www.mikrocontroller.net

Forum: Analoge Elektronik und Schaltungstechnik Energie in einem Kondensator berechnen


Autor: Hajo B. (0815driver)
Datum:

Bewertung
1 lesenswert
nicht lesenswert
Hab mal eine Frage die hier hoffentlich Leute beantworten können.

Die gesamt gespeicherte Energie in einem Kondensator ist ja:

W= 1/2 x C x U²

Dies beschreibt ja die Gesamte Energie die in dem Kondensator steckt 
wenn ich von Maximalspannung (2,7V bei einem Supercap) bis 0V entlade, 
richtig?

Wären also bei diesem angenommenen Supercap:

W= 1/2 x 3000F x (2,7V)²
W= 10935Ws


Jetzt möchte ich jedoch wissen, wieviel Energie ich aus dem Kondensator 
bekomme wenn dieser voll aufgeladen ist und ich also von 2,7V bis nur 1V 
entlade.
Kann man dann einfach als Spannung 1,7V in die Berechnung einsetzen und 
wie ist dies zu berechnen?

W= 1/2 x 3000F x (1,7V)²
W= 4335Ws

Ist das so korrekt?

: Verschoben durch Admin
Autor: Micha H. (mlh) Benutzerseite
Datum:

Bewertung
0 lesenswert
nicht lesenswert
Nein, das geht so nicht, weil die Spannung quadratisch eingeht. Berechne 
den Energieinhalt bei 1V und ziehe das vom Wert bei 2,7V ab, dann hast 
Du das was Du zwischen 2,7V und 1V entnehmen kannst.

Autor: Bernhard R. (barnyhh)
Datum:

Bewertung
0 lesenswert
nicht lesenswert
Wieviel Energie ist bei 1V im Kondensator gespeichert? Was ist mit der 
Differenzenergie passiert?

Bernhard

Autor: Hajo B. (0815driver)
Datum:

Bewertung
0 lesenswert
nicht lesenswert
Wenn ich die Energie nun für, geladen 1V entladen 0V errechne bekomme 
ich ja folgendes:
W= 1/2 x 3000F x (1,0V)²
W= 1500Ws

Wenn ich diese Energie von der Gesamtenergie abziehe ergibt sich dies:
10935Ws - 1500Ws = 9435Ws

Und das ist dann meine Energie (9435Ws) wenn ich von 2,7V bis auf 1,0V 
entlade?

Autor: Falk Brunner (falk)
Datum:

Bewertung
0 lesenswert
nicht lesenswert
@  Hajo B. (0815driver)

>Wenn ich die Energie nun für, geladen 1V entladen 0V errechne bekomme

War das deine Frage? Nein.
War das der Hinweis? Nein.
Warum berechnest du dann den Unsinn?

>Und das ist dann meine Energie (9435Ws) wenn ich von 2,7V bis auf 1,0V
>entlade?

Gott oh Gott!!!! Du bist P.I.S.A.!

Ist dir nicht eine Sekunde in den Sinn gekommen die Energiedifferenz 
ganz einfach zu berechen?

Energie bei 2,7V - Energie bei 1V = Abgegebene Energie

Eieieieieiei

Autor: Hajo B. (0815driver)
Datum:

Bewertung
0 lesenswert
nicht lesenswert
Falk Brunner schrieb:
>
> Ist dir nicht eine Sekunde in den Sinn gekommen die Energiedifferenz
> ganz einfach zu berechen?
>
> Energie bei 2,7V - Energie bei 1V = Abgegebene Energie
>

Das habe ich doch getan:
Energie bei 2,7V - Energie bei 1V = Abgegebene Energie
10935Ws          - 1500Ws         = 9435Ws

>>Und das ist dann meine Energie (9435Ws) wenn ich von 2,7V bis auf 1,0V
>>entlade?

>Gott oh Gott!!!! Du bist P.I.S.A.!


Was ist an der Frage jetzt so verwerflich?

Autor: schon lange dabei (Gast)
Datum:

Bewertung
0 lesenswert
nicht lesenswert
Keine Sorge, das ist Falks normaler Umgangston.

Autor: Andreas Schweigstill (Firma: Schweigstill IT) (schweigstill) Benutzerseite
Datum:

Bewertung
0 lesenswert
nicht lesenswert
Falk Brunner schrieb:
> Warum berechnest du dann den Unsinn?

Hajo hat doch völlig korrekt gerechnet.

