

AVR134: Real Time Clock (RTC) using the
Asynchronous Timer

Features
• Real Time Clock with Very Low Power Consumption (4 μA @ 3.3V)
• Very Low Cost Solution
• Adjustable Prescaler to Adjust Precision
• Counts Time, Date, Month, and Year with Auto Leap Year Configuration
• Year 2000 Compliant Date Format
• Can be used on all AVR Controllers with RTC Module
• “C”-Code for ATMega103 Included

1 Introduction
This application note describes how to implement a Real Time Clock (RTC) on
AVR® microcontrollers that features the RTC module. The implementation requires
only one discrete component – a 32.768 kHz watch crystal. The application has
very low power consumption because the microcontroller operates in Power-save
mode most of the time. In Power-save mode the AVR controller is sleeping with
only a Timer running. The Timer is clocked by the external crystal. On every Timer
overflow the time, date, month, and year are counted. This RTC implementation is
written for the ATmega103, and can easily be ported to other AVRs with RTC
Module. The advantages of implementing a RTC in software compared to an
external hardware RTC are obvious:
• Lower cost
• Few external components
• Lower power
• Greater flexibility

8-bit
Microcontrollers

Application Note

Rev. 1259G-AVR-04/09

2 AVR134
1259G-AVR-04/09

2 Theory of Operation
The implementation of a RTC utilizes the asynchronous operation of the RTC module.
In this mode, Timer/Counter0 runs independently from the CPU clock.

Figure 2-1 shows that the AVR controller operates from the 4 MHz main clock source
in normal operation. When low power operation is desired the AVR operates in
Power-down mode, with only the asynchronous timer running from an external 32.768
kHz crystal.

The software Real Time Clock (RTC) is implemented using a 8-bit Timer/Counter with
Overflow Interrupt. The software controls the Overflow Interrupt to count clock and
calendar variables. The Timer Overflow Interrupt is used to update the software
variables “second”, “minute”, “hour”, “date”, “month” and “year” at the correct
intervals.

Figure 2-1. Oscillator Connection for Real Time Clock

XTAL1

XTAL2

TIMER/COUNTER0

TOSC2

TOSC1

VCC

32.768 kHz

4.000 MHz

AVR
R

ATmega103

Because of the amount time for the Timer/Counter to complete one overflow is always
the same, each of these timer variables will be incremented by a fixed number with
every Timer Overflow. The Timer Overflow Interrupt routine is used to perform this
task.

To reduce power consumption, AVR enters Power-save mode, in which all On-chip
modules are disabled except for the RTC. As shown in Table 2-1, the MCU typically
consumes less than 4 μA in this mode. The device will wake-up on the Timer
Overflow Interrupt. The updates of the timer variables are performed during the active
period.

Then the AVR re-enters the Power-save mode until the next Timer Overflow occurs.
Figure 2-2 and Figure 2-3 shows the time the AVR controller operates in Power-save
mode versus that Active mode.

To calculate the total power consumption, the power consumption in Power-save
mode must be added to the power consumption in Active mode. The time it takes to
update the timer variables in the interrupt routine is less than 100 cycles, with a 4
MHz main clock this is 25 µs. The power consumption for this period is neglectable.
More important is the wake-up period for the controller. The wake-up time can be
programmed to 35 ms for use with external crystal, or 1 ms for use with ceramic
resonator. An example of a circuit that wakes up once every second to update the
RTC will show the power consumption for the two types of clock source:

 AVR134

 3

1259G-AVR-04/09

Figure 2-2. Current Figures for Crystal Oscillator, 35 ms Startup Time

Power-save

Active Mode

Time

Current

4μA 6mA

35ms1s

Total current consumption per second:

= (1 sec * 4 μA) + (35 ms * 6 mA) = 4 μAs + 210 μAs = 214 μAs

This shows that the dominating part of the current consumption is in Active mode.

Figure 2-3. Current Figures for Ceramic Resonator, 1 ms Startup Time

Power-save

Active Mode

Time

Current

4μA
6mA

1 ms1s

Total current consumption per second:

= (1 sec * 4 μA) + (1 ms * 6 mA) = 4 μAs + 6 μAs = 10 μAs

This shows that by reducing the startup time the current consumption is reduced from
214 μAs to 10 μAs.

Table 2-1. Current Consumption by the AVR Controller in Each Mode
Mode Typical Max

Active 4 MHz, 3.3 VCC 4 mA 6.0 mA

Idle 4 MHz, 3.3 VCC 1.8 mA 2.0 mA

Power-down 4 MHz, 3.3 VCC < 1.0 μA 2.0 μA

Power-save 4 MHz, 3.3 VCC < 4.0 μA 6.0 μA

3 Calculation
Given the frequency of the watch crystal, the user can determine the time for each
tick in the Timer/Counter by selecting the desired prescale factor. As shown in Table
3-1, CS02, CS01, and CS00 in the TCCR0 (Timer/Counter0 Control Register) define
the prescaling source of the Timer/Counter, where CK is the frequency of the watch
crystal. For example, if CK equals 32.768 kHz, the Timer/Counter will tick at a
frequency of 256 Hz with a prescaler of CK/128.

