www.mikrocontroller.net

Forum: Analoge Elektronik und Schaltungstechnik Frage zu Speicherdrossel


Autor: Christoph A. (shadowrunner93)
Datum:

Bewertung
0 lesenswert
nicht lesenswert
Guten Abend Forum!

Für einen Step-Down Regler benötigt man eine Induktivität die viel 
Energie speichern kann, also mit Luftspalt.
Mit diesem Wissen habe ich mich dann durch eine Reihe von Formel und 
Datenblättern gekämpft und war schlussendlich verwundert :

Kerne mit Luftspalt haben einen viel niedrigeren AL-Wert als Kerne ohne.
Somit ergibt sich bei gleicher Windungszahl eine viel kleinere 
Induktivität.

Ein Vorteil hat das ganze aber anscheinend : Die Spule kommt erst bei 
einem viel größerem Strom in Sättigung. Ist dies aber bei Ferrit-Kernen 
ohne Luftspalt nicht auch der Fall?

Worin liegen also die Vorteile eines Ferrit-Kerns mit Luftspalt 
gegenüber einem ohne?

Bei mir scheitert's am Kapieren der Zusammenhänge zwischen 
Feldliniedichte,B-Feld,maximaler Strom. Vll könnte mir das jemand näher 
bringen?

Vielen Dank im voraus!

Mfg
Christoph

Autor: ArnoR (Gast)
Datum:

Bewertung
0 lesenswert
nicht lesenswert
Für Speicherdrosseln muss die Spule einen Luftspalt haben, weil nur 
darin Energie gespeichert werden kann. Der (ideale) Kern speichert keine 
Energie, sondern leitet sie nur weiter (Transformatoren).


Christoph A. schrieb:
> Bei mir scheitert's am Kapieren der Zusammenhänge zwischen
> Feldliniedichte,B-Feld,maximaler Strom. Vll könnte mir das jemand näher
> bringen?

Der durch die Wicklung fließende Strom magnetisiert den Kern und diese 
Magnetiesierung (=B-Feld=Flußdichte) wird durch Feldlinien dargestellt. 
Mit steigendem Strom müssen sich immer mehr Feldlinien die verfügbare 
Fläche teilen, die Feldliniendichte steigt. Irgendwann ist das gesamte 
Material in Feldrichtung magnetisiert, dann ist Schluss (Sättigung).

Autor: Christoph A. (shadowrunner93)
Datum:

Bewertung
0 lesenswert
nicht lesenswert
ArnoR schrieb:
> Für Speicherdrosseln muss die Spule einen Luftspalt haben, weil nur
> darin Energie gespeichert werden kann. Der (ideale) Kern speichert keine
> Energie, sondern leitet sie nur weiter (Transformatoren).
>

Da bin ich anderer Meinung.

Nur weil eine Spule keinen Luftspalt hat, heißt das nicht dass sie keine 
Energie speichern kann.

Es gilt immer noch : W = 0.5*I²*L

Ein Kern ohne Luftspalt gerät nur viel schneller in Sättigung, weil der 
magnetische Widerstand von z.B. Ferrit viel kleiner ist als der von Luft 
und die Feldliniendichte schnell außerhalb des linearen Bereichs kommt. 
(s.h. B-H Feld Zusammenhang)

Dagegen soll ein Luftspalt helfen, da Luft einen erheblich größeren 
Widerstand dem magnetischen Fluss entgegensetzt als Ferrit.

Habe ich den Zusammenhang jetzt verstanden oder ist etwas falsch an 
meiner Aussage?

Autor: Falk Brunner (falk)
Datum:

Bewertung
0 lesenswert
nicht lesenswert
@  ArnoR (Gast)

>darin Energie gespeichert werden kann. Der (ideale) Kern speichert keine
>Energie,

keine nennenswerte Energie.

> sondern leitet sie nur weiter (Transformatoren).


>Der durch die Wicklung fließende Strom magnetisiert den Kern

Nicht ganz, es ist die anliegende Spannung! Der Stromfluss ist die 
FOLGE!


@  Christoph A. (shadowrunner93)

>Nur weil eine Spule keinen Luftspalt hat, heißt das nicht dass sie keine
>Energie speichern kann.