Autor: A. R. (redegle)
Datum:

Bewertung
0 lesenswert
nicht lesenswert
W= 1/2 x C x U²
-->
Wd= 1/2 x C x [ (U1)^2 - (U2)^2 ]
Wd= 1/2 x 3000 x [ 2,7^2 - 1^2 ]

Ist das selbe Spielchen wie bei der Kreisringfläche eines Kreises.

Autor: g457 (Gast)
Datum:

Bewertung
0 lesenswert
nicht lesenswert
Die Rechnung ist so weit richtig, mir drängt sich eine andere Frage auf: 
Wer hat Gold-/Green-/Super-/Ultra-/Blue-/Gene-/Yellow-/..Caps mit 2.7V 
und 3000F? ..und wie groß ist so einer? Geht da nicht irgendwo ein 
'm'/10e-3 ab?

Autor: Michael (Gast)
Datum:

Bewertung
0 lesenswert
nicht lesenswert
Hajo B. schrieb:
> Die gesamt gespeicherte Energie in einem Kondensator ist ja:
>
> W= 1/2 x C x U²
>
> Dies beschreibt ja die Gesamte Energie die in dem Kondensator steckt
> wenn ich von Maximalspannung (2,7V bei einem Supercap) bis 0V entlade,
> richtig?

Nicht ganz, das ist die Energie, die im Kondensator steckt. Entlädst du 
ihn auf 0V steckt in ihm auch 0 Energie.

Weiter zu beachten ist, wenn man einem Kondensator Energie entzieht hat 
man in der Realität auch immer einen Widerstand. Unabhängig von der 
Größe des Widerstandes wird an ihm immer die Hälfte der Energie in Wärme 
umgesetzt. Es wird an ihm nur dann keine Wärme umgesetzt wenn der 
Widerstand 0 Ohm beträgt. Ist er von 0 verschieden (in der Realität ist 
das immer der Fall kannst du nur noch die halbe Energie nutzen von 
der, die im Kondensator gespeichert ist.

Autor: Andreas Schweigstill (Firma: Schweigstill IT) (schweigstill) Benutzerseite
Datum:

Bewertung
0 lesenswert
nicht lesenswert
Michael schrieb:
> Ist er von 0 verschieden (in der Realität ist
> das immer der Fall kannst du nur noch die halbe Energie nutzen von
> der, die im Kondensator gespeichert ist.

Das ist nicht korrekt. Der Anteil der entnehmbaren Energie hängt von dem 
Verhältnis aus Lastwiderstand und Innenwiderstand ab.

Ebenso ist die Energiemenge, die man benötigt, um den Kondensator 
aufzuladen, auch um das Verhältnis aus Innenwiderstand und 
Ladewiderstand höher.

Die o.a. Betrachtung gilt nur dann näherungsweise, wenn man die Energie 
plötzlich von einem Kondensator in den anderen umladen will.

Autor: Lothar Miller (lkmiller) (Moderator) Benutzerseite
Datum:

Bewertung
0 lesenswert
nicht lesenswert
> Es wird an ihm nur dann keine Wärme umgesetzt wenn der
> Widerstand 0 Ohm beträgt. Ist er von 0 verschieden
> kannst du nur noch die halbe Energie nutzen von
> der, die im Kondensator gespeichert ist.
Wohin geht der Rest?

Autor: Floh (Gast)
Datum:

Bewertung
0 lesenswert
nicht lesenswert
Hajo B. schrieb:
> W= 1/2 x 3000F x (1,0V)²
> W= 1500Ws

Bild vom Kondensator bitte :-)
Einen mit 3000F will ich auch, falls er nicht zu groß ist :-)

Autor: Lothar Miller (lkmiller) (Moderator) Benutzerseite
Datum:

Bewertung
0 lesenswert
nicht lesenswert
> Bild vom Kondensator bitte :-)
Googlen nach Supercap 3000F ergibt z.B. 
http://www.buchholz-electronic.de/dienste/dienste-...

Autor: Michael (Gast)
Datum:

Bewertung
0 lesenswert
nicht lesenswert
Lothar Miller schrieb:
> Wohin geht der Rest?

Die wird am Widerstand verheizt.

Andreas Schweigstill schrieb:
> Das ist nicht korrekt. Der Anteil der entnehmbaren Energie hängt von dem
> Verhältnis aus Lastwiderstand und Innenwiderstand ab.

