www.mikrocontroller.net

Forum: Offtopic Beweis: 3 Parallelogramme 3 Ecken: ein Schnittpunlt der Diagonalen


Autor: Johannes (Gast)
Datum:

Bewertung
0 lesenswert
nicht lesenswert
Hallo,

ich studiere im 1. Semester Chemie und soll für eine (freiwillige) übung 
folgende Aufgabe lösen.
Leider habe ich nicht einmal einen Ansatz.

Könntet ihr euch das vll. mal ansehen und mir sagen, was euch einfällt?

Danke,
Johannes


Beweise:

Es sind 6 beliebige Punkte gegeben.
Wenn es möglich ist diese Punkte zu 3 Parallelogramme zu verbinden 
(jeder Punkt ist ein Eckpunkt von zwei verschiedenen Paralleogrammen), 
dann gibt es drei Diagnonalen (d.h. eigentlich gibt es natürlich 6 
Diagnoalen, aber es liegen immer 2 Diagonalen genau übereinander) und
(wichtig hierum geht es: ) die Diagnoalen schneiden sich in einem Punkt.

Autor: David P. (chavotronic)
Datum:
Angehängte Dateien:

Bewertung
0 lesenswert
nicht lesenswert
Ist das so??

Autor: Johannes (Gast)
Datum:
Angehängte Dateien:

Bewertung
0 lesenswert
nicht lesenswert
Nein.
Es darf nur 3 Diagonalen ergeben. Bei dir gibt es 6.

Ich hänge mal eine Zeichnung an, die etwas kompliziert wird wegen den 
ganzen Verbindungslinieen.

Johannes

Autor: David P. (chavotronic)
Datum:

Bewertung
0 lesenswert
nicht lesenswert
Genau darum gings mir ja auch:

Wenn es möglich ist diese Punkte zu 3 Parallelogramme zu verbinden
dann gibt es drei Diagnonalen.
Stimmt sso ja dennnicht , meine Zeichnung hat ja schon den Gegenbeweis.

Autor: Johannes (Gast)
Datum:

Bewertung
0 lesenswert
nicht lesenswert
Oh, entschuldigung.
Das es nur 3 Diagonalen gibt, gehört zu den Vorraussetzungen und nicht 
zu der Folge.

Also:

Beweise:
Es sind 6 beliebige Punkte gegeben.
Wenn es möglich ist diese Punkte zu 3 Parallelogramme zu verbinden
(jeder Punkt ist ein Eckpunkt von zwei verschiedenen Paralleogrammen), 
so dass es nur drei Diagnonalen (d.h. eigentlich gibt es natürlich 6
Diagnoalen, aber es liegen immer 2 Diagonalen genau übereinander) gibt, 
dann folgt daraus, dass sich die Diagnoalen in einem Punkt schneiden.

Johannes

Autor: David P. (chavotronic)
Datum:

Bewertung
0 lesenswert
nicht lesenswert
Wenn du voraussetzt dass es 3 Diagonalen gibt, heisst das ja dass jede 
Diagonale zu 2 Parallelogrammen gehört.

Sagen wir Diagonale a,b,c

Im ersten ersten Parallelogramm gibt es die Diagonalen a und b,
die schneiden sich in der Mitte (der Mitte von a und von b),so lautet ja 
die Eigenschaft der Diagonalen eines Parallelogramms.

Das zweite Parallelogrammhat also zwangsweise eine gemeinsame Diagonale. 
saben wir a und c.
Da diese Beiden sich auch in der Mitte schneiden (der Mitte von a und 
von c), liegt dieser Punkt zwangsweise auf der Mitte von b(wg. Mitte von 
a liegt auf Mitte von b)

=> Fertig

Bitte melde dich an um einen Beitrag zu schreiben. Anmeldung ist kostenlos und dauert nur eine Minute.
Bestehender Account
Schon ein Account bei Google/GoogleMail, Yahoo oder Facebook? Keine Anmeldung erforderlich!
Mit Google-Account einloggen | Mit Yahoo-Account einloggen | Mit Facebook-Account einloggen
Noch kein Account? Hier anmelden.