{" TEXAS
INSTRUMENTS

MSP430 Universal Synchronous
Asynchronous Receive/Transmit
Communication Interface

Application

Report

April 1999 Mixed Signal Products
SLAA049

IMPORTANT NOTICE

Texas Instruments and its subsidiaries (TI) reserve the right to make changes to their products or to discontinue
any product or service without notice, and advise customers to obtain the latest version of relevant information
to verify, before placing orders, that information being relied on is current and complete. All products are sold
subject to the terms and conditions of sale supplied at the time of order acknowledgement, including those
pertaining to warranty, patent infringement, and limitation of liability.

TI warrants performance of its semiconductor products to the specifications applicable at the time of sale in
accordance with TI's standard warranty. Testing and other quality control techniques are utilized to the extent
Tl deems necessary to support this warranty. Specific testing of all parameters of each device is not necessarily
performed, except those mandated by government requirements.

CERTAIN APPLICATIONS USING SEMICONDUCTOR PRODUCTS MAY INVOLVE POTENTIAL RISKS OF
DEATH, PERSONAL INJURY, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE (“CRITICAL
APPLICATIONS”). TI SEMICONDUCTOR PRODUCTS ARE NOT DESIGNED, AUTHORIZED, OR
WARRANTED TO BE SUITABLE FOR USE IN LIFE-SUPPORT DEVICES OR SYSTEMS OR OTHER
CRITICAL APPLICATIONS. INCLUSION OF TIPRODUCTS IN SUCH APPLICATIONS IS UNDERSTOOD TO
BE FULLY AT THE CUSTOMER'S RISK.

In order to minimize risks associated with the customer’s applications, adequate design and operating
safeguards must be provided by the customer to minimize inherent or procedural hazards.

Tl assumes no liability for applications assistance or customer product design. Tl does not warrant or represent
that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other
intellectual property right of Tl covering or relating to any combination, machine, or process in which such
semiconductor products or services might be or are used. TI's publication of information regarding any third
party’s products or services does not constitute TI's approval, warranty or endorsement thereof.

Copyright [0 1999, Texas Instruments Incorporated

Contents

1 INtrOdUCTION .o 1
1.1 Attributes of the MSPA30 UART ... e e e e e e e 3

1.2 Data FOrmat 3

1.3 UART Hardware ReQISErSttt e e et e e e e e e e e 4

2 Baud Rate GEeNEIratiONttt e e e 6
2.1 Baud Rate Generation With the MCLK e e 8

2.2 Baud Rate Generation With the ACLK e e 9

3 SOoftWare ROULINES o e 10
3.1 NON-INtEITUPE PrOCESSING . o\ ittt ettt e e e e e e e e e et et e e 10

3.2 INtEITUPL PrOCESSING . ottt ittt ettt e e e e e e e 12
3.21 MCLKUsed as UART ClOCKt e 12

3.2.2 ACLKUsed as UART CloCKt e e 16

3.3 Subroutines and .MACROS o 20
3.3 1 SUDBIOULINES ..o 20

3.3.2 MACROS . . 21

4 REIBIBNCES .ottt e 24
AppendiX A DefiNitiONS .. A-1

List of Figures
1 MSP430 USART MOAUIE . ..ottt e e e e e 2
2 USART Switched to the UART MOGEottt e e e e e e e e 3
3 RS232 Format (Levels at the MSPA30) e e e e e 4
4 RS232 Format (Levels on the Transmission LiN@)t 4
5 USART Control Registers Used inthe UART Modeot e 5
6 BaUud Rate GENEIATOL . . .ottt e e e e e e e e 6
7 Function of the Baud Rate COrmECHIONttt e e e e e e e 8
List of Tables

1 Content of Baud Rate Registers UBR (MCLK = 1.048 MHZ)ot 9
2 Content of Baud Rate Registers UBR (ACLK = 32,768 Hz) i e 10

MSPA430 Universal Synchronous Asynchronous Receive/Transmit Communication Interface iii

SLAA049

MSPA430 Universal Synchronous Asynchronous Receive/Transmit
Communication Interface

Lutz Bierl

ABSTRACT

This application report gives a short overview for the use of the MSP430 universal
synchronous, asynchronous receive/transmit communication interface (USART) as an
RS232 interface, also called a serial-controller interface (SCI). Tested software
examples, with and without the use of the interrupt capability, are given for the
transmission and the reception of UART (universal asynchronous receive/transmit)
signals. Full duplex mode is used for all examples running in active mode and low power
mode 3 (LPM3).

1 Introduction

The universal synchronous/asynchronous receive/transmit communication
interface of the MSP430 family can operate in two different modes: synchronous
and asynchronous. This application report describes the software routines used
with the asynchronous mode (SCI, RS232). A second report will handle the
synchronous mode (serial protocol interface SPI).

NOTE: Reading the data book MSP430 Family Architecture
Guide and Module Library is recommended. It complements the
information contained in this application report.

NOTE: The examples and hardware definitions use
MSP430x33x addresses. Future MSP430 family members may
have different hardware addresses—especially for the 1/0O ports
used.

The hardware features of the USART module greatly exceed the capabilities
illustrated in the examples included in this application report. This report is
intended as a fast way to get the USART running in the UART mode, with or
without the interrupt capability. Features frequently used are included in the
examples.

Introduction

Figure 1 shows the block diagram of the MSP430 USART module.