Und ich dachte, die entnehmbare Energie hinge nur von den auf den 
Kondensator gespeicherten Ladungsträgern ab und dem Abstand der Platten. 
Immerhin hat auch beim Laden eines Kondensators ein etwaiger Widerstand 
nur auf die Dauer, wie lange man braucht um die Energie rein zu 
bekommen, eine Auswirkung, nicht aber auf die Höhe der Energie oder 
warum erscheint in der bekannten und gültigen Gleichung für selbige kein 
Widerstand? ;)

Autor: Lothar Miller (lkmiller) (Moderator) Benutzerseite
Datum:

Bewertung
0 lesenswert
nicht lesenswert
>> Wohin geht der Rest?
> Die wird am Widerstand verheizt.
Erwischt ;-)
Nehmen wir mal einen Innenwiderstand von 10mOhm an und belasten den 
geladenen Kondensator mit 1 Ohm. Dann fällt am Innenwiderstand zwingend 
nur 1% der Spannung ab. Und deshalb kann da auch nur 1% der Energie 
verheizt werden. Also weit weg von einem Wirkungsgrand von 50%.

Es geht noch weiter, denn die Energie muß ja auch in den Kondensator 
reinkommen. Nach der 50%-Verlust-Theorie müsste ich doch dann die 
doppelte Energie in den Kondensator einspeisen, um den "voll" zu machen. 
Dann kämen noch die 50% Verluste beim Auslagern dazu, das hieße aber als 
zum guten Schluss: ein Kondesator ist ein Energiespeicher mit einem 
Wirkungsgrad von exakt 25%.... :-o
Kein Netzteil, in dem ein Kondensator als Energiespeicher eingesetzt 
wird, könnte mehr als 25% Wirkungsgrad haben.

Hier steht die Lösung:
Andreas Schweigstill schrieb:
>>>> Die o.a. Betrachtung gilt nur dann, wenn man die Energie
>>>> plötzlich von einem Kondensator in den anderen umladen will.
Das ist z.B. der Fall, wenn ein "voller" und ein "leerer" Kondensator 
parallelgeschaltet werden.

Autor: Michael (Gast)
Datum:

Bewertung
0 lesenswert
nicht lesenswert
Lothar Miller schrieb:
> Das ist z.B. der Fall, wenn ein "voller" und ein "leerer" Kondensator
> parallelgeschaltet werden.

Das hatte ich heute Mittag auch irgendwie im Hinterkopf.....:-o

Autor: Fabian Hoemcke (Firma: Technische Universität Berlin) (brein)
Datum:

Bewertung
0 lesenswert
nicht lesenswert
Hallo Leute,

tut mir leid, dass ich das Thema nochmal aufwähren muss.

Was hier genannt wurde, dass die tatsächliche Energie abhängig vom 
Verhältnis dess Innenwiderstand zum Lastwiderstand bzw. Ladewiderstand 
ist, klingt für mich absolut plausibel. Also zu sagen, dass die Energie 
= Spannung mal gespeicherter Ladung ist multipliziert mit dem 
Spannungsteiler ist für mich nachvollziehbar.

Jedoch ist in der ganzen Wikipedia der Faktor 1/2 vorhanden.
http://de.wikipedia.org/wiki/Elektrische_Energie

Und wenn man sich z.B. folgende Herleitung anschaut, dann ist wohl 
richtig:
http://www.matheplanet.com/default3.html?call=view...
(W steht hier für Arbeit/Energie, um es nicht mit der Feldstärke E zu 
verwechseln.)

Ich habe es mal auf anderem Wege versucht herzuleiten:
Also: Energie ist Leistung mal Zeit
Leistung ist u.a. Spannung mal Stromstärke
Strom und Zeit ergeben die Ladung.
Die maximale Ladung ist abhängig von der Kapazität und diese wiederum 
ist Ladung pro Volt. Somit geht die Spannung quadratisch in die Energie 
ein.

Woher also per se der Quotient von 1/2 her kommt, ist mir also auch 
unklar.
Logisch lässt sich das nur für einen Sonderfall erklären, schaut man 
sich die Einheiten an, müsste es umgekehrt ganz platt lauten:
Nur bei der Herleitung scheint es zu stimmten. gilt diese dann nur für 
den Sonderfall?

Vielen Dank
Fabian

Autor: Fabian Hoemcke (Firma: Technische Universität Berlin) (brein)
Datum:

Bewertung
0 lesenswert
nicht lesenswert
Ein anderer Weg ist vll. die Leistung über die Zeit zu integrieren.

