

Conventions Used in Presenting Technical Data

The part number of a semiconductor device consists of two letters followed by a serial number.

For example: B		B F	99	98
	Material	Functio	on	Serial number
The first letter indicates the material used for the active part of the device.		N		
А	GERMANIUM (Materials with a bandgap 0.6–1.0 e ^N	√) ¹⁾	P Q	DIODE: radiation generating
В	SILICON (Materials with a bandgap 1.0–1.3 e ^N	√) ¹⁾	R	THYRISTOR: low power
С	GALLIUM-ARSENIDE (Materials with a bandgap > 1.3 eV)	1)	S T	THYRISTOR: power
R	COMPOUND MATERIALS (For example Cadmium-Sulphide)		U	TRANSISTOR: power, switching
The s	econd letter indicates the circuit fund	ction.	^	recovery
А	DIODE: detection, switching or mixed	r	Y	DIODE: rectifying, booster
В	DIODE: variable capacitance		Z	DIODE: voltage reference or voltage regulator transient suppressor diode
D	TRANSISTOR: low power, audio frequer	quency ncy	The s	serial number consists of:
Е	DIODE: tunnel		• A pr	four digit number from 100 to 9999 for devices imarily intended for consumer equipment.
F G H	TRANSISTOR: low power, high frequ DIODE: oscillator and miscellaneous DIODE: magnetic sensitive	uency	• Or fro	ne letter (P, Q, R, etc.) and a three-digit number om 10 to 999 for devices primarily intended for ofessional equipment.
К	HALL EFFECT DEVICE: in an open magnetic circuit		A ver a sing	sion letter can be used to indicate a deviation of gle characteristic, either electrical or mechanical.
L	TRANSISTOR: power, high frequence	су У	This letter does not have a fixed meaning. The onl	
Μ	HALL EFFECT DEVICE: in a closed magnetic circuit		pinnir SOT3	ng or bending and W indicating SOT323 or 343 package.

¹⁾ The materials mentioned are examples

Most recent VISHAY Telefunken specific nomenclature for RF–Transistors

Arrangement of Symbols

Letter symbols for current, voltage and power (according to DIN 41 785, sheet 1)

To represent current, voltage and power, a system of basic letter symbols are used. Capital letters are used for the representation of peak, mean, dc or root-mean-square values. Lower case letters are used for the representation of instantaneous values which vary with time.

Capital letters are used as subscripts to represent continuous or total values, while lower case letters are used to represent varying values.

The following table summarizes the rules given above.

Basic	letter
Upper-case	Upper-case
Instantaneous values which vary with time	Maximum (peak) average (mean) continuous (dc) or root-mean-square (RMS) values

Subscript(s)		
Upper-case	Upper-case	
Varying component alone,i.e.,instantaneous, root-mean-square, max- imum or average values	Continuous (without signal) or total (instantaneous, average or maximum) values	

Letter symbols for impedance, admittances, two-port parameters etc.

For impedance, admittance, two-port parameters, etc., capital letters are used for the representation of external circuits of which the device is only a part. Lower case letters are used for the representation of electrical parameters inherent in the device.

The rules are not valid for inductance and capacitance. Both these quantities are denoted with capital letters. Capital letters are used as subscripts for the designation of static (dc) values, while lower case letters are used for the designation of small-signal values.

If more than one subscript is used (h_{FE}, h_{fe}) , the letter symbols are either all capital or all lower case.

If the subscript has numeric (single, double, etc.) as well as letter symbol(s) (such as h_{21E} or $h_{21e'}$), the differentiation between static and small-signal value is made only by a subscript letter symbol.

Other quantities (values) which deviate from the above rules are given in the list of letter symbols.

The following table summarizes the rules given above.

