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Abstract

A method is described for measuring arrow velocities by means of the induction
voltages, evoked by shooting arrows with a magnetized point through two coils at
a fixed distance. Small effects such as the influence of string material, number of
strands, bracing height and stabilizers can be detected. The experimental set-up
is relatively simple and can be used in an early stage of the student’s laboratory
course. Some results for modern competition bows are presented. Possibilities for
model calculations are discussed.
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1 Introduction

The invention of the bow and arrow may rank in social impact with the invention of the
art of kindling and the invention of the wheel. It must have been in prehistoric times that
the first missile was launched with a bow. We do not know where and when. This may
be the reason that for many students the system of bow and arrow is interesting (besides
their interest for projectiles in general).

The laboratory course for undergraduate students in physics in their first year at the
University of Amsterdam ends with a ’free’ experiment. ’Free’ means that the students
work at an experiment of their own choice, and that the experiment is open-ended. Recently
one of our students, who is a competition archer, proposed to measure the velocity of arrows
under different circumstances. The method he proposed uses the voltage that is induced
by the magnetized point of an arrow, when the arrow flies through two coils at a fixed
distance. This method appeared to be very accurate and gave a number of interesting
results.

For calculations on the system of bow and arrow, models have to be made. In the 1930s
Hickman, Klopsteg and Nagler not only performed experiments on different designs of the
bow, but they also developed models. As part of modelling simplifying assumptions had
to be made in order to obtain a solution in closed form or to approximate the solution of
the governing equations numerically in an acceptable amount of computing time. Because
of these simplifications only bows with specific features could be described. In Section 4
we discuss some of these models in more detail.

2 Experimental set-up

The velocity of the arrows was determined by measuring the time of flight between two
coils 2 metres apart. The first coil was placed at some distance from the bow, varying from
0.5 to 3 m. The coils used had nearly 400 windings of 0.2 mm copper wire on wooden
formers with an aperture of 16.5 cm diameter. For an experienced archer it is no problem
to shoot the arrows through both of the coils. To improve the experimental conditions we
installed a heavy rack to which the bow and the release were attached. This release is a
mechanical device which clamps the string with a small loop of cord, and which looses the
arrow in a very reproducible way when a button is depressed.

In each experimental situation a series of 12 shots was made, from which the average
and the standard deviation were calculated. The accuracy mentioned between brackets is
always the standard deviation of the set of measurements.

When shooting from hand the arrow is placed under a small clamp on the grip, the
clicker. When the arrow is drawn it is glides under this clamp until the becomes free from
it, and a little click is heard: the arrow is at the clicker point. This is the moment the
arrow has reached its final draw length and has to be released. For shooting from the rack
the mechanical release was mounted at a fixed distance relative to the grip, so we did not
have to use this clicker.
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Figure 1: Electronic circuit with 3 opamps of type 741, forming two amplifiers and a Schmitt

trigger. The variable resistor of 1 MΩ serves to make the ratio of the resistors of the first opamp

exactly equal to obtain a high common mode rejection ratio.

The induction voltages were amplified by a differential amplifier, built with two opamps
of type 741, as indicated in Figure 1. An opamp Schmitt trigger, adjusted at a small positive
level and zero level, gave the edges necessary for starting and stopping the timer. To check
the signal a transient recorder was connected to the output of the amplifier. An example
of these signals is shown in Figure 2.

The time dependence of the voltage induced in the coil depends on the place where the
arrow flies through the coil. At the moment that the induction voltage goes through zero
with a very sharp edge, the point of the arrow must be very close to the median plane
of the coil. Since the same applies to both coils, the distance is defined very precisely.
The point of the arrow was magnetized by attaching it for some time to the pole of a
permanent magnet. For shooting from hand the bows were equipped with stabilizers. All
measurements were performed indoors.

The force-draw curves were determined by hanging the bow on a hook and loading it
with different masses on a scale. The masses had been measured very precisely (better than
0.1%). The distance of draw was measured with a steel measuring staff with a millimetre
division, whose accuracy is better than 0.25%.