Receive Status Receive Buffer URXBUF SYNC RXE
yy * + + Listen MM | SYNC
— - L oh SOoMmI
Receive Shift Register >R j
o—e—10
A 1 0| syNC

URXD

SSEL1 SSELO |

l4—— SYNC
0 Baud Rate Generator 0

UCLKI 4 |

ACLK —O L : l STE
2 .
MCLK . Baud Rate Register UBR : <+«
MCLK —O ' B Syne I UTXD
Baud Rate Generator - ® | >

 ¢o-» UCLKS |

v I

o 1|
WUT > Transmit Shift Register > o] SIMO

T) °

Transmit Buffer UTXBUF
TXWake CKPH SYNC CKPL
UCLKI €¢— + + + UCLK
Control Registers Clock Phase and Polarity <> < >
UCLKS <4—p

Figure 1. MSP430 USART Module

2 SLAA049

Introduction

Figure 2 shows the situation when the USART is switched to the UART mode by
setting the SYNC bit UCTL.2 to zero

— "
| SYNC=0 |
—_—— 4
Receive Status Receive Buffer URXBUF RXE
Listen S—
A f * 0 [Data]
o————=<"] URXD
Receive Shift Register »a j
O_
+ 1
SSEL1 SSELO
5 Baud Rate Generator —» UCLKS
UCLKI 1 ‘
ACLK —O 5 '
MCLK . Baud Rate Register UBR
MCLK —O \
Baud Rate Generator
y | Data |
o . LSB first —_
WUT » Transmit Shift Register » ® > UTXD
Transmit Buffer UTXBUF
TXWake CKPL
UCLKI €4— .
Control Registers Clock Polarity 4———<] UCLK
UCLKS —»

Figure 2. USART Switched to the UART Mode

1.1 Attributes of the MSP430 UART
The following is a short overview of the USART running in the UART mode:

Selectable seven and eight-bit data lengths

The error detection for the receive path is as follows:

— Frame error. The stop bits have space potential.

— Parity error. Parity is enabled and the parity bit has the wrong value.

— Overrun error. The next character is read in before the last one is read out
by the software.

— Break detect. The URXD pin has low potential for more than 10 bits.

Baud-rate generation made possible by 32-kHz crystal due to the modulation
register

Interrupt-driven transmit and receive functions

Two independent interrupt vectors: one for transmission, one for reception
Full functionality during LPM3

End-of-frame flag usable with interrupt or polling

1.2 Data Format

The data format used is RS232. Figure 3 shows how this format is seen at the
MSP430 ports (URXD and UTXD), and Figure 4 shows how the format is defined
on the transmission line. The format shown in Figures 3 and 4 has:

MSP430 Universal Synchronous Asynchronous Receive/Transmit Communication Interface 3

Introduction

e Seven data bits. The least-significant bit follows the start bit.
e Parity enabled. The parity bit follows the most-significant bit of the data.

e No address bit. This is the normal case.
e Two stop bits

Name Data Signal Level
1
Mark T — Vcc
Start Parity Stop
Bit | -SB MSB | Bit Bits
Space ov
0

Figure 3. RS232 Format (Levels at the MSP430)

The signal on the transmission line has the inverted state when observed at the
MSP430 ports, and different voltage potentials. This is illustrated in Figure 4.

Name

Space

Mark

1.3 UART Hardware Registers

Data Signal Level
0
>+3V
Start Parity Stop
Bit |SB MSB 1 it Bits
| | <=3V

1

Figure 4. RS232 Format (Levels on the Transmission Line)

The USART is controlled by seven control registers and one read-only register.
All of them are 8-bit registers and consequently should only be accessed with
byte instructions. Figure 5 gives an overview of these eight registers including the
names, assembler mnemonics, hardware addresses, and their initial states. The
register and bit definitions are found in Appendix A.

4 SLAA049

Introduction

Register Name Mnemonic Register Access Address Initial State
USART Control Register UCTL Read/Write 070h See below
Transmit Control Register UTCTL Read/Write 071h See below
Receive Control Register URCTL Read/Write 072h See below
Modulation Control Register ~ UMCTL Read/Write 073h unchanged
Baud-Rate Register 0 UBRO Read/Write 074h unchanged
Baud-Rate Register 1 UBR1 Read/Write 075h unchanged
Receive Buffer URXBUF Read Only 076h unchanged
Transmit Buffer UTXBUF Read/Write 077h unchanged
7 0 7 0
UCTL) UBRO . 6 s " 3) 1 1
070h PENA | PEV SP CHAR | Listen SYNC MM SWRST 074h 2 2 2 2 2 2 2 2
rw-0 rw-0 rw-0 rw-0 rw-0 rw-0 rw-0 rw-1 w w w w w w w rw
7 0 7 0
UTCTL un- SSEL UBR1 15 14 13 12 " 10 9 s
071 used | CKPL 1 SSELO | URXSE | TXWake | unused | TXEPT 075h 2 2 2 2 2 2 2 2
rw-0 rw-0 rw-0 rw-0 rw-0 rw-0 rw-0 rw-1 w w w w w w w rw
7 0 7 0
URCTL FE PE OE BRK | URXEIE | URXWIE | RXWake | RXERR UMCTL | 7 I m6 | ms | ma | m3 | m2 | m1 | mo
072h 073h
rw-0 rw-0 rw-0 rw-0 rw-0 rw-0 rw-0 rw-0 w w w w w w w rw
7 0 7 0
URXBUF 7 6 5 4 3 2 1 0 UTXBUF 7 6 5 4 3 2 1 0
076h 2 2 2 2 2 2 2 2 077h 2 2 2 2 2 2 2 2

r r r r r r r r w w w w w rw w rw

Figure 5. USART Control Registers Used in the UART Mode

MSP430 Universal Synchronous Asynchronous Receive/Transmit Communication Interface 5

Baud Rate Generation

2 Baud Rate Generation

It is easy to generate the desired baud rate from a relatively high frequency (1
MHz to 5 MHZz): the resulting baud rate error is small due to the large integer-part
of the quotient compared to the truncated fractional-part. This is not the case
when the time base used is a 32-kHz crystal, since the error due to the truncated
fractional-part of the quotient becomes large and leads to the loss of synchrony
at the trailing bits of the frame. For this reason, the MSP430 USART uses a
correction to keep the baud rate error small. The modulation register UMCTL
contains 8 bits of information to correct the baud rate of the received or
transmitted UART signal. These bits determine the use of the predivider
information contained in the two baud-rate registers UBRO and UBR1.:

UBR1/UBRO is used as is.

A Zero bit in the UMCTL register means that the information contained in

A One bit means that the 16-bit content of UBR1/UBRO is incremented by one

before it is used. The content of UBR1/UBRO is not changed.