Basic letter		
Upper-case	Upper-case	
Electrical parameters inherent in the semicon- ductor devices except inductances and capacitances	Electrical parameters of external circuits and of circuits in which the semiconductor device forms only a part; all inductances and capacitances	

Subscript(s)		
Upper-case	Upper-case	
Small-signal values	Static (dc) values	

Examples:

- G_P Power gain
- h_{FE} DC forward current transfer ratio in common emitter configuration
- Z_S Source impedance
- f_T Transition frequency

List of Symbols for RF Transistors

AQL	Acceptable Quality Level	EL	I
B,b	Base, base terminal	F, NF	١
С	Capacitance, general	f _{3dB}	3
C,c	Collector, collector terminal	f _{IM}	I
C_{ce}	Capacitance between collector and emitter, without parasitic capacitances	f _{max} F _{opt} , ∣	N NI
Ci	Short-circuit input capacitance		N
C _{ib}	Short–circuit input capacitance in common–base configuration	f _T F _{50Ω} ,	٦ N
C _{ie}	Short–circuit input capacitance in common–emitter configuration	G,g	۲ (
C _{issg1}	I	ΔG_p	(
	Gate 1–input capacitance in common– source configuration	g _i	5
C _{issg2}	Coto 2, input conscitones in common	aib	Ċ
	source configuration	a	ç
Co	Short-circuit output capacitance	Yie	י כ
C _{ob}	Short–circuit output capacitance in common–base configuration	Gı	ç L
C _{oe}	Short–circuit output capacitance in common–emitter configuration	g _o	3
C_{oss}	Output capacitance in common-source configuration	9 _{ob}	
C _{rss}	Feedback capacitance in common–emitter configuration	9 _{oe}	
Cr	Short-circuit reverse transfer capacitance	g _r	с г
C_{rb}	Feedback capacitance in common–base configuration	G _{pb} G _{pe}	F
C_{re}	Feedback capacitance in common–emitter configuration	G _{ps} G _S	F
C_{cb}	Capacitance between collector and base without parasitic capacitances	h _{FE}	C i
C _{CBO}	Capacitance between collector and base with open emitter	h _{fe}	S i
C_{eb}	Capacitance between emitter and base without parasitic capacitances	l _B Ibias	C E
C _{EBO}	Capacitance between emitter and base with an open collector	I _{BM}	F
D	Drain	IC	ſ
d _{iM}	Signal-to-intermodulation ratio	I CBO	()
E,e	Emitter	'CEO	0
E_{CB}	Collector base breakdown energy	'CER	0

- nductive energy
- Noise figure
- 3dB bandwidth
- Intermodulation frequency
- Maximum frequency of oscillation
- F_{opt}
 - Minimum noise figure
- Transition frequency, gain bandwidth product
- $\mathsf{IF}_{50\Omega}$
 - Noise figure in 50 Ω system
- Gate
- Gain control range
- Short-circuit input conductance
- Input conductance in common -base configuration, short circuit at output g_{ib}= Re (y _{ib})
- Input conductance in common -emitter configuration, short circuit at output g_{ie}= Re (y _{ie})
- Load conductance
- Short–circuit output conductance
- Output conductance in common -base configuration, short circuit at input $g_{ob} = Re(y_{ob})$
- Output conductance in common –base configuration, short circuit at input $g_{ob} = Re(y_{oe})$
- Short–circuit reverse conductance
- Power gain in common-base configuration
- Power gain in common-emitter configuration
- Power gain in common-source configuration
- Generator conductance
- DC forward current transfer ratio n common emitter configuration
- Short circuit forward current transfer ratio n common emitter configuration
- DC base current
- Biasing current, device current
- Peak base current
- DC collector current
- Collector cut-off current with open emitter
- Collector cut-off current with open base
- Collector cut-off current with a resistor RBF connected between base and emitter

	•
I _{CES}	Collector cut–off current, short between base and emitter
I _{CEV}	Collector cut–off current with reverse base–emitter voltage
I _{CEX}	Collector cut–off current with forward base–emitter voltage
I _{CM}	DC collector peak current
I _D	Drain current
I _{DSO,}	DSP
	Self-baised operating current
I _{DSS}	Drain-source saturation current
Ι _Ε	Emitter current
I_{EBO}	Emitter cut-off current with open collector
١ _F	Forward current
I_{G1SS}	Gate1-source leakage current
I_{G2SS}	Gate2-source leakage current
IM_3	Intermodulation distortion third order
IP_3	Third order intercept point
I _{RM}	Reverse recovery current
K	Kelvin
Ls	Series inductance
m	Degree of modulation
M _A	Tightening torque
P _{(-1dE}	3)
	Output power at 1dB gain compression
P _{in}	Input power
Pout	Output power
P _{tot}	Total power dissipation
r _{bb}	Basic intrinsic resistance
R _{BE}	Resistance connected between base and emitter
r _F	DC forward resistance
r _f	Differential forward resistance
R_{G1}	External resistor to gate1
R _{thCh} /	A
	Thermal resistance, channel ambient
R _{thJA}	Thermal resistance, junction and ambient
R_{thJC}	Thermal resistance, junction and case
S	Standing wave ratio (SWR)
S, s	Source
S ₂₁ ²	Transducer gain, power gain in 50 Ω -system
S ₁₁	Input reflection coefficient in 50Ω -system

