of infringement. You are responsible for obtaining any rights you may

require for your implementation. Xilinx expressly disclaims any warranty whatsoever with respect to the adequacy of the implementation, including but not limited to any warranties
or representations that this implementation is free from claims of infringement and any implied warranties of merchantability or fitness for a particular purpose.

Summary This application note describes a cost-optimized copy protection scheme that helps protect an
FPGA against cloning. The design leverages an external secure serial EEPROM, such as the
Dallas Semiconductor/Maxim DS2432 (1 kbit protected 1-wire EEPROM with SHA-1 engine).
The included reference design uses an optimized PicoBlaze™ 8-bit microcontroller. This
application note provides a hardware design with associated PicoBlaze software code. The
code loads a secret key into the secure EEPROM and authenticates the user system with the
secure EEPROM.

Note: This application note is provided for demonstration purposes only. Its design might be vulnerable
to security attacks on the configuration bitstream. Contact your local Xilinx sales office or Xilinx distributor
for an updated design. Contact xapp780@xilinx.com for questions and feedback on this application note.

Introduction Many FPGA designs require copy protection to protect FPGA intellectual property from cloning
by unauthorized parties. There are many levels of security that can be applied in terms of copy
protection.

Virtex™-II, Virtex-II Pro, Virtex-II Pro X, and Virtex-4 devices offer encryption of the
configuration data which is used in systems requiring the highest level of security. For more
cost-sensitive applications where the level of security required is limited to protecting against
unauthorized cloning of FPGA devices, authentication using an Identification Friend or Foe
(IFF) concept is viable. This concept can be applied to all FPGA families, including the low-cost
Spartan™-3 Generation series.

Figure 1 shows the IFF concept. The following steps determine if the system has been
identified as a Friend or Foe:

1. First, the FPGA implements a Random Number Generator (RNG) that produces a random
message Q, which is sent to the secure EEPROM.

2. The secure EEPROM uses a secret key, known only to the designer, and a hash function to
encrypt the message Q and produce the response A.

3. The FPGA uses the same secret key to determine the expected response E, and compares
it with the actual responses A, coming from the secure EEPROM.

Application Note: Virtex-II, Virtex-II Pro, Virtex-4, and Spartan-3 FPGA Series

XAPP780 (v1.0) August 17, 2005

FPGA IFF Copy Protection Using Dallas
Semiconductor/Maxim DS2432 Secure
EEPROMs
Author: Catalin Baetoniu and Shalin Sheth

R

Figure 1: Identification Friend or Foe (IFF)

HASH HASH

RNG

SECRET
KEY

SECRET
KEY

FOE

X780_01_072805

FPGASecure EEPROM
Q

A E

http://www.xilinx.com
http://www.maxim-ic.com/quick_view2.cfm/qv_pk/2914

2 www.xilinx.com XAPP780 (v1.0) August 17, 2005

Hardware System
R

4. If the expected and actual responses match, the design is a Friend. Otherwise the design
is labeled as a Foe because tampering might have occurred with the system.

5. Finally, the FPGA application must be designed such that if a Foe is detected, the
application ceases to operate or operates with diminished functionality, such as a demo
mode. The user design functions correctly only when the system is detected as a Friend.

This application note uses a Dallas Semiconductor/Maxim DS2432 secure EEPROM.
However, the IFF concept can also be applied to other secure EEPROMs. Figure 2 shows the
connectivity diagram between the DS2432 secure EEPROM and a Xilinx FPGA to implement
the copy protection scheme outlined in this application note. First, the FPGA configures itself
from a flash PROM. When the FPGA is configured, the user design is automatically disabled
until it authenticates with the secure EEPROM using a secret key that is stored in the FPGA
against the stored encrypted key in the secure EEPROM.

The features of the DS2432 secure EEPROM include:

• 64-bit read-only unique serial number (no two devices share the same ID)

• 64-bit write-only secret key that can be rewritten at any time, but there is no way of reading
it back

• Secure Hash Algorithm (SHA-1) cryptographic engine

• Serial 1 wire interface for low pin count

The widely accepted security principle called Kerckhoffs' law states that security cannot be
achieved through obscurity, and a cryptosystem is considered secure if a cryptographically
secure algorithm is used and the details of the design are public. According to the principle, the
security of the design is ensured by keeping a master key secret. The 64-bit key should be kept
in a secure environment within the design center and should not be released to third parties,
such as contract manufacturers.