So kann man ja sagen:
Ich komme zwar auf was anders, aber Wolframalpha sagt, die Stammfunktion 
sei:
http://www.wolframalpha.com/input/?i=integral+P*e^...
folgich gilt:

Auch so komme ich nicht auf 1/2.

Gruß
Fabian

Autor: Lothar Miller (lkmiller) (Moderator) Benutzerseite
Datum:

Bewertung
0 lesenswert
nicht lesenswert
Fabian Hoemcke schrieb:
> Woher also per se der Quotient von 1/2 her kommt, ist mir also auch
> unklar.
Vom dem (von dir einfach unterschlagenen) Integral, so wie die bekannte 
Geschichte mit der Beschleunigung und der Zeit:

Denn wenn du sagst
und
dann kommst du auf
und das ist anerkanntermaßen falsch...

Autor: Mike (Gast)
Datum:

Bewertung
0 lesenswert
nicht lesenswert
Hallo Fabian,

in Deiner Überlegung steckt ein Denkfehler: Zwar ist die Energie das 
Integral der Leistung, aber die Leistung beim Entladen des Kondensators 
ist nicht konstant, sondern nimmt mit der Zeit ab, da auch die Spannung 
abnimmt.

Bei Entladung über einen konstanten Widerstand R gilt z.B.
 Dann beträgt die Leistung:

Integriert von 0 bis Unendlich gibt:
Wegen
 folgt:
 q.e.d

Gruss
Mike

Autor: klaus (Gast)
Datum:

Bewertung
0 lesenswert
nicht lesenswert
Fabian Hoemcke schrieb:
> Also: Energie ist Leistung mal Zeit

Ne, Energie ist das Zeitintegral der Leistung.

Ausserdem ist P(t) = u(t)*i(t) mit i(t) = C*du/dt ergibt P(t) = 
C*u(t)*du/dt

wenn du das jetzt über die Zeit integrierst ergibt das C*1/2*u^2

Autor: Fabian Hoemcke (Firma: Technische Universität Berlin) (brein)
Datum:

Bewertung
0 lesenswert
nicht lesenswert
Vielen Dank erstmal.
Jedoch habe ich es leider immer noch nicht ganz verstanden.

@Lothar, welches Integral soll ich vergessen haben?
Ich habe doch lediglich die Einheiten umgestellt.
Man könnte also fragen, warum ist die Energie in einem Kondensator nicht 
die darin enthaltene Ladung mal der Spannung? Warum ist es nur die halbe 
Spannung oder die halbe Ladung?

@Mike
Danke. Ich war irgendwie der Ansicht, dass wenn
u_t = U * e^x ist
und
i_t = I * e^x ist,
dann ist
p_t = P * e^x = U*I * e^x.
Wenn ich jetzt mit
p_t = P * e^2x rechne, komme ichn auch auf das Ergebnis.

@Klaus
leider konnte ich deiner Rechnung nicht folgen.

_____________

Also letzt endlich, hat das alles nichts mit dem Vehältnis von 
Innenwiderstand zum Außenwiderstand zutun, oder?
Zu mindest nicht, bei einem theoretisch idealien Kondensator.
Selbst bei diesem ist die enthaltene Energie = U²*C/2.

Gruß
Fabian

Autor: Thorsten (Gast)
Datum:

Bewertung
0 lesenswert
nicht lesenswert
Weil die Spannung bei der Ladungsentnahme abnimmt und nicht konstant 
bleibt.

Autor: Justus Skorps (jussa)
Datum:

Bewertung
0 lesenswert
nicht lesenswert
Fabian Hoemcke schrieb:
> @Lothar, welches Integral soll ich vergessen haben?

steht doch inzwischen schon mehrmals da, du unterschlägst einfach die 
Zeitabhängigkeit...

wie in seinem Beispiel mit Strecke und Geschwindigkeit:
s=v*t gilt eben nur bei konstantem v, sonst muss braucht man ein 
Integral...und in deinem Fall ist es genauso

Autor: Fabian Hoemcke (Firma: Technische Universität Berlin) (brein)
Datum:

Bewertung
0 lesenswert
nicht lesenswert
Ja, aber die Spannung nimmt ja nicht linear ab. Dann, aber nur dann 
könnte man halbieren! Aber die Abnhame ist ja progressiver.