Table 3-1. Timer/Counter0 Prescale Select
CS02 CS01 CS00 Description (1) Overflow Period

0 0 0 Timer/Counter0 is stopped –

0 0 1 CK 1/128s

4 AVR134
1259G-AVR-04/09

CS02 CS01 CS00 Description (1) Overflow Period

0 1 0 CK/8 1/16s

0 1 1 CK/32 1/4s

1 0 0 CK/64 1/2s

1 0 1 CK/128 1s

1 1 0 CK/256 2s

1 1 1 CK/1024 8s

Notes: 1. CK = 32.768 kHz

4 Configuration Example
As shown in Figure 2-1, the crystal should be connected directly between pins
TOSC1 and TOSC2. Newer devices require external capacitors on these pins as they
have a different internal oscillator, please refer to the device datasheet for details on
crystal connections. The Oscillator is optimized for use with a 32.768 kHz watch
crystal, or an external clock signal in the interval of 0 Hz - 256 kHz. In this example,
the eight LEDs in port B are used to display the RTC. The LED on Port B pin 0 will
change state every second. The next six LEDs represents the minute in binary, and
the LED on pin 7 stays on for one hour and off for the next.

Considerations should be taken when clocking the Timer/Counter from an
asynchronous clock source. A 32.768 kHz crystal have a stabilization time up to one
second after Power-up. The controller must therefore not enter Power-save mode
less than a second after Power-up. Care must be taken when changing to
asynchronous operation. See the data sheet for detailed instructions. When updating
the Timer Register the data is transferred to a temporary register and latched after
two external clock cycles. The Asynchronous Status Register (ASSR) contains status
flags that can be checked to control that the written register is updated.

5 Implementation
The software consists of two subroutines. “counter” is the Timer/Counter Overflow
service routine, which updates all the timer variables whenever a Timer Overflow
occurs. The other one, “not_leap”, corrects the date for leap years. The main program
sets up all the necessary I/O Registers to enable the RTC module and controls the
Power-down sequence.

The AS0 bit in the ASSR (Asynchronous Status Register) is set to configure
Timer/Counter0 to be clocked from an external clock source. Only this timer can
perform asynchronous operations. The start value for the Timer is Reset and the
desired prescaler value is selected. To synchronize with the external clock signal the
program wait for the ASSR Register to be updated. TOIE0 bit in the TIMSK
(Timer/Counter Interrupt Mask Register) is then set to enable Timer/Counter0
Overflow Interrupt. The Global Interrupt Enable bit in SREG (Status Register) also
has to be set to enable all interrupts. SM1 and SM0 bit in MCUCR (MCU Control
Register) are set to select Power-save mode. The SLEEP instruction will then place
the controller in sleep mode. A loop in the main program executes the SLEEP
instruction.

 AVR134

 5

1259G-AVR-04/09

5.1 “counter” Overflow Interrupt Routine
The interrupt routine is executed every time a Timer Overflow occurs. It wakes up the
MCU to update the timer variables. An interrupt procedure cannot return or accept
any variables. A global structure with timer variables are declared to keep track of
time: “second”, “minute”, “hour”, “date”, “month” and “year”. Since the time required
to complete one Timer Overflow is known, “second” will be incremented by a fixed
number every time. Once it reaches 60, “minute” is incremented by “1” and “second”
is set to “0”.

6 AVR134
1259G-AVR-04/09

Figure 5-1. Flow Chart, Counter Interrupt Routine

Y

Y

Counter

++ Second
=60?

Minute=Minute +1
Second = 0

Minute = 60?

Hour = Hour +1
Minute = 0

Hour = 24?

Date = Date +1
Hour = 0

Y

N

N

N

N

N

N

N

Y

Y

Y

Y

Y

N

A B

A B

Date = 32?

Date = 31 &
Month = 4,6,9,11?

Date = 30?

Date = 29?

Month=2
and Not_Leap

Month = Month +1
Date=1

Month = 13?

Year = Year +1
Month=1

Return

N

Y

 AVR134

 7

1259G-AVR-04/09

5.2 “not_leap” Subroutine
This routine checks whether or not it is a leap year. It returns true if the year is not
leap and false for leap. It is considered a leap year if both of the following conditions
are satisfied:

1. The year is divisible by 4, and
2. If the year is divisible by 100, it also has to be divisible by 400.

Figure 5-2. Flow Chart, “not_leap” Subroutine

Y

N

not_leap

Year Divisable
by 100?