0 7 0 7
SSEL1 SSELO I UBRO I I UBR1 I Start
0
UCLKI . 1 g7 18 15
BRCLK
ACLK © 5 . 15-Bit Prescaler/Divider
MoK —o ERE g iy
MCLK —oO 3 | Q1 eoe Q15|
. Compare O or 1 " Toggle
[FF
> BITCLK
Shift Modulation Register Data —
<
Shift_out Shift_in
m
A 7
0 7
Modulation Register UMCTL
start | \
tart L
BRCLK H
L
Counter In/2 Ini2-1ln/2-2| I 110 2 In21l [21110 [n2 |
1 2 In2-1ln2-2| | 1] 0 [n2 |n/2-1]
1 | n2 In2-1lnr2-2| | 1 n2 |n/2-1n/2-2|
N |
BITCLK L =¢
INT(n/2), m=0
INT(n/2)+m(=1)
Divide By n(Even), m=0 ——

n(Odd) or n(Even)+m(=1)
n(Odd)+m(=1)

Figure 6. Baud Rate Generator

The LSB (mO0) of register UMCTL is used for the start bit, the next bit (m21) for the
LSB of the data, and so on. After using bit m7, the bit sequence mO thru m7 is
repeated. See Figure 7 for a graphic explanation.

SLAA049

Baud Rate Generation

EXAMPLE: a baud rate of 4800 baud is required with a crystal frequency of
32,768 Hz. Thisis necessary because the UART also has to run during low power
mode 3. With only the ACLK available, the theoretical division factor—the
truncated value is the content of baud-rate register UBR (UBR1/UBRO)—is:

_ 32768 _
UBR = 4800 6.82667
This means that the baud-rate register UBR1 (MSBS) is loaded with zero, and the
UBRO register contains a 6. To get a rough estimate of the 8-bit modulation
register UMCTL, the fractional part 0.826667 is multiplied by 8 (the number of bits
in register UMCTL):

UMCTL = 0.82667 x 8 = 6.613

The rounded result 7 is the number of ones to be placed into the modulation
register UMCTL. The corrected baud rate with the UMCTL register containing 7
ones is:

baud rate = __ 32768 _ 4766.2545
(7 X7+1x 6)

8

This results in an average baud rate error of:

4766.2545 — 4800

= — 0
2800 x 100 0.703%

baud rate error =

To get the best-fitting bit sequence for modulation register UMCTL, the following
algorithm can be used: the fractional part of the theoretical division factor is
summed up eighttimes; the actual m-bitis setif a carry to the integer part occurs,
and is cleared otherwise. An example using the fraction 0.82667 previously
calculated follows:

Fraction Addition Carry to next integer UMCTL Bits
0.82667 + 0.82667 = 1.65333 Yes mO 1
1.65333 + 0.82667 = 2.48000 Yes m1l 1
2.48000 + 0.82667 = 3.30667 Yes m2 1
3.30667 + 0.82667 = 4.13333 Yes m3 1
4.13333 + 0.82667 = 4.96000 No m4 0
4.96000 + 0.82667 = 5.78667 Yes m5 1
5.78667 + 0.82667 = 6.61333 Yes m6 1
6.61333 + 0.82667 = 7.44000 Yes m7 1

The result of the calculated bits m7...m0 is EFh (11101111b). Section 3.3.2
contains a software macro (CALC_UMCTL) that uses this algorithm to calculate
the optimum value for the modulation register UMCTL for every combination of
USART clock and desired baud rate. For the above example, the algorithm also
finds EFh with its seven ones.

A second software macro (CALC_UBR) calculates the values of the two UBR
registers.

MSP430 Universal Synchronous Asynchronous Receive/Transmit Communication Interface 7

Baud Rate Generation

EXAMPLE: Figure 7 presents an example using a 2400-baud rate generated with
the ACLK frequency (32,768 Hz). The data format for Figure 7 is: eight data bits,
parity enabled, no address bit, two stop bits.

Figure 7 shows three different frames:

* The upperframe is the correct one, with a bit-length of 13.65333 ACLK cycles
(32,768/2400 = 13.65333).

* The middle frame uses a rough estimate, with 14 ACLK cycles for the bit
length.

* The lower frame shows a corrected frame using the best fit (6Dh) for the
modulation register.

It can be observed that the approximation with 14 ACLK cycles produces a
cumulative error of more than 0.3 bit-lengths after the second stop bit. The error
of the corrected frame is only 0.011 bit-lengths. The error of the crystal clock, not
yet included, adds to the above error.

T ‘ Vce
Precise Start Parity Stop |
Timing sit | LSB MSB I git Bit(s) |
13.65 | 13.65 | 13.65 | 13.65 | 13.65 | 13.65 | 13.65 | 13.65 | 13.65 | 13.65 | 13.65 13.65 ‘ ov
|
\ | \
\ | \
\ ‘ \
Rough Start Parity Sto |
L p
Approximation Bit LSB MSB Bit Blt(s) ‘
14 14 14 14 14 14 14 14 14 14 14|
‘ —W‘ ﬂ— Error }
| |
— o
orrecte Start Parity || Stop |
Timing it | LSB MSB I git | Bits) |
14 13 14 14 13 14 14 13 14 13 || 14 14 |
UNCTL Bits (6Dh) mO mil m2 m3 m4 m5 mé m7 mO ml \‘ m2 ‘
| 1 0 1 1 0 1 1 0 1 \ 1 *
—P“— Error

Figure 7. Function of the Baud Rate Correction

Tables 1 and 2 contain the average errors (full frame) for commonly used baud
rates when using the described baud rate generation.

The software examples in section 3 contain MACROs that automatically insert
the correct values in the UBR registers and in the modulation register UMCTL.
The software MACROSs, which do not need ROM or RAM, may be hidden in the
listing by a .mnolist assembler directive.

2.1 Baud Rate Generation With the MCLK

Table 1 shows the optimum values for the UBR and UMCTL registers. The UART
clock is the MCLK (1.048 MHz). The values for the UMCTL and UBR1/UBRO
registers are calculated by the software MACROSs in section 3.3.2. The crystal
error is not included.

8 SLAA049

Baud Rate Generation

Table 1 contains the following columns:

e Baud Rate: The baud rate for data exchange (transmit and receive use the
same baud rate).