Außerdem nimmt ja auch die Ladung ab.

Gruß
Fabian

Autor: Thorsten (Gast)
Datum:

Bewertung
0 lesenswert
nicht lesenswert
Doch! Die Spannung nimmt linear mit der im Kondensator gespeicherten 
Ladung ab.

Autor: Fabian Hoemcke (Firma: Technische Universität Berlin) (brein)
Datum:

Bewertung
0 lesenswert
nicht lesenswert
OK, Danke!
Dann habe ich es verstanden. Vielen Dank.

Autor: Lothar Miller (lkmiller) (Moderator) Benutzerseite
Datum:

Bewertung
0 lesenswert
nicht lesenswert
Noch ein Nachtrag:
Justus Skorps schrieb:
> steht doch inzwischen schon mehrmals da, du unterschlägst einfach die
> Zeitabhängigkeit...
Bei der Kondesatorgeschichte spielt die Zeit keine Rolle (sonst müsste 
auch ein kleines t in der Formel auftauchen, oder die Formel wäre 
falsch).

Dieser Faktor 1/2 kommt beim Kondensator nur deshalb zustande, weil die 
Ladung und die Spannung bei konstanter Kapazität voneinander linear 
abhängen. Das gibt dann grafisch dargestellt das berüchtigte Dreieck und 
nachfolgend die halbe Fläche (=Energie).

Autor: Davis (Gast)
Datum:

Bewertung
0 lesenswert
nicht lesenswert
Lothar Miller schrieb:

> ... das berüchtigte Dreieck ...

Bermuda?

Autor: Justus Skorps (jussa)
Datum:

Bewertung
0 lesenswert
nicht lesenswert
jup ist mir später dann auch aufgefallen...eigentlich wollte ich beim 
Kondensator bleiben, fand dann aber doch dein Beispiel 
Weg/Geschwindigkeit anschaulicher und hab die beiden Sachen 
durcheinander gehauen...ist doch zu warm im Büro...

Autor: Yalu X. (yalu) (Moderator)
Datum:

Bewertung
0 lesenswert
nicht lesenswert
Allgemeine Herleitung, ohne von einer linearen oder exponentiellen 
Lade-/Entladekurve auszugehen:

Zusammenhang zwischen Strom und Spannung beim Kondensator:

Die elektrische Energie in Abhängigkeit von Strom und Spannung:

Die erste Gleichung in die zweite eingesetzt:

Fertig :)

Autor: Fabian Hoemcke (Firma: Technische Universität Berlin) (brein)
Datum:
Angehängte Dateien:
  • preview image for VIP.png
    VIP.png
    19,1 KB, 361 Downloads
  • preview image for E.png
    E.png
    12,4 KB, 343 Downloads

Bewertung
0 lesenswert
nicht lesenswert
Nochmal nachgefragt, weil ich in Mathe so schlecht bin.
Ich bin zwar gut in Digitaltechnik, µC-Programmierung und 
Schaltungsaufbau. Aber bei den Grundlagen wie GET, Physik und vor allem 
Mathe hapert es bei mir irgendwie.
Mathe habe ich immer nur für den Moment begriffen, wo ich es gebüffelt 
hatte. Danach verhält sich mein Wissen und Verständnis wie die 
Entladekurve eines Kondensators. Mein Leakage ist einfach zu hoch.

Ich bin gerade am Überlegen, ausgehend von den Formeln für u_t und i_t, 
wie ich über die Zeit, die abgegebene Energie berechne.
Sicher Abi Stoff, oder zu mindest Thema der ersten zwei Semester. Aber 
so richtig verinnerlich habe ich es nie.

______
Ich habe die Entladekurven von Strom und Spannung der Form A * e^(-x). 
Folglich habe ich auch die Entladekurve der Leistung der Form P * 
e^(-2x).
Die Fläche unter der Leistungskurve ist die gesammte Energie, die wir 
mit der hier diskutierten Formel berechnen können. (VIP.png)
Nun hätte ich aber gern einen Graphen, der mir die abgegebene Energie 
über die Zeit aufzeigt. Also eher einen E*(1-e^(-2x)) oder so ähnlich. 
Also eine e-Ähnliche Funktion der sich dem Maximalwert von E=1/2*U²*C 
asympthotisch annähert. (E.png)

Auch dass müsste doch das Ergebnis eines Integrals sein. Aber welches?