Hardware
System

The reference design provides two designs, LOADTEST and IFFTEST, that assist in designing
the DS2432 into a system for copy protection. IFFTEST is used after a valid authentication key
has been programmed using LOADTEST. Table 1 indicates how each design is used in the
prototyping, manufacturing, and production environment.

Figure 2: DS2432 Secure EEPROM Connectivity to Xilinx FPGA

SIO SIO

Authentication Core
1 Block RAM
~100 Slices

FOE DESIGN
DISABLE

CHECK
REQUESTIFF

User
Design

Unencrypted
Bitstream

X780_02_080905

FPGA Flash PROM

Secure
EEPROM

DS2432

680 Ω

+3.3V

http://www.xilinx.com

Hardware System

XAPP780 (v1.0) August 17, 2005 www.xilinx.com 3

R

The hardware systems are built on a modified PicoBlaze module (KCPSM2) described in Xilinx
application note XAPP627. Only two modifications need to be made to this application note’s
design: the register file must be modified and a second port is added on the block RAM for 128
bytes of scratchpad memory.

LOADTEST

The loading of the secret key must be done in a secure environment, and the secret key MUST
be protected from information leaks. Loading the key into the DS2432 device is done through
the LOADTEST design, shown in Figure 3. This LOADTEST design is NOT to be included in
the final user design but simply used in the secure environment. In this design, when the PRGM
pin sees an active-High edge, the loading core attempts to program the key into the DS2432
device. If the key is stored successfully, the PASS signal goes High. Otherwise the PASS signal
remains Low.

The inputs to the LOADTEST design are:

• An input clock named CLKIN, with a minimum frequency of 20 MHz. The actual frequency
of this clock must be set within the LOADTEST HDL file as shown in Figure 4. The clock
period must be adjusted in the UCF file to ensure that timing is met.

• An active-High RESET signal is provided for the authentication core.

• The active-High PRGM signal activates the loading of the secret key in the DS2432
device.

Table 1: XAPP780 Reference Systems Usage

LOADTEST IFFTEST

Prototyping Used to load the authentication
key (hash of the secret key and a
unique serial number) into the
DS2432 chip.

Example of a copy protection
design to authenticate a system
with a valid DS2432 device. This
outputs an error and should
disable the user design if the
secure EEPROM is not loaded
with the correct authentication
key.

Manufacturing Only used in a secure
environment to program the key.

Not used in the manufacturing
environment.

Production Do not include in the final user
design.

Embedded in the final user
design to authenticate the
DS2432 device that has been
loaded with an authentication
key.

Figure 3: LOADTEST Instantiation Block Diagram
X780_03_080305

PASS

LOADTEST

IB

CLKIN

PRGM

RESET

http://www.xilinx.com
http://www.xilinx.com/bvdocs/appnotes/xapp627.pdf

4 www.xilinx.com XAPP780 (v1.0) August 17, 2005

Hardware System
R

The output from the design is the PASS signal, which is Low by default. When the secret key is
successfully loaded into the DS2432 device, the PASS signal goes High. The IB signal is the
bidirectional DS2432 interface pin to the design.

Fundamental to the authentication scheme is the need to use a secret key. Replace the secret
key used in the reference design with your own secret key. The 0x0123_4567_89AB_CDEF
value is the first one an attacker will use to try to break the copy protection.

In this IFF authentication application, the secret key is not directly stored in the DS2432 device.
LOADTEST stores a hash of the secret key and the device’s unique serial number in the
DS2432 device. Therefore, the authentication key stored in each DS2432 device is different
even though the secret key is the same, providing increased security because every secure
EEPROM appears to be different.

Figure 5 shows the HDL lines that need to be changed in the LOADTEST project to change the
secret key.

After the secret key is loaded successfully, the system is ready to be authenticated using the
IFFTEST design.

IFFTEST

Use the IFFTEST design to authenticate a system, shown in Figure 6, as part of the final user
design. The basic concept is that a user design is deactivated by default, and then it tries to
authenticate the system. If a valid secure EEPROM is found with the correct secret key, the
user design is activated.

To authenticate the system, the user design asserts the IFF signal on the IFFTEST core from
Low to High. If the system integrity has been validated, the Foe signal goes Low indicating the
secure EEPROM is a Friend and not a Foe. If the system integrity is altered, the Foe signal
remains High.