Other methods for measuring the velocity are photography with a high speed camera,
determining flight distance and the ballistic pendulum. Nowadays, video recording is also
possibility, but none of the methods can attain the accuracy of our method. Maybe the
method used for measuring muzzle velocities of bullets, where the bullet passes through
two ’planes’ of laser bundles may equal our precision.
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Figure 2: The form of the induction voltage and the Schmitt trigger levels.

3 Results and discussion

The bows we used are specified in Table 1. The specifications have the following meaning.
For example the OK Bow 68” 38.5# has a top to bottom length of 1.73 m (68”) and needs,
according to the manufacturers specifications, a force (called weight by archers) of 171 N
(38.5 lbs) for complete draw. We call this the nominal weight. The code CV means that
the limbs have been reinforced with carbon fibres. The arrows we used were all aluminum
Easton arrows, with the appropriate length for each bow.

For bows OK1 and GH we determined the force-draw curves with increasing and de-
creasing load; for the other bows with increasing load only. The hysteresis was less then
1%, see Table 1. Maybe these results are not completely reliable, because of the process of
putting masses on the scale and taking them off again to exchange them with heavier ones.
The relaxation of the material of the limbs may have been enhanced by this process. The
calculation of the energy, being the area below the force-draw curve, was done with the
trapezoid formula for numerical integration. The form of the curves is not very different
from that of the curves published formerly [1–4].

Since the method for the measurement of the velocity appeared to be very accurate
(most series of shots gave a standard deviation of about 0.2% or less in the measured
velocities), it was possible to detect small effects. On the other hand it was difficult to
control all design parameters of the bow-arrow combination, such as the bracing height
(the distance between the undrawn string and the grip of the bow, |OH| in Figure 3), the
length of draw and the way of releasing. The difference in shooting from hand and from
the rack was surprisingly large: the velocity of arrows shot from the rack was 3% higher.
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Table 1: Bows used. *) has not been measured.

Acronym OK1 OK2 OK3 GH
Make OK OK OK Greenhorn
Name Match Match Match Comet

Specification superflex CV superflex CV superflex CV TD 350
Type 68” 38.5# 70” 34# 66” 40# 68” 30#

Eff. draw [cm] 43.0 50.9 44.0 42.9
Nom. weight [N] 171 151 178 133
Eff. Weight [N] 170.5 170 178 130
Bracing ht [cm] 21.8-22 21.9 *) 21.4-22

W [J] 42.6 50.3 45.6 33.2
Hysteresis [%] 0.2 *) *) 0.9

Figure 3: Different situations of the working-

recurve bow; the upper half of the bow is shown.

The x-axis coincides with the line of aim. O:

unbraced (squares are stations for measurement

of the shape); H: braced and D: fully drawn.
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Table 2: Velocity as a function of the number of strands. Fast Flight string on GH.

Number of strands Mass Velocity
(g) (m/s)

16 6.45 51.88 (6)
14 5.82 51.43 (6)
12 5.28 51.62 (10)
10 4.64 51.76 (7)

Possibly during loosing by hand the length of draw is not precisely defined: the string is
sliding along the finger-tips, so the energy transferred to the arrow will be less than when
released in a mechanical way. Another cause may be that the bow hand is yielding a little
during the shot. Further the arrows loose energy during their flight because of the friction
with the air. For different arrows the loss of velocity in the first 5 m appeared to vary from
0.25% per metre to 0.5% per metre. Since the distance to the first coil was 0.5 to 1 m
for shooting from the rack and about 3 m for shooting from hand, this explains a part of
the difference. This also means that the real initial velocity, defined as the velocity of the
arrow at the moment it leaves the string, was a little higher: about 1 to 2% for shooting
from hand, and 0.5 to 1% for shooting from the rack. These small corrections have not
been applied to the data in the tables and figures. small

One of the small effects we could detect is the influence of the stabilizers. Modern
competition bows are equipped with several stabilizing elements to reduce rotations and
other movements of the bow. This is shown in Figure 4. With complete stabilization
the velocity is highest. Since the inertial mass of the stabilizers reduces the movement of
the bow hand this is in agreement with the above mentioned yielding of the bow hand.
Perhaps more important for target shooters is the result that the standard deviation is
smallest with complete stabilization.