Ich habe das Problem in Octave (MATLAB-Klone) einfach gelöst, indem ich 
einen neuen Vektor erzeugt habe, in dessen ersten Wert ich über 2 
For-Loops den ersten Leistungswert, in den zweiten Wert die ersten 
beiden Leistungswerte usw. aufsummiert habe.
Natürlich habe ich es noch durch die Anzahl der Samples pro Sekunde 
skaliert.
time = 4;      % in s
n = 1000;      % samples per s

% snap [..]

e_t = zeros(1, n*time);
for I=1:(n*time)
  for J=1:I
    e_t(I) += (p_t(J)/n); 
  end
end

Aber es müsste auch über ein Integral gehen.
Das Integral habe ich mal von Wolframalpha ermitteln lassen:
http://www.wolframalpha.com/input/?i=integral+from...
(Die Leistung habe ich erstmal weggelassen, kommt jetzt aber dazu.)
Und nun wird es schwierig für mich.
Das bestimmte Integral ist:
Wenn bis hier nicht schon alles falsch ist, dann ergibt sich:
Das ist aber ein lineares Ergebnis. Kann also nicht richtig sein.
Oder hätte ich i(t) nehmen sollen?
Aber das glaube ich weniger. Ich bin nun endlich total auf dem Holzweg.

Ich hoffe, Ihr habt halbwegs verstanden was ich möchte und könnt Ihr 
helfen.

Vielen Dank
Fabian

Autor: Udo Schmitt (urschmitt)
Datum:

Bewertung
0 lesenswert
nicht lesenswert
Fabian Hoemcke schrieb:
> Nochmal nachgefragt, weil ich in Mathe so schlecht bin.

Und im Namen:
"Firma: Beuth Hochschule für Technik"

Also Hochschule und Kapitulation bei einem einfachen Integral einer 
Geraden passt nicht.

Autor: Fabian Hoemcke (Firma: Technische Universität Berlin) (brein)
Datum:

Bewertung
0 lesenswert
nicht lesenswert
Deine Meinung mag berechtigt sein, hilft mir aber dennoch nicht weiter.

Autor: Fabian Hoemcke (Firma: Technische Universität Berlin) (brein)
Datum:

Bewertung
0 lesenswert
nicht lesenswert
Tja, urschmitt, da bist Du wohl selber überfragt.

Ich komme ja zum Ziel. So ist es nicht. Eben nur nicht auf die von Dir 
als so einfach klassifizierte Art und Weise.

Gruß
Fabian

Autor: c-hater (Gast)
Datum:

Bewertung
0 lesenswert
nicht lesenswert
Fabian Hoemcke schrieb:

> Nochmal nachgefragt, weil ich in Mathe so schlecht bin.
> Ich bin zwar gut in Digitaltechnik, µC-Programmierung und

Man kann nicht in Mathe wirklich schlecht sein und gleichzeitig ein 
guter Programmierer. Das paßt nicht zusammen.

Allerdings: ein sehr guter Mathematiker ist in aller Regel auch kein 
guter Programmierer. Der ist dann wieder zu weit weg auf der anderen 
Seite.

Ein guter Programmierer ist jemand, der dem sehr guten Mathematiker 
soweit folgen kann, daß er dessen formale Erkenntnisse in brauchbaren 
Code umsetzen kann.

Autor: Fabian Hoemcke (Firma: Technische Universität Berlin) (brein)
Datum:

Bewertung
0 lesenswert
nicht lesenswert
Das mag ja alles sein. Ich bin ja auch nicht so schlecht, dass ich gar 
nichts check.
Ich komme nur nicht auf das Integral, vermutlich schon, weil ich den 
Wald vor lauter Bäumen nicht sehe.

Wie lautet es nun?
Ich komm' nicht drauf.

Gruß und Danke
Fabian

Autor: Jobst M. (jobstens-de)
Datum:

Bewertung
0 lesenswert
nicht lesenswert
Och Kindchen, entweder hast Du die Entladung mit einem konstanten Strom, 
dann hast Du ein Dreieck - Spannung hoch und Zeit breit.

Die Energie ist also U*I*t/2

Oder Du hast die stino Entladekurve. Dabei ist UC = UR und I ist U/R

Also eine e-Funktion von Spannung und Strom - bzw. eine quadrierte 
e-Funktion für die Leistung.

Die Fläche ist bei beiden gleich groß.