* Division Factor: The quotient UARTCLK/baud rate.

e UBR1/UBRO Content: The truncated 16-bit hexadecimal result of the
division factor (UARTCLK/baud rate). Its value is calculated by software

macro CALC_UBR. The high byte isthe UBR1 value, the low byte is the UBRO
value.

e Calculated UMCTL Content: The 8-bit result that best fits the modulation
register. It is calculated by the software macro CALC_UMCTL.

e Used Fraction: The number of ones in the modulation register divided by
eight. It is an approximation to the truncated fractional-part of the division
factor.

e Mean Error: The resulting error of a complete character, caused by the
approximation to the division factor.

Table 1. Content of Baud Rate Registers UBR (MCLK = 1.048 MHz)

BAUD RATE DIVISION UBR1/UBRO CALCULATED USED MEAN ERROR
FACTOR CONTENT UMCTL CONTENT FRACTION [%]

110 9532.51 253Ch 55h 0.50 +0.000
300 3495.25 ODA7h 44h 0.25 0.000
600 1747.63 06D3h 6Dh 0.625 +0.000
1200 873.81 0369h EFh 0.875 —-0.007
2400 436.91 01B4h FFh 1.00 —0.002
4800 218.45 00DAh AAh 0.50 —-0.023
9600 109.23 006Dh 88h 0.25 -0.018
19200 54.61 0036h ADh 0.625 -0.027
38400 27.31 001Bh 24h 0.25 +0.220

2.2 Baud Rate Generation With the ACLK

With the relatively low ACLK frequency (32,768Hz), the importance of the
modulation register UMCTL is much greater than with the normally high MCLK
frequency used for the UART timing. Table 2 shows the optimum values for the
UBR and UMCTL registers for commonly used baud rates generated with the
ACLK (32,768Hz). The table values are calculated by the MACROs described in
section 3.3.2. The crystal is assumed to have no frequency-error. The meaning
of the table columns is explained in section 2.1.

MSP430 Universal Synchronous Asynchronous Receive/Transmit Communication Interface 9

Software Routines

Table 2. Content of Baud Rate Registers UBR (ACLK = 32,768 Hz)
BAUD RATE DIVISION UBR1/UBRO CALCULATED USED MEAN ERROR
FACTOR CONTENT ~ UMCTL CONTENT FRACTION [%]
110 297.8909 0129h FFh 1.00 -0.04
300 109.2267 006Dh 88h 0.25 -0.02
600 54.6133 0036h ADh 0.625 -0.02
1200 27.3067 001Bh 24h 0.25 +0.21
2400 13.6533 000Dh 6Dh 0.625 +0.21
4800 6.8267 0006h EFh 0.875 -0.71
9600 3.4133 0003h 4Ah 0.375 +1.12
19200 1.7067 -
38400 0.8533 -

3 Software Routines

The following sections show proven software routines, subroutines, and software
MACROSs for the UART mode of the USART.

NOTE: The program sequence for the initialization of the UART
isimportant: as long as the SWRST bit (UCTL.0) is set, the receive
and transmit control registers URCTL and UTCTL can not be
initialized. The program sequences given in the software
examples are recommended because they comply with this rule.

While the SWRST bit is zero, the following control bits are held in
the zero state: TXWAKE, RXERROR, RXWAKE, BRK, OE, FE,
PE, URXIFG, URXIE, UTXIE.

The following control bits are held in the one state: UTXIFG and
TXEPT.

3.1 Non-Interrupt Processing

10

The simplest way to use the USART in UART mode is this: interrupt is not
enabled, the software checks if it can output the next byte (UTXIFG = 1), and if
a new character has been received (URXIFG = 1).

EXAMPLE: full duplex UART software code running without the use of the UART
interrupt is shown. It is designed for:

Baud rate: 1200 baud

MCLK (1.048MHz) used as the UART clock

Eight data bits

Two stop bits

Parity enabled with odd parity

Receive of error-free characters only

STACK

.equ 0600h : Stack start address

; Definitions for the UART part: user defined

SLAA049

Software Routines

Baudr .equ 1200 ; Baud rate is 1200 Baud
FLLMPY .equ 32 ; FLL multiplier for 1,048MHz
UARTCLK .equ FLLMPY*32768 ; MCLK is used for UARTCLK

; The contents of the UMCTL and UBR registers are calculated.
; The two software macros do not use RAM or ROM, they only
; define the variables CUMCTL, CUBR1 and CUBRO for the

; UART registers UMCTL, UBR1 and UBRO.

CALC_UMCTL ; Calc. Modulation Reg. content
CALC_UBR ; Calculate UBR1/UBRO contents
text : Software start address

INIT MOV #STACK,SP ; Initialize Stack Pointer
CALL #INITSR : Init. FLL and RAM

; Proceed with initialization

; Initialize the UART: odd parity, 8 data bits, 2 stop bits
: MCLK for UART clock

MOV.B #CUMCTL,&UMCTL ; Modulation Register
MOV.B #CUBRO,&UBRO ; Baud Rate Register low
MOV.B #CUBR1,&UBR1 ; Baud Rate Register high
BIS.B #URXD+UTXD,&P4SEL ; Select RXD + TXD at Port4
BIS.B #UTXE+URXE,&ME2 ; Enable USART Modules

MOV.B #PENA+SP_+CHAR,&UCTL ; USART Control Register
MOV.B #SSEL1+SSELO,&UTCTL ; Transmit Control Reg. MCLK
MOV.B #0,&URCTL ; Receive Control Register
; Continue with initialization
MAINLOOP ; Start Mainloop
; UART parts within the main loop.
; The software checks these two parts regularly.
; UART Receive part:
: check if a new character is received
: R7 contains the received information.
BIT.B #RXERR,&URCTL ; Error during receive?
Jz L$3 ; No
; Error handling
BIC.B #FE+PE+OE+BRK+RXERR,&URCTL ; Clear error flags
JMP L$2 ; Continue in mainloop

MSP430 Universal Synchronous Asynchronous Receive/Transmit Communication Interface 11

Software Routines

L$3 BIT.B #URXIFG,&IFG2 ; Character received?
JZ L$2 ; No, proceed to mainloop
MOV.B &URXBUF,R7, ;' Yes, move character to R7
L$2 ; Continue in mainloop
; UART Transmit part:

; check if the next character can be transmitted.
; R6 contains information to be transmitted.