The effect of different string masses on the velocity has already been investigated by
Hickman et al. [2, pp.45-47]. His conclusion was that the effect depends on the specifications
of the bow, and that ’the velocity of an arrow is reduced about the same amount as if the
arrow were increased in weight by one-third the increase in weight of the string.’ This can
easily be explained if it is assumed that at arrow exit the ends of the string are in rest,
the centre of the string has the same velocity as the arrow and the parts between have a
velocity that linearly depends on the position along the string.

Yet the string can be subject of several investigations. In [6] it was pointed out that
there are two counteracting effects: on one hand the velocity is higher when the string is
lighter; on the other hand the thicker the string, the stiffer it is, and the higher the velocity.
We prepared a Fast Flight string of 16 strands and removed consecutively two, four and six
of its strands. In Table 2 it is shown that the differences are small. To exclude the effect
of the mass of the string, we prepared strings of different materials, but with almost the
same mass. In Table 3 the results indicate that the Dacron strings give a distinctly lower
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Figure 4: Stabilizing elements of the bow: S

is string, T is top stabilizer, F is front stabilizer

and V is V-bar. T and F are in the vertical plane

of the bow, F pointing horizontally forward and

T slantwise forward. V is in an almost horizontal

plane, with both legs pointing a little backwards

and a little downwards.

velocity. This is in agreement with its lower modulus of elasticity [6, p.119]. For Dacron
B50 and Kevlar the force to elongate a string was determined: for Dacron the force is
about 22 N per % of elongation per strand; for Kevlar 70 N per % per strand. Twaron too
is known for its high stiffness. Apparently the Fast Flight strings are best; the material is
Dyneema SK60.

An important quantity for the archer is the bracing height. This distance determines
the amount of energy to be stored in the bow during drawing the arrow until the full draw.
Therefore archers always measure this bracing height very precisely to secure reproducibil-
ity of the shots. Since it depends rather strongly on the length of the string, and strings
may tend to yield a little when they are strung, sometimes the archer has to correct the
length of the string by twisting it. By doing so the elastic properties are changed a bit, but
probably this is a minor effect. To investigate the effect of bracing height, we followed the
same procedure. We used one string and twisted it a number of times. Strangely enough
the force at full draw does not change very much, though the string is shorter. This fact
was discovered by Hickman [2, pp.18-21]. We illustrate it in Figure 5(a) with the force-draw
curve of the Greenhorn bow for different bracing heights. This means that the amount
of elastic energy W stored in the limbs is roughly a linear function of the bracing height
b: the larger b, the smaller W , because the effective draw length decreases. If now the
efficiency (the ratio of the kinetic energy of the arrow at exit and the elastic energy stored
in the bow before release of the arrow) does not depend on the bracing height, the kinetic
energy of the arrow will also be a linear function of the bracing height. In Figure 5(b) we
have plotted the kinetic energy of the arrow, (Ta), as a function of the bracing height for
the OK1 bow. The slope of the line is −95(4) J/m, which means that the dependency of
the apparent efficiency on variations in bracing height is about 2% per cm for this bow.

Klopsteg [3] improved Hickman’s rule by stating that a certain part r of W , the de-
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Table 3: The velocity, kinetic energy Ta and the efficiency for different strings: a) from hand

with OK3 and complete stabilization, arrow mass 20.1 g; b) from rack with GH, no stabilizers,

arrow mass 18.1 g.

String Mass [g] Velocity [m/s] Ta [J] Eff. [%]
a)

Dacron 6.10 55.44 (12) 30.8 68.0
Kevlar 5.95 58.07 (5) 33.8 74.0
Twaron 5.55 57.77 (10) 33.5 73.0

FastFlight 6.02 58.38 (12) 34.2 75.0
b)

Dacron 6.55 49.73 (4) 22.5 70.0
Kevlar 6.48 51.25 (10) 23.9 73.8
Twaron 6.53 51.68 (7) 24.3 75.0

FastFlight 6.45 52.09 (9) 24.7 76.2
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Figure 5: a) The force-draw curve for four different bracing heights of the GH bow with Dacron

string. b) The kinetic energy Ta as a function of the bracing height for the OK1 bow.
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Table 4: Arrow mass dependence of velocity. Arrows shot from the rack. Linear least squares fit

for 2W/v2 = (m+K)/r. Note: The OK bow was used with higher effective weight than nominal;

the Greenhorn bow slightly lower.