Sollte doch langsam mal Klick machen! ;-)


Gruß

Jobst

Autor: Michael H. (michael_h45)
Datum:

Bewertung
0 lesenswert
nicht lesenswert
Fabian Hoemcke schrieb:
> Das mag ja alles sein. Ich bin ja auch nicht so schlecht, dass ich gar
> nichts check.
> Ich komme nur nicht auf das Integral, vermutlich schon, weil ich den
> Wald vor lauter Bäumen nicht sehe.

Wohl eher, weil du nicht verstanden hast, was ein Integral überhaupt 
ist. Und das vermutlich schon nicht, als es zu Schulzeiten bei 
gleichförmigen Bewegungen gebraucht wurde.
Wenn dir der Begriff mal klar ist, verstehst du auch die Gleichungen 
und kannst sie nicht nur hinschreiben und umformen.
Und das hat nun überhaupt nichts mit Mathematik oder Physik oder 
sonstwas zu tun, sondern mit Abstraktions- und Transfervermögen. Und wer 
sich "Hochschule" neben seinen Namen schreiben lässt, sollte dazu dann 
auch bitte den nötigen Grips mitbringen.

Autor: Fabian Hoemcke (Firma: Technische Universität Berlin) (brein)
Datum:

Bewertung
0 lesenswert
nicht lesenswert
So, jetzt haben mir 3 von 4 Personen gesagt, dass ich von 
Integralrechnung keine Ahnung habe und das obwohl ich es zuvor schon 
einmal gesagt habe. Bravo.

Diese Aussage selber bringt mich aber nicht weiter. Selbst ein 
Grundschüler kann diese Aussage treffen, ohne es selber verstanden zu 
haben, wenn er mir nicht sagt, worin mein Denkfehler liegt oder mir die 
Rechnung richtig aufmacht. Verzeiht mir also bitte, dass ich bezweifle, 
dass Ihr es selber drauf habt.

Michael H. schrieb:
> Wohl eher, weil du nicht verstanden hast, was ein Integral überhaupt
> ist.
Ja, ist denn die Zielbestimmung, die ich auch mit Bildern dargestellt 
habe, nicht über eine Integralrechnung lösbar? Wenn nein, was ist dann 
der Richtige weg?

Jobst M. schrieb:
> Och Kindchen, entweder hast Du die Entladung mit einem konstanten Strom,
> dann hast Du ein Dreieck - Spannung hoch und Zeit breit.
>
> Die Energie ist also U*I*t/2
Nein, der Widerstand ist konstant. Somit ist Spannung und Strom nicht 
konstant.
>
> Oder Du hast die stino Entladekurve. Dabei ist UC = UR und I ist U/R
>
> Also eine e-Funktion von Spannung und Strom - bzw. eine quadrierte
> e-Funktion für die Leistung.
>
> Die Fläche ist bei beiden gleich groß.
>
> Sollte doch langsam mal Klick machen! ;-)
DAS habe ich verstanden. Siehe das linke Bild oben, da ist es deutlich 
zusehen.
DAS ist auch nicht mein Problem.
DAS ist aber auch nicht, was ich beschrieben habe.
Siehe: 
Beitrag "Re: Energie in einem Kondensator berechnen"

Ich verstehe ja, dass man vll. kein Bock hat, mir auf diese Trivialität 
zu antworten. Dann antwortet mir aber bitte gar nicht und schreibt nicht 
dass, was ich selber schon längst geschrieben habe. Nämlich, dass ich es 
nicht verstanden habe. Hätte ich es verstanden, dann würde ich es hier 
wohl kaum rein schreiben.

Den Nutzen eines Postes in einem Thread mit einem Verlauf wie etwa:
"Hallo Leute, ich habe ein Problem und kann es nicht lösen..."
"Ja klar, weil Du das Problem nicht vestanden hast!"
verläuft gegen null. Und ich werde es nie verstehen wie man sowas 
schreiben kann.
Was anderes ist, jemanden darauf hinzuweisen, dass er seine Frage oder 
sein Problem inhaltlich oder formell schlecht dargelegt hat. Das bringt 
ihm ja im Zweifel weiter.

Gruß
Fabian

Autor: Udo Schmitt (urschmitt)
Datum:

Bewertung
0 lesenswert
nicht lesenswert
Fabian Hoemcke schrieb:
> Tja, urschmitt, da bist Du wohl selber überfragt.
Stimmt, wie das zusammengehen soll daß man noch nicht mal die 
Stammfunktion von y = ax + b bilden kann aber an einer Hochschule ist, 
da bin ich überfragt.