BIT.B #UTXIFG,&IFG2 ; Transmit buffer empty?
JZ L$1 ; No, wait
MOV.B R6,&UTXBUF ; Empty: move info to TX buffer
MOV.B src,R6 : Next character to R6
L$1 ; Continue with mainloop
BR #MAINLOOP ; End of mainloop
; Interrupt Vectors
.sect "INITVEC",0FFFEh ; Reset Vector
.word INIT ; Program Start Address

Only the following two source lines need to be modified if the previous software
is to be used with the ACLK as the UART clock:

UARTCLK .equ 32768 ; ACLK is used for UARTCLK

MOV.B #SSELO,&UTCTL ; Transmit Control Register ACLK

Macros CALC_UMCTL and CALC_UBRAIl automatically make any other
modifications necessary.

3.2 Interrupt Processing
This is the normal mode to use the UART. Interrupt is requested if the general
interrupt enable bit GIE (SR.3) is set, and:

* A character is transmitted, and the transmit interrupt is enabled (IE2.1 = 1),
or

* A character is received, and the receive interrupt is enabled (IE2.0 = 1)
NOTE: |If an error occurred during the reception of a character,
the error flags in the receive control register (PE, FE, BRK, and
RXERR) must be reset within the UART interrupt handler.

Otherwise the set-error flags will block the next interrupt. This
does not apply to the overrun-error flag OE.

3.2.1 MCLK Used as UART Clock

The following example covers the use of the MCLK to generate the UART clock
or external frequencies in the MCLK range (500 kHz to 3.8 MHz).

12 SLAA049

Software Routines

For high baud-rates—higher than 38,400 baud—dedicated CPU registers may
be necessary to lower the interrupt overhead; time for saving and restoring the
register is not required. The software example shown in section 3.2.2 uses
dedicated registers.

EXAMPLE: a full-duplex UART software using the two UART interrupts is shown.
It is designed for:

e Baud rate: 19200 baud

e The MCLK (3.144 MHz) used as the UART clock

e Seven data bits

* One stop bit

e Parity enabled with even-parity

* Receive of error-free characters only

Transmit Part: the start address xxxx is loaded into pointer TXPOI, and the
number of characters to be output is loaded into character count TXCNT. The

interrupt routine outputs the programmed character sequence starting at address
XXXX.

Receive Part: the start address yyyy of a RAM buffer is loaded into pointer
RCPOI, and the number of characters to be received is loaded into character
count RCCNT. The interrupt routine receives the characters and stores them into
the buffer. Only error-free characters are accepted.

STACK .equ 0600h ; Stack start address

; Definitions for the UART part

Baudr .equ 19200 ; Baud rate is 19200 Baud

FLLMPY .equ 96 ; FLL multiplier for 3,144MHz
UARTCLK .equ FLLMPY*32768 ; MCLK is used for UARTCLK
.even ; Word boundary

.bss TXPOI,2 ; Pointer to transmit buffer
.bss RCPOI,2 : Pointer to receive buffer
.bss TXCNT,1 ; Counter/status for transmit
.bss RCCNT,1 ; Counter/status for receive

; The content for the UMCTL and UBR registers are calculated
; The two software macros do not use RAM or ROM

CALC_UMCTL ; Calculate Mod. Reg. content
CALC_UBR : Calculate UBR1/UBRO contents
text ; Software start address

INIT MOV #STACK,SP ; Initialize Stack Pointer

MSP430 Universal Synchronous Asynchronous Receive/Transmit Communication Interface

13

Software Routines

14

CALL #INITSR

; Init. FLL and RAM
: Proceed with initialization

; Initialize the UART: Even parity, 7 data bits, 1 stop bit
; MCLK for UART clock, only error-free characters to URXBUF

MAINLOOP

MOV.B #CUMCTL,&UMCTL
MOV.B #CUBRO,&UBRO
MOV.B #CUBR1,&UBR1
BIS.B #URXD+UTXD,&P4SEL
BIS.B #UTXE+URXE,&ME2
MOV.B #PENA+PEV,&UCTL
MOV.B #SSEL1+SSELO,&UTCTL
MOV.B #0,&URCTL

BIS.B #UTXIE+URXIE,&IE2
CLR.B TXCNT

CLR.B RCCNT

EINT ; Enable interrupt

; Preparation for reception of m bytes. The input

; buffer starts at address yyyy

L$1

TST.B RCCNT
INZ L$1
MOV #yyyy,RCPOI
MOV.B #m,RCCNT

; Modulation Register
; Baud Rate Register low
; Baud Rate Register high
: Select RXD + TXD at Port4
; Enable USART Modules
; USART Control Register
; Transmit Control Reg. MCLK
; Receive Control Register
; Enable USART interrupts
: Disable transmit
: Disable receive
: Continue with initialization

; Start of Mainloop

; Data input completed?
: No, wait
; Buffer start address to RCPOI
; Number of bytes to RCCNT
; Continue in mainloop

; Stop the reception of data. The currently received character

; Is input completely

CLR.B RCCNT

; Status to zero
; Continue

; Preparation for the transmission of n bytes starting at

; address xxxx. Check if last transmit operation

; is really completed.

SLAA049

BIT.B #TXEPT,&UTCTL
JZ L$2

; Transmit part ready?
; No, buffers are not yet empty

Software Routines

MOV.B #n—1,TXCNT ; Ready, init. byte count

MOV #xxxx+1, TXPOI ; Init. transmit buffer pointer

MOV.B xxxx,&UTXBUF ; First info byte to TX buffer
L$2 ; Continue in background

; Stop the transmission of data. The currently sent character
; Is transmitted completely

CLR.B TXCNT ; Status to zero

; Interrupt Handlers
; Interrupt handler for the UART Receive part.