S ₁₂	Reverse transmission coefficient in 50Ω -system
S ₂₁	Forward transmission coefficient in 50Ω -system
S ₂₂	Output reflection coefficient in 50Ω -system
t	Time
t _d	Delay time
t _f	Fall time
t _{fr}	Forward recovery time
$\frac{t_p}{T}$	Duty cycle
t _{off}	Turn–off time
ton	Turn–on time
tp	Pulse duration (time)
t _r	Rise time
t _{rr}	Reverse recovery time
t _s	Storage time
Т	Temperature, measured in centigrade
Т	Absolute temperature in Kelvin
Т	Period duration
T _{amb}	Ambient temperature (range)
T _{case}	Case temperature
Tch	Channel temperature
Тi	Junction temperature
ΤK	Temperature coefficient
T _{sd}	Soldering temperature
T _{stg}	Storage temperature (range)
V _{BB}	Base supply voltage
V_{BE}	Base-emitter voltage
V _{BEsa}	atBase–saturation voltage
V_{CB}	Collector-base voltage
V _{CBC}	Collector-base voltage, open emitter
V _(BR)	сво Breakdown voltage, collector–base, open emitter
V _{CC}	Collector supply voltage
V _{CE}	Collector-emitter voltage
VCEC	Collector-emitter voltage, open base
V _(BR)	CEO
. ,	Collector–emitter breakdown voltage, open base
V _{CER}	Collector–emitter voltage with a resistor R _{BE} connected between base and emitter
V _{CES}	Collector–emitter voltage, short between base and emitter

V _{CEsa}	tCollector-emitter saturation voltage	y _{re}	Short-ci
V _{CEsa}	^{tdyn} Dynamic saturation voltage		value)
V_{CEV}	Collector-emitter voltage with reverse base-emitter voltage	У _f У _{fb}	Short –c Short–ci
V _{CEW}	Collector-emitter working voltage		commor (small si
V_{d}	Device voltage	Vfs	Short–ci
V_{DD}	Drain supply voltage	10101	configur
V_{DS}	Drain-source voltage		frequence
V _(BR) [os Drain–source breakdown voltage	IY21sl	Short–ci configur
V_{EBO}	Emitter-base voltage with open collector	Vo	Short-ci
V _{(BR)E}	BO Emitter–base, breakdown voltage, open collector	У _{оb}	Short–ci commor (small–s
V _{(BR)E}	ECO Emitter–collector, breakdown voltage,	y _{oe}	Short-ci emitter o
±V _{(B}		y _r	Moduls admittar
	Gate 1–source breakdown voltage	ϕ_r	Phase o
± v (Bl	R)G2SS Gate 2–source breakdown voltage	lv.l	admittar
V_{F}	Forward voltage	IYTI	admittar
V_{FP}	Turn on transient peak voltage	ϕ_{f}	Phase o
V _{G1S(}	OFF) Gate 1–source cut–off voltage	φ	Phase a
V _{G2S(}	OFF) Gate 2–source cut–off voltage	Φfb	Phase o admittar
V _{GG}	Gate supply voltage	φ _{fe}	Phase o admittar
0000	Voltage standing wave ratio	φrb	Phase o
У _{іb}	Short –circuit input admittance in common–base configuration (small–signal value)	ϕ_{re}	Phase o admittar
Vio	Short –circuit input admittance in common–	Z ₀	System
ле	emitter configuration (small–signal value)	ZL	Load im
Vr	Short –circuit reverse transfer admittance	Z٩	Source i