Bow OK2 GH
String FF Dacron
W [J] 50.3 33.2
K [g] 5.8 (5) 9.2 (5)

r 1.02 (2) 1.04 (2)

formation energy of the bow (and string), is converted to kinetic energy of the arrow, the
string and the bow limbs:

rW =
1

2
(m + K)v2 (1)

where r is a number < 1, because there is some energy loss by hysteresis, m is the ar-
row mass and K represents one third of the string mass plus an unknown added mass,
accounting for the kinetic energy of the limbs. In fact K also accounts for the excess of
elastic energy in the limbs and the string at arrow exit compared with the undrawn, braced
situation. In principle some added mass of air, that is dragged with the arrow, string and
limbs will be included in K also. K is called virtual mass. Experimentally Klopsteg showed
that K is a constant for a specific bow. In fact K is a phenomenological quantity that
cannot simply be identified with physical properties of the bow. K can be determined by
measuring the velocity as a function of arrow mass.

We measured the arrow mass dependence of the velocity for two bows. Some arrows
were prepared with higher masses by moulding polymer material into the points. The
results are summarized in Table 4. To find r and K we applied a linear least squares fit
of 2 W/v2 as a function of m, see Figure 6. The values of r are striking, they mean that a
very small amount of energy is lost in hysteresis. This agrees well with the low values for
the hysteresis we found with the force-draw curves.

4 Mathematical models

The first model developed is Hickman’s model [2, pp.13-17] of a straight-end bow, which
consists of a straight rod of wood, bent by placing the string. The position of the bow
is specified in an Cartesian coordinate system (x, y), the line of symmetry of the bow
coinciding with the x-axis and the origin O coinciding with the midpoint of the bow,
analogous to the situation for the working-recurve bow in Figure 3. The limbs of the bow
are assumed to have a uniform thickness and their width tapers to the tips. In that case
the bending stiffness is given by EI(s) = EI(0) (L− s)/L where E is Young’s modulus, I
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Figure 6: Klopsteg’s rule: the mass de-

pendence of the kinetic energy for the

OK2 bow (2) and the GH bow (◦). Linear

least squares fit for 2W/v2 = (m + K)/r.

is the second moment of inertia and s is the length parameter along the limb with s = 0 in
the origin and s = L at the tip. The mass per unit of length is ρC(s) = ρC(0)(L − s)/L,
where ρ is the density and C(s) is the area of the cross-section. The mass of one limb is
then given by

mb =

∫ L

0

ρC(s) ds =
1

2
ρC(0)L . (2)

The relationship between the loading and the deformation is derived by use of the
Euler-Bernoulli equation:

d2x

ds2
=

M

EI
(3)

where M is the bending moment at s. When the limb is deformed by a force F perpendic-
ular to the limb at the tip, while it is clamped in the center of the bow, integration gives
for small deformations, after substitution of I(s) and M = F (L − s):

x(s) =
FL

2 EI(0)
s2 (4)

or

x(s) =
x(L)s2

L2
(5)

In order to get a simplified model for the dynamics we assume that the shape of the moving
limb equals at each moment the shape of the limb deformed by the force F giving the same
deflection of the tip given by equation (4). In that case there is a simple relationship
independent of time between the position of the tip x(L, t) and of all the other points
along the limb, see equation (5). The kinetic energy is

AT =
1

2

∫ L

0

ρC(s) (ẋ(s, t))2 ds =
1

2

1

15
mb (ẋ(L, t))2 (6)
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and the potential energy equals

AP =
1

2

∫ L

0

M2

EI
ds =

EI(0)

L3
x(L, t)2 . (7)

Hence we end up with a one degree of freedom system of which the state variable is
the deflection x(L, t) of the tip. This is because of the relationship between x(s, t) and
x(L, t) which is independent of the time t. The equation of motion can be derived using the
Lagrangian formalism, with the Lagrangian function L(ẋ(L, t), x(L, t)) for the conservative
system:

L = AT − AP =
1

2

1

15
mb (ẋ(L, t))2 −

1

2

EI(0)

L3
x(L, t)2 . (8)

d

dt

∂L

∂ẋ(L, t)
−

∂L

∂x(L, t)
= 0 . (9)

1

15
mb (ẍ(L, t)) +

2 EI(0)

L3
x(L, t) = 0 . (10)

This result shows that the equations of motion can be interpreted in terms of a lumped
model. The mass of the limb is represented by a mass mb/15 at the tip of the limb and
the flexible limb is replaced by a massless rigid rod of length L, connected with an elastic
hinge to the grip at s = 0. The elastic hinge is a composition of a smooth hinge with a
clock spring with elastic constant k = 2 EI(0)/L.