RCINT TST.B RCCNT ; Reception allowed?
JZ RCRET : No, status is 0
BIT.B #RXERR,&URCTL ; Error during receive?
JNZ RCERR ;Yes
DEC.B RCCNT ; No, Byte count -1
PUSH RS5 ; Save R5
MOV RCPOI,R5 : Pointer to buffer
MOV.B &URXBUF,0(R5) ; Next byte to buffer
INC R5 ; To next buffer byte
MOV R5,RCPOI ; Update pointer
POP R5 ; Restore R5

RCRET RETI

RCERR ... ; Error handling
BIC.B #FE+PE+OE+BRK+RXERR,&URCTL ; Clear error flags
RETI

; Interrupt handler for the UART Transmit part.

TXINT TST.B TXCNT ; Something to transmit?
Jz TXRET ; No, buffer is empty
DEC.B TXCNT ; Byte count -1
PUSH R5
MOV TXPOI,R5 ; Pointer to buffer
MOV.B @R5+,&UTXBUF ; Next byte for output
MOV R5,TXPOI ; Update pointer
POP R5

TXRET RETI

MSP430 Universal Synchronous Asynchronous Receive/Transmit Communication Interface 15

Software Routines

; Interrupt Vectors

.sect "SCIVEC",0FFECh ; USART interrupt vectors
.word TXINT ; Transmit vector

word RCINT ; Receive vector

.sect "INITVEC”,0FFFEh : Reset vector

.word INIT ; Program start address

3.2.2 ACLK Used as UART Clock

16

The following example deals with the ACLK used to generate the UART clock,
or external frequencies lower than 100 kHz. Basically the same method used in
section 3.2.1 can be applied to the ACLK used as the UART clock. See section
3.2.1 for an explanation.

This section shows a different approach: here the CPU is normally off, and leaves
the LPM3 only when the number of received or transmitted characters
programmed is reached.

EXAMPLE: full-duplex UART software code using the UART interrupt is shown.
It is designed for:

e Baud rate: 2400 baud

e The ACLK (32,768Hz) used as the UART clock

* Eight data bits

* Two stop bits

e Parity enabled with odd-parity

* Receive of error-free characters only

e The CPU normally uses the low-power mode 3 (LPM3)

Transmit Part: the start address xxxx of the output sequence is loaded into
pointer TXPOI, and the number of characters m is loaded into character count
TXCNT. The interrupt routine outputs the character sequence and then, when
TXCNT reaches zero (output completed), it resets the CPUoff bit of the stored
status register on the stack. This manipulation omits the return to LPM3 and
allows initialization of the next transmit sequence. R6 is exclusively used for the
transmit part.

Receive Part: the start address yyyy of a RAM buffer is loaded into pointer
RCPOI, and the number of characters n is loaded into character count RCCNT.
The interrupt routine receives the characters and stores them in the buffer until
RCCNT reaches zero (input completed). Then it resets the CPUoff bit of the
stored status register on the stack. This manipulation omits the return to LPM3
and allows to process the received data. Only error-free characters are accepted.
R7 is exclusively used for the receive part.

SLAA049

Software Routines

STACK .equ 0600h ; Stack start address

; Definitions for the UART part

Baudr .equ 2400 ; Baud rate is 2400 Baud
FLLMPY .equ 64 ; FLL multiplier for 2,096 MHz
UARTCLK .equ 32768 ; ACLK is used for UARTCLK
.bss TXCNT,1 ; Counter/status for transmit
.bss RCCNT,1 ; Counter/status for receive
CALC_UMCTL ; Calculate Mod. Reg. content
CALC_UBR : Calculate UBR1/UBRO contents
text ; Software start address
INIT MOV #STACK,SP ; Initialize Stack Pointer
CALL #INITSR : Init. FLL and RAM

; Proceed with initialization

; Initialize the UART: Odd parity, 8 data bits, 2 stop bits
; ACLK used for the UART clock

MOV.B #CUMCTL,&UMCTL ; Modulation Register
MOV.B #CUBRO,&UBRO ; Baud rate register low
MOV.B #CUBR1,&UBR1 ; Baud rate register high
BIS.B #URXD+UTXD,&P4SEL ; Select RXD + TXD at Port4
BIS.B #UTXE+URXE,&ME2 ; Enable USART modules
MOV.B #PENA+SP_+CHAR,&UCTL ; USART control register
MOV.B #SSELO,&UTCTL ; Transmit contr. reg. ACLK
MOV.B #0,&URCTL ; Receive control register
BIS.B #UTXIE+URXIE,&IE2 ; Enable USART interrupts
CLR.B TXCNT ; Disable transmit
CLR.B RCCNT ; Disable receive
: Continue with initialization
EINT ; Enable interrupt (GIE = 1)
MAINLOOP ... ; Start Mainloop

; Preparation for the reception of m bytes. Buffer starts
; at address yyyy. R7 is a dedicated register for receive
TST.B RCCNT ; Ready?
JINZ L$1 ; No, RCCNT >0

MSP430 Universal Synchronous Asynchronous Receive/Transmit Communication Interface 17

Software Routines

18

MOV #yyyy,R7 ; Receive buffer start address
MOV.B #m,RCCNT ; Number of bytes

L$1...

; Stop the reception of data. The actually received character

; Is input completely

CLR.B RCCNT ; Status is zero

; Preparation for transmission of n bytes starting at
; address xxxx. R6 is a dedicated register for transmit.
; The check for the empty TX buffer is faster, but needs more

; ROM bytes.
TST.B TXCNT ; Ready for next characters?
JNZ L$2 ; No, TXCNT >0
BIT.B #UTXIFG,&IFG2 ; TX part also ready?
JZ L$2 ; No, busy
MOV.B #n-1,TXCNT ; Ready, init. byte count
MOV #xxxx+1,R6 ; Init. transmit buffer pointer
MOV.B xxxx,&UTXBUF ; First info byte to TX buffer
L$2 ; Continue in background

; Stop transmission of data. The actually sent character
; Is transmitted completely

)

CLR.B TXCNT ; Status is zero

; After completion of all tasks, the program enters LPM3

PLPM3 BIS #CPUoff+GIE+SCG1+SCGO0,SR ; Enter LPM3
; An interrupt handler cleared the CPUoff bit on the stack.

