
ardware-design engineers have long recognized
the usefulness of RC lowpass filters (Figure 1).
Lowpass filters are useful for performing signal
conditioning, removing noise from a signal, or
rejecting unwanted signals. The first-order
recursive filter is the digital equivalent of the

RC filter, and, as the ratio of the sample frequency to the band-
width increases, their responses become identical.

All lowpass filters produce a weighted average of the current
input value and past inputs. A filter’s characteristics depend on
the weighting used for the past inputs. For example, a lowpass
filter (Figure 2) smoothes noisy input signals. One possibility
for weighting the past-input samples is to give them equal
weight. Although this approach produces a useful lowpass fil-
ter, it makes more intuitive sense to weigh newer samples more
heavily than older samples.

A designer can use recursion to implement a weighting func-
tion (Figure 3). This approach minimizes the processing impact
of the multiplications in this filter because the designer can
implement the multiplications as left or rights shifts in the soft-
ware. The designer feeds data samples with bit width B1 into
the filter at a fixed sample rate. Bit width B2 may be larger than
bit width B1. The summing block adds the input sample to the
last output sample, and the delay is a digital delay of one sam-
ple. The parameter k is a shift value that controls the filter band-

width. Mathematically, the
recursion in Figure 3 is:
y(n)�(1�2�k)�y(n�1)�x(n),
where x is the input, y is the out-
put, and n is the sample index.

As an example of filter oper-
ation, suppose that k�4 so
1�2�k �0.9375, the value at the
delay output is zero, and the fil-
ter input is a single sample of one
followed by all zeros. If you use
the summing block as the out-
put, the first output from the fil-
ter is one. When you feed this
output back to the summing
block, the multiplier scales it,
and it becomes 0.9375. The next

output is 0.93752 or 0.8789, and the nth output is 0.9375n. This
sequence is the impulse response of the filter, but it is also the
weighting function (Figure 4). Good stuff is going on here for
those who like math, but we’ll stick to the implementation.

SPECIFYING THE FILTER RESPONSE
A designer can specify the filter response in either the fre-

quency domain or the time domain. Which one to use depends
on the type of problem you are working on. If noise or unwant-
ed tones are the problems, then the frequency-domain specifi-
cation or bandwidth is appropriate. To reject impulse-noise hits,
or smooth measured data, the time-domain specification or rise
time may work better.

When working in the frequency domain, the designer specifies
the 3-dB frequency or bandwidth of the filter. At this frequency,
the amplitude of the output drops to 0.707 times the amplitude
that a dc signal causes (Figure 5a). You can estimate the atten-
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Figure 3 A designer can use recursion to implement a weighting
function.
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Figure 2 A filter’s characteristics depend on the weighting used
for the past inputs. For example, a filter smoothes noisy input 
signals.
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uation at higher frequencies because doubling the frequency
approximately halves the amplitude. Table 1, which is normal-
ized to a sample rate of 1 Hz, shows the normalized bandwidth
and rise time for several values of k. To get the actual bandwidth,
multiply the value in the table by the sampling frequency.

When working in the time domain, the designer specifies the
rise time of the output in response to a step input. Figure 5b
shows the filter output when the input changes from all zeros
to all ones, which causes the output to gradually move from zero
to one. The rise time is the time necessary for the filter output
to move from 10 to 90% of the final value. Table 1 specifies
the rise time in number of samples.

Before writing code to implement this filter, the designer must
specify the number of bits necessary for the summing block and
the delay. Because the filter is basically an averaging device, the
range of the summing-block output is larger than the range of
the input signal if there is to be no loss in precision. Fortunately,
it is easy to predict the growth in the output-register width
because the dc gain from the input to the summing-block out-
put is 2k, so bit width B2 from Figure 2 is k bits wider than bit
width B1. You can maintain a unity gain by multiplying the sum-
ming-block output by 2�k.

The fixed-point code in Listing 1 implements a filter for the
case of k�4. Using a power of two for k enables the use of right
shifts in the code to avoid the performance hit from the mul-
tiplier blocks. Using a 32-bit integer for the summing block and
delay accommodates the four bits of growth in the output reg-
ister. When using this code, make sure that your compiler sign
extends when right-shifting a signed number.

The first-order recursive filter, or “leaky integrator,” is a sim-
ple yet powerful filter that is a time-tested approach for many
filtering applications, and this implementation requires no mul-
tiply instructions. The steps to quickly and accurately imple-
ment this filter are to specify the filter using either the rise time
or the bandwidth, allocate k additional bits for the summing

block and delay to accommodate register growth, and imple-
ment the filter by substituting shifts instead of multiply instruc-
tions as the example code shows.EEDDNN
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TABLE 1 NORMALIZED BANDWIDTH AND 
RISE TIME FOR VARIOUS VALUES OF k
k Bandwidth (normalized to 1 Hz) Rise time (samples)
1 0.1197 Three
2 0.0466 Eight
3 0.0217 16
4 0.0104 34
5 0.0051 69
6 0.0026 140
7 0.0012 280
8 0.0007 561

Figure 5 At this frequency, the amplitude of the output drops to
0.707 times the amplitude that a dc signal causes (a). When the
input changes from all zeros to all ones, the output gradually
moves from zero to one (b).
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Figure 4 This sequence is the impulse response of the filter, but
it is also the weighting function; k�4, so 1�2�k�0.9375.
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#define FILTER_SHIFT 4           // Parameter K
#define sint32 (signed long)      // Specify 32-bit integer
#define sint16 (signed short)     // Specify 16-bit integer
 
sint32 filter_reg;                  // Delay element – 32 bits
sint16 filter_input;               // Filter input – 16 bits
sint16 filter_output;             // Filter output – 16 bits
 
// Update filter with current sample. 
filter_reg = filter_reg - (filter_reg >> FILTER_SHIFT) + filter_input;
 
// Scale output for unity gain. 
output = filter_reg >> FILTER_SHIFT;

LISTING 1 CODE FOR THE SIMPLE FILTER

(a)

(b)