Now Hickman did not place the hinge at the clamped end (s = 0), but at s = 1/4 L
because he noticed that the trajectory of the tip is an arc of a circle with its centre at
s = 1/4 L on the unbent limb. Then the elastic constant becomes k = 18/16 EI(0)/L. To
derive the place of this point he used the fact that for small deflections the form of the
bent limbs is nearly an arc of a circle. Let the radius of this circle be r, then we have the
following parametric representation for the curve of the tip:

x(L) = r
(

1 − cos (
L

r
)
)

and y(L) = r sin(
L

r
) . (11)

The radius R of this curve is given by

R =

∣

∣

∣

∣

(

(

x′(L)
)2

+
(

y′(L)
)2

)3/2

x′(L)y′′(L) − y′(L)x′′(L)

∣

∣

∣

∣

(12)

where for instance x′ denotes dx/dr. For lim r → ∞ we have R = 3/4 L, and this shows
that the trajectory of the tip and the trajectory of the tip in the hinge model are in good
agreement when the position of the hinge is placed at s = 1/4 L.
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Figure 7: Geometry of the bow in Hickman’s

model.

We are now in the position to derive the governing equations for the lumped parameter
model. From Figure 7 we find for the x coordinate, ξ, of the midpoint of the string, where
the arrow with mass m = 2 ma is placed:

ξ = L1 sin ϕ +
(

l2 − (L0 + L1 cos ϕ)2
)

1/2

. (13)

The half length of the string is l, L0 is the half length of the grip, equal to 1/4 L in
Hickman’s model, and L1 is the length of the rod, equal to 3/4 L. Finally π is the angle
of rotation of the rod. When the unstrung bow is straight, we take the unloaded hinge for
ϕ = ϕ0 = 0. The Lagrangian for the upper half of the bow is, using the coordinates ϕ and
ξ:

L =
1

2
Jϕ̇ +

1

2
maξ̇

2 −
1

2
kϕ2 . (14)

where J is the moment of inertia of the limb with respect to pivot point S. Due to equa-
tion (13) we have one superfluous coordinate, which should be eliminated. Equation (13)
gives

ξ̇ = Qϕ̇ , (15)

with

Q = L1 cos ϕ + L1 sin ϕ
(L0 + L1 cos ϕ)

(

l2 − (L0 + L1 cos ϕ)2
)1/2

, (16)

Substitution of this result in Lagrange’s equation yields the equation of motion:

(J + maQ
2)ϕ̈ + maQ

dQ

dϕ
ϕ̇2 + k ϕ = 0 . (17)

The initial conditions are fixed by the solution of the static problem, where ξ equals
the draw length |OD|.

ξf = |OD| = L1 sin ϕf +
(

l2 − (L0 + L1 cos ϕf)
2
)1/2

, (18)
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where the subscript f indicates the fully drawn situation. The equation of equilibrium
becomes:

1

2
F (|OD|)Q(ϕf) = kϕf , (19)

where F (|OD|) is the weight of the bow. The initial velocity of rotation is zero: ϕ̇ = 0
In this model the arrow leaves the string for φ = φb, where the subscript b indicates

the braced situation, when

l = (L0 + L1 cos ϕb) (20)

In [6] it was shown that in this model the bow converts all of the deformation energy of
the elastic hinge into kinetic energy of the arrow. The energy integral of the system gives
the solution of the equation of motion:

1

2
(J + maQ

2)ϕ̇ +
1

2
kϕ2 =

1

2
kϕ2

f (21)

(Note that for ϕ = ϕb, Q = ∞, but that Qϕ̇ = ξ̇ is finite.) This completes the derivation of
Hickman’s model with a massless string. The mass of the string can easily be incorporated
in the model by placing one third of its mass at the midpoint of the string and the rest at the
ends. The extension of this model with an elastic string, obeying Hooke’s law, introduces
an extra state variable, so the model becomes two degrees of freedom, for instance the half-
length of the string and the position of the arrow. The obtained equations look similar to
those derived by Marlow [10] and are not reported here. They should be solved numerically,
with a Runge-Kutta method for example.