Return
Year/400

Return Year/4

6 Accuracy
The RTC on the AVR controller maintains high accuracy as long as the watch crystal
is accurate. Asynchronous operation allows the Timer to run without any delays even
when the CPU is under heavy computation. However, a small neglectable
discrepancy does occur because the timer variables are not updated in parallel. By
the time they are finished updating, they deviate from the Timer/Counter very slightly.
The largest discrepancy occurs when all the timer variables are overflowed. At this
moment, “second” is 59, “minute” is 59, “hour” is 23, and so on. It takes 94 cycles for
the MCU to complete the update. At a 4 MHz CPU clock, the error between the RTC
and the watch crystal will not exceed 23.5 µs found by 94/(4 * 106). A typical error
should be 6 µs since 24 cycles are needed to update “second”. This error does not
accumulate since the Timer is always synchronous with the watch crystal.

7 Resources
Table 7-1. CPU and Memory Usage

Function Code Size
(Bytes)

Cycles Example
Register

Interrupt Description

main 104 – R16 Timer0
Overflow

Sets the necessary
configuration

counter 356 – R16, R17,
R30, R31

– Updates the
variables

8 AVR134
1259G-AVR-04/09

Function Code Size
(Bytes)

Cycles Example
Register

Interrupt Description

not_leap 48 10
(typical)

R16, R17,
R20, R21

– Checks for leap
year

Total 508 – –

Table 7-2. Peripheral Usage
Peripheral Description Interrupts Enabled

TOSC1, TOSC2 connected to external crystal –

Timer/counter0 real-time clock Timer/counter0 overflow

8 I/O pins on port B flashing LEDs (example only) –

1259G-AVR-04/09

D
Headquarters International

Atmel Corporation
2325 Orchard Parkway
San Jose, CA 95131
USA
Tel: 1(408) 441-0311
Fax: 1(408) 487-2600

 Atmel Asia
Unit 1-5 & 16, 19/F
BEA Tower, Millennium City 5
418 Kwun Tong Road
Kwun Tong, Kowloon
Hong Kong
Tel: (852) 2245-6100
Fax: (852) 2722-1369

Product Contact

Atmel Europe
Le Krebs
8, Rue Jean-Pierre Timbaud
BP 309
78054 Saint-Quentin-en-
Yvelines Cedex
France
Tel: (33) 1-30-60-70-00
Fax: (33) 1-30-60-71-11

Atmel Japan
9F, Tonetsu Shinkawa Bldg.
1-24-8 Shinkawa
Chuo-ku, Tokyo 104-0033
Japan
Tel: (81) 3-3523-3551
Fax: (81) 3-3523-7581

 Web Site
www.atmel.com/

Technical Support
avr@atmel.com

Sales Contact
www.atmel.com/contacts

 Literature Request
www.atmel.com/literature

Disclaimer: The information in this document is provided in connection with Atmel products. No license, express or implied, by estoppel or otherwise, to any
intellectual property right is granted by this document or in connection with the sale of Atmel products. EXCEPT AS SET FORTH IN ATMEL’S TERMS AND
CONDITIONS OF SALE LOCATED ON ATMEL’S WEB SITE, ATMEL ASSUMES NO LIABILITY WHATSOEVER AND DISCLAIMS ANY EXPRESS, IMPLIED
OR STATUTORY WARRANTY RELATING TO ITS PRODUCTS INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTY OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT. IN NO EVENT SHALL ATMEL BE LIABLE FOR ANY DIRECT, INDIRECT,
CONSEQUENTIAL, PUNITIVE, SPECIAL OR INCIDENTAL DAMAGES (INCLUDING, WITHOUT LIMITATION, DAMAGES FOR LOSS OF PROFITS,
BUSINESS INTERRUPTION, OR LOSS OF INFORMATION) ARISING OUT OF THE USE OR INABILITY TO USE THIS DOCUMENT, EVEN IF ATMEL HAS
BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. Atmel makes no representations or warranties with respect to the accuracy or completeness of the
contents of this document and reserves the right to make changes to specifications and product descriptions at any time without notice. Atmel does not make any
commitment to update the information contained herein. Unless specifically provided otherwise, Atmel products are not suitable for, and shall not be used in,
automotive applications. Atmel’s products are not intended, authorized, or warranted for use as components in applications intended to support or sustain life.

© 2009 Atmel Corporation. All rights reserved. Atmel®, Atmel logo and combinations thereof, AVR® and others, are registered trademarks
or trademarks of Atmel Corporation or its subsidiaries. Other terms and product names may be trademarks of others.

	1 Introduction
	2 Theory of Operation
	3 Calculation
	4 Configuration Example
	5 Implementation
	5.1 “counter” Overflow Interrupt Routine
	5.2 “not_leap” Subroutine

	6 Accuracy
	7 Resources