Fabian Hoemcke schrieb:
> Ich komme nur nicht auf das Integral, vermutlich schon, weil ich den
> Wald vor lauter Bäumen nicht sehe.

Eher weil du den Post von Yalu nicht gelesen hast.
Wie soll er es dir denn noch erklären?
Die Herleitung wie man eine Stammfunktion einer Geraden bildet und dann 
die beiden Schranken einsetzt und voneinander abzieht?
Das kleine Einemaleins?
Was ist eine Zahl?

Autor: Fabian Hoemcke (Firma: Technische Universität Berlin) (brein)
Datum:

Bewertung
0 lesenswert
nicht lesenswert
Ich habe mir jetzt nochmal angesehen was ich eigentlich will und mir 
einfach was zusammen gestrickt:
Es gilt ja:
Was ich ja haben wollte, war ja der Verlauf der gesamt abgegebenen 
Energie. Das ähnelt ja dem Kurvenverlauf von:
Multipliziert man beides:

Ob man dahin über ein Integral kommt oder über einen anderen Weg weiß 
ich nicht. Würde mich aber noch interessieren.
Bin aber erstmal froh damit.

@urschmitt
Warum liest Du nicht, was ich geschrieben habe?
Es geht nicht darum, generell eine Stammfunktion zu bilden. Es geht 
darum, eine Funktion aufzustellen, von der ich dann die Stammfunktion 
bilden kann, die mich zum Ziel bringt. Und ob die Integralrechnung 
überhaupt die Lösung des Problems ist, habe ich sogar offen gelassen.

Udo Schmitt schrieb:
> Eher weil du den Post von Yalu nicht gelesen hast.
Du hast ihn nicht gelesen. Er beantwortete die Frage, wie man auf 
E=1/2*U²*C kommt. Auf die Post die danach kamen und folglich den 
Themawechsel kann er gar nicht beantwortet haben.

Wie soll ich es Dir noch erklären?
Was ist Inhalt?
Was ist Kontext?
Was ist ein Satz?
Was sind Buchstaben?

Gruß
Fabian

Autor: Fabian Hoemcke (Firma: Technische Universität Berlin) (brein)
Datum:

Bewertung
0 lesenswert
nicht lesenswert
Gut! Ich liege wieder falsch.

Ich denke auch, dass bringt hier nichts weiter. Meinet wegen kann der 
Thread geschlossen werden. Die eigentliche Frage wurde ja hinreichend 
beantwortet.

Gruß
Fabian

Autor: Jobst M. (jobstens-de)
Datum:

Bewertung
0 lesenswert
nicht lesenswert
Öhh ... das?


Sollte es sein, wenn ich Dich nun richtig verstanden habe ...

Und was wohl auch dem entspricht, was Du heraus bekommen hast.


... so steht es zumindest bei Wikipedia ...
http://de.wikipedia.org/wiki/RC-Glied#Differential...



Gruß

Jobst

Antwort schreiben

Die Angabe einer E-Mail-Adresse ist freiwillig. Wenn Sie automatisch per E-Mail über Antworten auf Ihren Beitrag informiert werden möchten, melden Sie sich bitte an.

Wichtige Regeln - erst lesen, dann posten!

  • Groß- und Kleinschreibung verwenden
  • Längeren Sourcecode nicht im Text einfügen, sondern als Dateianhang

Formatierung (mehr Informationen...)

  • [c]C-Code[/c]
  • [avrasm]AVR-Assembler-Code[/avrasm]
  • [code]Code in anderen Sprachen, ASCII-Zeichnungen[/code]
  • [math]Formel in LaTeX-Syntax[/math]
  • [[Titel]] - Link zu Artikel
  • Verweis auf anderen Beitrag einfügen: Rechtsklick auf Beitragstitel,
    "Adresse kopieren", und in den Text einfügen




Bild automatisch verkleinern, falls nötig
Bitte das JPG-Format nur für Fotos und Scans verwenden!
Zeichnungen und Screenshots im PNG- oder
GIF-Format hochladen. Siehe Bildformate.
Hinweis: der ursprüngliche Beitrag ist mehr als 6 Monate alt.
Bitte hier nur auf die ursprüngliche Frage antworten,
für neue Fragen einen neuen Beitrag erstellen.

Mit dem Abschicken bestätigst du, die Nutzungsbedingungen anzuerkennen.