Marlow [10] described a lumped mass model for the longbow. Unfortunately he let the
limb rotate as a rigid body about the beginning of the limb at the place where it meets
the grip. In that case for the bow described above the tip mass representing the mass
of the limb, becomes mb/6 instead of mb/15, which makes the dynamic behaviour less
realistic [6, p.111]. On the other hand Marlow introduced an elastic string to get a more
realistic model as to the efficiency. He treated the string as a rod rigid with respect to shear
and bending but elastic in the length direction as given by Hooke’s law. This explains why
in his model the arrow leaves the string while the string is already through its stretched
position. This can be considered as an artefact of the model. A string is not capable to
withstand shear forces, so it seems better to use a simple lumped mass model for the string.
A more general model is obtained when the motion of the limb is described as a vibrating
beam undergoing large displacements. The mathematical model is formed by a set of
coupled partial differential equations with initial and boundary conditions. With modern
working-recurve bows the phenomenon that the string lies during a part of the draw along
the limb, see Figure 3, makes the mathematical treatment much more complicated. The
place where the string contacts the limb has to be determined as part of the solution.
Problems of this type are called free and moving boundary problems for the static and
dynamic case respectively. The description of such a model is beyond the scope of this
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Table 5: Comparison of experiment and model calculation for the GH bow. Effective weights

have been matched. Hysteresis has not been taken into account. Arrow mass 18.1 g; string mass

6.55 g and string stiffness 260 N per % of elongation (Dacron B50).

Measured Predicted
Eff. weight [N] 126.9 126.9

W [J] 32.16 32.9
Kin. energy [J] 22.57 23.9

Eff. [%] 70.2 72.9

paper. The reader is referred to [5–9]. To show the merits of such a model, the calculated
and measured force-draw curves of the Greenhorn bow are compared in Figure 8. Since the
predicted weight of the bow was too high, a knockdown factor was used for the bending
stiffness of the limbs, such that the calculated weight became equal to the measured one.
Such an adaptation is usual in this kind of modelling, since the size of different parts of the
bow, especially the thickness of the thin layers of fibre-glass cannot be measured precisely.
The comparison of measured and predicted values is summarized in Table 5. The predicted
efficiency is about 2% too high. In the model no internal or external damping is taken into
account. This may explain part of the discrepancy. These results indicate that the model
is good enough to use it for, for example, sensitivity analysis as part of the design process
of bows.

Schuster [11] made a model for the working-recurve bow too. He made two unrealistic
assumptions, namely that the working-recurve is in the form of a circular arc which unrolls
along an initial tangent and that this is the only part of the bow that ’works’. The
advantage of Schuster’s model is that the mathematical treatment is simpler.

5 Conclusion

For teaching purposes our measuring method is very suitable. If it is possible to install
some kind of rack to attach the bow, aiming is no longer necessary, for the coils can be
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placed precisely in the trajectory of the arrows. Our rack was found in a storeroom for
cast-off equipment. Some minor adaptations were sufficient to make it a shooting device.
The electronic circuit is rather simple. The transient recorder might be a problem to get,
but it is advisable to use one during the start of the measurements to be sure to have signals
of the right sign. Care is needed to ensure that the arrow point is always magnetized on
the same pole of the permanent magnet.

Marlow [10] already pointed out that experiments on archery can be done on different
levels and in a great variety. In the appendix of his paper he indicated several possibilities.
If one should want to skip the experimental phase, video productions are now available
from companies of teaching materials [12], but accurate measurements as described in
this paper are not (yet) possible with this kind of production. With our method small
effects can be detected, such as the differences arising from string material and stabilizer
configuration.

Marlow also mentioned several possibilities for applications of mechanics. For model
calculations we discuss different models of different degree of complexity. The Lagrangian
method reduces the entire field of statics and dynamics to a simple procedure. In this
way the dynamics of the bow and arrow is a beautiful illustration of several notions of
mechanics.
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