Figure 4: Required Changes in LOADTEST or IFFTEST to Specify the Correct Clock
Frequency

Figure 5: Required Changes in LOADTEST or IFFTEST to Specify a Secret Key

Figure 6: IFFTEST Instantiation Block Diagram

VHDL

-- MAXCNT must be equal to your system clock frequency expressed in MHz
constant MAXCNT:INTEGER:=50; -- for a 50 MHz CLK

VHDL

-- This is the secret master key - replace it with your own!
constant KEY:TKEY:=(X"01",X"23",X"45",X"67",X"89",X"AB",X"CD",X"EF");

X780_06_080305

FOE

IFFTEST

IB

CLKIN

IFF

RESET

http://www.xilinx.com

Software

XAPP780 (v1.0) August 17, 2005 www.xilinx.com 5

R

The inputs to the IFFTEST design are:

• An input clock named CLKIN, with a minimum frequency of 20 MHz. The actual frequency
of this clock must be set within the LOADTEST HDL file as shown in Figure 4. The clock
period must be adjusted in the UCF file to ensure that timing is met.

• An active-High RESET signal is provided for the authentication core.

• A rising edge on the IFF signal initiates the authentication of the DS2432 device.

The FOE output signal disables the user design when High and enables the user design when
Low. The IB signal is the bidirectional DS2432 interface pin to the design.

Figure 7 shows the HDL instantiations for the IFFTEST core within the user design.

To authenticate the system, the secret key specified in IFFTEST must match the secret key in
LOADTEST. Replace the secret key with your own secret key as shown in Figure 5, page 4.

Software To use the design as-is, no software changes are required for this design.

For PicoBlaze users who wish to modify the software content, the commented PicoBlaze
assembly code is provided in loadtest.psm and ifftest.psm. To compile the code, the
updated ROM_form files must be included in the directory where the KCPSM2 compiler is run.
The updated ROM_form files are necessary to allow the PicoBlaze core to use the second
memory port as scratchpad memory. Refer to the “PicoBlaze Assembler” section of XAPP627
for more details on how to use the PicoBlaze compiler.

Conclusion This application note describes a low-cost method to protect the FPGA from cloning with a
secure EEPROM using the concept of authentication. The system’s security is fundamentally
based on the secrecy of the secret key and loading of the key in a secure environment. This
entire reference design, except the secret key, is public abiding by the widely accepted
Kerckhoffs’ law. The simple interface to programming and authentication provided in this
application note make this copy protection scheme very easy to implement into a system.

Design
Resources

The reference design described in this application note can be downloaded from the following
link:

http://www.xilinx.com/xlnx/xweb/xil_publications_display.jsp?category=-1209879&show=xapp780.pdf

Figure 7: HDL Instantiation of IFFTEST

VHDL

component IFFTEST
port(IFF:in STD_LOGIC;

FOE:out STD_LOGIC;
CLKIN:in STD_LOGIC;
RESET:in STD_LOGIC;
IB:inout STD_LOGIC);

end component;

IFF_inst: IFFTEST
port map(IFF => IFF_signal,

FOE => FOE_signal,
CLKIN => CLKIN_signal,
RESET => RESET_signal,
IB => IB_signal);

http://www.xilinx.com/xlnx/xweb/xil_publications_display.jsp?category=-1209879&show=xapp780.pdf
http://www.xilinx.com
http://www.xilinx.com/bvdocs/appnotes/xapp627.pdf

6 www.xilinx.com XAPP780 (v1.0) August 17, 2005

References
R

References The following documents provide supplementary material useful with this application note:

1. Xilinx application note XAPP627: “PicoBlaze 8-Bit Microcontroller for Virtex-II Series
Devices”

http://www.xilinx.com/bvdocs/appnotes/xapp627.pdf

2. Kerckhoffs' law

http://en.wikipedia.org/wiki/Kerckhoffs_law

3. Dallas Semiconductor/Maxim DS2432 data sheet

http://pdfserv.maxim-ic.com/en/ds/DS2432.pdf

Revision
History

The following table shows the revision history for this document.

Date Version Revision

08/17/05 1.0 Initial Xilinx release.

http://en.wikipedia.org/wiki/Kerckhoffs_law
http://pdfserv.maxim-ic.com/en/ds/DS2432.pdf
http://www.xilinx.com
http://www.xilinx.com/bvdocs/appnotes/xapp627.pdf

	Summary
	Introduction
	Hardware System
	LOADTEST
	IFFTEST

	Software
	Conclusion
	Design Resources
	References
	Revision History