; Checks are made to see if activity is needed:

: Receive: receive input buffer full

; Transmit: transmit buffer output completely

. other interrupt handlers

TST.B RCCNT ; Receive completed?
JZ PROCRC ; Yes, process received data
TST.B TXCNT ; Transmit completed?

SLAA049

Software Routines

JZ NXTTX ; Yes, prepare next characters
: Other handlers?
JMP PLPM3 : Back to LPM3

; Interrupt Handlers

; Interrupt handler for the UART Receive part. R7 is used

; only for the receive part.

RCINT

RCRET

RCERR

TST.B RCCNT ; Reception allowed?

JZ RCRET : No, status is 0

BIT.B #RXERR,&URCTL ; Error during receive?

JINZ RCERR ;Yes

DEC.B RCCNT ; Byte count -1

MOV.B &URXBUF,0(R7) ; Next byte to buffer

INC R7 ; To next buffer byte

TST.B RCCNT ; Buffer filled?

INZ RCRET ; No, proceed

BIC #CPUoff+SCI1+SCI0,0(SP) ; Active Mode after RETI
RETI

; Error handling
BIC.B #FE+PE+OE+BRK+RXERR,&URCTL; Clear error flags
RETI

; Interrupt handler for the UART Transmit part. R6 is used

; only for the transmit part

TXINT TST.B TXCNT ; Something to transmit?
Jz TXRET ; No, buffer is empty
DEC.B TXCNT ; Byte count -1
MOV.B @R6+,&UTXBUF ; Next byte for output
TST.B TXCNT ; Buffer output?
IJNZ TXRET ; No, proceed
BIC #CPUoff+SCI1+SCI0,0(SP) ; Active Mode after RETI
TXRET RETI
; Interrupt vectors

sect "SCIVEC",0FFECh ; USART Interrupt vectors
word TXINT ; Transmit vector

word RCINT ; Receive vector

sect "INITVEC”,0FFFEh : Reset vector

word INIT ; Program start address

MSP430 Universal Synchronous Asynchronous Receive/Transmit Communication Interface

19

Software Routines

3.3 Subroutines and .MACROs

This section contains the subroutines and assembler .MACROs used in the
previous examples.

3.3.1 Subroutines

20

The initialization subroutine INITSR—which is explained in detail in the MSP430
Application Report—first checks if a power-up clear (PUC), or a power-on reset
(POR) event has taken place:

* Power-Up Clear: the supply voltage is switched on, the RAM is cleared.

* Power-On Reset: aresetoccurred (RST/NMI-pin or by watchdog), the RAM
is not changed.

These two situations differ by the content of the INITKEY word. If it contains
OF05Ah, the power-on reset state is assumed; otherwise, the power-up clear
state is assumed.

The subroutine selects the correct current switch FN_x for the system clock
generator, and waits 30,000 clock cycles to ensure that it has locked to the correct
oscillator tap.
; Common Initialization Subroutine
; Check the INITKEY value first:
; If value is OFO5AN: a reset occurred, RAM is not cleared
; otherwise Vcc was switched on: complete initialization
INITSR CMP #O0F05Ah,INITKEY
JEQ INO
CALL #RAMCLR
MOV #O0F05Ah,INITKEY

: PUC or POR?
; Key is ok, continue program
; Restart completely: clear RAM
; Define “initialized state”

INO MOV.B #FLLMPY-1,&SCFQCTL ; Define MCLK frequency

Af FLLMPY < 48 ; Use the right DCO current:

SLAA049

MOV.B #0,&SCFIO
.else

if FLLMPY < 80
MOV.B #FN_2,&SCFI0
.else

if FLLMPY <112
MOV.B #FN_3,&SCFIO0
.else

MOV.B #FN_4,&SCFI0
.endif

.endif

.endif

; MCLK < 1.5MHz: FN_x off

: 1.5MHz < MCLK < 2.5MHz?

;Yes, FN_2 on

; 25MHz < MCLK < 3.5MHz?

;Yes, FN_3 on

; MCLK > 3.5MHz: FN_4 on

Software Routines

MOV #10000,R5 ; Allow the FLL to settle
IN1 DEC R5 ; at the correct DCO tap

JINZ IN1 ; during 30000 cycles

RET ; Return from initialization

; Subroutine for clearing of the RAM block

.bss INITKEY,2,0200h ; OFO5ANh: initialized state
RAMSTRT .equ 0200h ; Start of RAM
RAMEND .equ O5FEh ; Highest RAM address (33x)
RAMCLR CLR R5 ; Prepare index register
RCL CLR RAMSTRT(R5) ; 1st RAM address

INCD R5 ; Next word address

CMP #RAMEND-RAMSTRT+2,R5 ; RAM cleared?

JLO RCL ; No, once more

RET ;Yes, return

3.3.2 .MACROs

The two following software macros calculate the best-fit values of the UART
baud-rate generator. They do not use ROM or RAM, and they define the three
variables, CUBR1, CUBRO, and CUMCTL, used during initialization of UART
registers UBR1, UBRO, and UMCTL.

.mnolist : Do not list macro calls

; The values for the modulation registers UBR1/UBRO are
: calculated: CUBR1 and CUBRO contain the truncated result
; of the UARTCLK/Baudr division.

CALC_UBR .macro

CUBR1 .equ UARTCLK/(Baudr*256) ; Baud Rate Reg. High

CUBRO .equ (UARTCLK/Baudr)-256*CUBR1 ; Baud Rate Reg. Low
.endm

The calculation of the modulation register UMCTL content follows. Seven bits of
resolution are used.

CALC_UMCTL .macro

; Modulation Register content: the rounded fraction of

; CMOD = UARTCLK/Baudr is calculated

; Binary format of CMOD: 0.XXXXXXX

: Then the 8 bits of UMCTL are built.