- ircuit reverse transfer admittance in n-emitter configuration (small signal
- circuit forward transfer admittance
- ircuit forward transfer admittance in n -base configuration ignal value)
- ircuit forward admittance in a source ation at a given operating point and су
- ircuit forward admittance in a source ation at a given operating point and су
- ircuit output admittance
- ircuit output admittance in n-base configuration signal value)
- ircuit output admittance in commonconfiguration (small-signal value)
- of the short-circuit reverse transfer nce
- of the short-circuit reverse transfer nce
- of the short-circuit forward transfer nce
- of the short-circuit forward transfer nce
- angle
- of the short-circuit forward transfer nce
- of the short-circuit forward transfer nce y_{fe}
- of the short-circuit reverse transfer nce y_{rb}
- of the short-circuit reverse transfer nce y_{re}
- impedance
- pedance
- impedance

List of Symbols for Diodes

- A Anode
- a Distance (in mm)
- b_{pn} Normalized power factor
- C Capacitance, general
- C_{case} Case capacitance
- C_D Diode capacitance
- C_i Junction capacitance
- CL Load capacitance
- C_P Parallel capacitance
- F Noise figure
- f Frequency
- fg Cut-off-frequency
- g Conductance
- IF Forward current
- iF Forward current, instantaneous total value
- $I_{\ensuremath{\mathsf{FAV}}}$ Average forward current, rectified current
- IFRM Repetitive peak forward current
- I_{FSM} Surge forward current, non-repetitive
- $\mathsf{I}_{\mathsf{FWM}}$ Crest working forward current
- I_R Reverse current
- i_R Reverse current, instantaneous total value
- I_{RAV} Average reverse current
- I_{RRM} Repetitive peak reverse current
- I_{RSM} Non-repetitive peak reverse current
- $\mathsf{I}_{\mathsf{RWM}}$ Crest working reverse current
- I_S Supply current
- I_Z Z-operating current
- IZM Z-maximum current
- Length (in mm), (case-holder/soldering point)

LOCEP (local epitaxy)

A registrated trade mark of TEMIC for a process of epitaxial deposition on silicon. Applications occur in planer Z-diodes. It has an advantage compared to the normal process, with improved reverse current.

 V_{F}

 V_{F}

Forward voltage

Forward voltage, instantaneous total value

- P Power
- Ptot Total power dissipation
- P_V Power dissipation, general
- Pvp Pulse-power dissipation
- Q Quality

Q _{rr}	Reverse recovery charge
R_F	Forward resistance
r _f	Differential forward resistance
R_L	Load resistor
r _P	Parallel resistance, damping resistance
R _R	Reverse resistance
r _r	Differential reverse resistance
r _s	Series resistance
R _{thJA}	
	Thermal resistance between junction and ambient
R_{thJC}	The second second second second second second
	Thermal reistance between junction and case
r _z	Differential 2-resistance in breakdown region (range) $r_z = r_{zj} + r_{zth}$
r _{zj}	Z-resistance at constant junction temperature inherent Z-resistance
r _{zth}	Thermal part of the Z-resistance
Т	Temperature, measured in centigrade
Т	Absolute temperature, Kelvin temperature
Т	Period duration
T _{amb}	Ambient temperature (range)
t _{av}	Integration time
T_{case}	Case temperature
t _{fr}	Forward recovery time
Тj	Junction temperature
ΤK	Temperature coefficient
ΤL	Connecting lead temperature in the holder (soldering point) at the distance/(mm) from case
t _P	Pulse duration (time)
$\frac{t_p}{T}$	Duty cycle
t _r	Rise time
t _{rr}	Reverse recovery time
ts	Storage time
T _{sd}	Soldering temperature
T _{sta}	Storage temperature (range)
V _(BR)	Breakdown voltage
· /	

11.99

V_{FAV}	
	Average forward voltage
Vo	Rectified voltage
V _{FSM}	Surge forward voltage, non-repetitive
V _{FRM}	Repetitive peak forward voltage
V _{FWM}	
	Crest working forward voltage
V_{HF}	RF voltage, RMS value
V_{HF}	RF voltage, peak value
V _R	Reverse voltage
V _R	Reverse voltage, instantaneous total value
V _{RSM}	
	Surge reverse voltage, non-repetitive

V_{RRM}

Repetitive peak reverse voltage

V_{RWM} Crest working reverse voltage

- Supply voltage V_{S}
- V_{T} Temperature voltage
- Z-operating voltage V_{Z}
- Thermal resistance pulse operation Z_{thp}
- Angle of current flow φ
- Rectification efficiency η_r
- To Time constant
- ΔC_{D} Capacitance deviation