; Inputs: UARTCLK, Baudr ; Frequencies [Hz]

; Output: CUMCTL ; 8-bit UMCTL register value

MSP430 Universal Synchronous Asynchronous Receive/Transmit Communication Interface

21

Software Routines

22

CMOD
M$00

M$10
C$0

M$10
C$0

M$20
Cs$1

M$20
Cs$1

M$30
C$2

M$30
C$2

M$40
Cs$3

M$40
C$3

M$50
C$4

M$50
C$4

M$60
C$5

M$60
C$5

SLAA049

equ ((((256*UARTCLK)/Baudr)-256*(UARTCLK/Baudr))+1)/2

.equ CMOD+CMOD

if M$00>127

.equ M$00-128+CMOD
equ 1

.else

.equ M$00+CMOD

equ O

.endif

Jif M$10>127

.equ M$10-128+CMOD
equ 2

.else

.equ M$10+CMOD
equ O

.endif

if M$20>127

.equ M$20-128+CMOD
.equ 4

.else

.equ M$20+CMOD

equ O

.endif

Jif M$30>127

.equ M$30-128+CMOD
.equ 8

.else

.equ M$30+CMOD
equ O

.endif

if M$40>127

.equ M$40-128+CMOD
.equ 10h

.else

.equ M$40+CMOD
equ O

.endif

if M$50>127

.equ M$50-128+CMOD
.equ 20h

.else

.equ M$50+CMOD

equ O

: Fraction x 2
; Overflow to integer?
. Yes, subtract 1.000000
; UMCTL.0O=1

: No, add fraction
:UMCTL.0=0

; Overflow to integer?
; Yes, subtract 1.000000
;UMCTL.1=1

; No, add fraction
;UMCTL.1=0

; Overflow to integer?
: Yes, subtract 1.000000
;UMCTL.2=1

: No, add fraction
;UMCTL.2=0

; Overflow to integer?
; Yes, subtract 1.000000
;UMCTL.3=1

: No, add fraction
;UMCTL.3=0

; Overflow to integer?
; Yes, subtract 1.000000
;UMCTLA4 =1

: No, add fraction
:UMCTL.4=0

; Overflow to integer?
;' Yes, subtract 1.000000
:UMCTL5=1

: No, add fraction
;UMCTL.5=0

Software Routines

M$70
C$6

M$70

C$6

C$7

C$7

CUMCTL

.endif
Af M$60>127
.equ M$60-128+CMOD

.equ 40h

.else

.equ M$60+CMOD
equ O

.endif

Jif M$70>127
.equ 80h

.else

.equ O

.endif

; Overflow to integer?

: Yes, subtract 1.000000
;UMCTL.6=1

; No, add fraction
;UMCTL.6=0

; Overflow to integer?

yUMCTL.7=1

;UMCTL.7 =0

.equ C$7+C$6+C$5+CH4+CH3+C$2+C$1+CH0 ; Add bits

.endm

MSP430 Universal Synchronous Asynchronous Receive/Transmit Communication Interface 23

References

4 References

1. MSP430 Family Architecture Guide and Module Library, 1996, Literature No.
SLAUE10B

2. MSP430 Application Report, 1998, Literature No. SLAAE10C
3. Data Sheet MSP430x33x, 1998, Literature No. SLAS163

24 SLAA049

Definitions

Appendix A Definitions

The abbreviations used in the hardware definitions are in conformance with the
Architecture User’s Guide, except for the stop bit definition (SP), which is a
predefined symbol of the MSP430 assembler for the system Stack pointer (SP).

; HARDWARE DEFINITIONS

UCTL .equ 070h ; USART Control Register

SWRST .equ 001h ;1: Software Reset 0: Run
SYNC .equ 004h ;1: UART Mode 0: SCI Mode
CHAR .equ 010h ;1:8 Data Bits 0: 7 Data Bits
SP .equ 020h ;1:2 Stop Bits 0: 1 Stop Bit
PEV .equ 040h ;1: Even Parity 0: Odd Parity
PENA .equ 080h ;1: Parity enabled O: Parity dis.
UTCTL .equ 071h ; Transmit Control Register
TXEPT .equ 001h ;1: Transmitter empty

URXSE .equ 008h ;

SSELO .equ 010h ; Clock Selection 0: Ext. Clock
SSEL1 .equ 020h ;1:ACLK 2,3: MCLK
URCTL .equ 072h ; Receive Control Register
RXERR .equ 001h ;1:Receive Error 0: No Error
URXEIE .equ 008h ;1:all Char. 0: only w/o Error
BRK .equ 010h ;1:Break detected O: ok

OE .equ 020h ;1:Overrun Error 0: ok

PE .equ 040h ;1: Parity Error 0: ok

FE .equ 080h ;1: Frame Error 0: ok

UMCTL .equ 073h ; Modulation Control Reg. m7..m0
UBRO .equ 074h ;Baud Rate Register 0

UBR1 .equ 075h ; Baud Rate Register 1

URXBUF .equ 076h ; Receive Buffer
UTXBUF .equ 077h ; Transmit Buffer
IFG2 .equ 003h ; SFRs: Flags

URXIFG .equ 001h ; Receive Flag IFG2.0
UTXIFG .equ 002h ; Transmit Flag IFG2.1

IE2 .equ 001h ; SFRs: Interrupt Enable Bits
URXIE .equ 001h ; Receive Intrpt Enable Bit IE2.0
UTXIE .equ 002h ; Transmit Intrpt Enable Bit IE2.1
ME2 .equ 005h ; SFRs: Mode Enable Bits

MSP430 Universal Synchronous Asynchronous Receive/Transmit Communication Interface

A-1

Definitions

A-2

URXE
UTXE
PASEL
URXD
UTXD
SCG1
SCGO
CPUoff
GIE
SCFQCTL
SCFIO
FN_2
FN_3
FN_4

SLAA049

.equ

.equ

.equ
.equ
.equ

.equ
.equ

.equ

.equ

.equ

.equ

.equ
.equ
.equ

001h
002h

01Fh
080h
040h

080h
040h
010h
008h

052h
050h
004h
008h
010h

: Receiver Module Enable Bit ME2.0
: Transmitter Mod. Enable Bit ME2.1

; Port4 Sel. Reg. (I/O <—> USART)
; Receive Input P4.7
; Transmit Output P4.6

; Low Power Mode bit 1
: Low Power Mode bit O
; Switches CPU off
; General Interrupt Enable Bit

; FLL multiplier and M bit
: FLL current switches
; Switch for 2 MHz
; Switch for 3 MHz
; Switch for 4 MHz