>Es gilt immer noch : W = 0.5*I²*L

Ja, aber der Betrag ist sehr klein.

>Ein Kern ohne Luftspalt gerät nur viel schneller in Sättigung, weil der
>magnetische Widerstand von z.B. Ferrit viel kleiner ist als der von Luft
>und die Feldliniendichte schnell außerhalb des linearen Bereichs kommt.
>(s.h. B-H Feld Zusammenhang)

Ja.

>Dagegen soll ein Luftspalt helfen, da Luft einen erheblich größeren
>Widerstand dem magnetischen Fluss entgegensetzt als Ferrit.

>Habe ich den Zusammenhang jetzt verstanden oder ist etwas falsch an
>meiner Aussage?

Na dann sind doch alle Fragen beantwortet, oder? ;-)

Wenn nicht, lies mal die Artikel Spule sowie [[Transformatoren und 
Spulen]].

MFG
Falk

Autor: Christoph A. (shadowrunner93)
Datum:

Bewertung
0 lesenswert
nicht lesenswert
> Na dann sind doch alle Fragen beantwortet, oder? ;-)

Nicht ganz ^^

Nämlich : Ist es jetzt den Aufwand eines Kerns mit Luftspalt und den 
zusätzlichen Wicklungen wert, oder reicht die maximale Flussliniendichte 
des ferromagnetischen Materials dass ich verwende aus und kann mir somit 
die zusätzlichen Windungen sparen?

Ein Beispiel:

Imax = 3A
Material = E 25 ( Material : N27)
Al mit Luftspalt = 150
Al ohne Luftspalt = ca. 1200

Hoffe das reicht als Richtwerte. =)

Mfg

Autor: ArnoR (Gast)
Datum:

Bewertung
0 lesenswert
nicht lesenswert
Falk Brunner schrieb:
>>darin Energie gespeichert werden kann. Der (ideale) Kern speichert keine
>>Energie,
>
> keine nennenswerte Energie.

Falsch, der ideale Kern speichert überhaupt keine Energie.


Falk Brunner schrieb:
>>Der durch die Wicklung fließende Strom magnetisiert den Kern
>
> Nicht ganz, es ist die anliegende Spannung! Der Stromfluss ist die
> FOLGE!

Die Magnetisierung des Kerns rührt nur vom fließenden Strom her. Das der 
eine Folge der anliegenden Spannung ist, hat hier keinerlei Relevanz.

Autor: ArnoR (Gast)
Datum:

Bewertung
0 lesenswert
nicht lesenswert
Christoph A. schrieb:
> Ein Beispiel:
>
> Imax = 3A
> Material = E 25 ( Material : N27)
> Al mit Luftspalt = 150
> Al ohne Luftspalt = ca. 1200
>
> Hoffe das reicht als Richtwerte. =)

Nein das reicht nicht, es muss noch die jeweilige Induktivität oder die 
Windungszahl angegeben werden. Sonst hat man keine Aussage über die 
Magnetisierung des Kerns.

Autor: Falk Brunner (falk)
Datum:

Bewertung
0 lesenswert
nicht lesenswert
@  Christoph A. (shadowrunner93)

>Nämlich : Ist es jetzt den Aufwand eines Kerns mit Luftspalt und den
>zusätzlichen Wicklungen wert,

Das ist die Kernfrage (sic!) bei einer Drossel. Das ist ein 
(nicht)lineares Optimierungsproblem.

> oder reicht die maximale Flussliniendichte
>des ferromagnetischen Materials dass ich verwende aus und kann mir somit
>die zusätzlichen Windungen sparen?

Das ist doch gar nicht die Frage. Wenn du einen bestimmten 
Sättigungsstrom UND ein bestimmte Induktivitär (-< Energie) brauchst, 
ergibt sich der Rest.

Lies die Artikel die ich dir empfohlen habe, denk drüber nach, morgen 
reden wir weiter.

>Imax = 3A
>Material = E 25 ( Material : N27)
>Al mit Luftspalt = 150
>Al ohne Luftspalt = ca. 1200

>Hoffe das reicht als Richtwerte. =)

Ja und?

Siehe oben. Du brauchst ein minimales Kernvolumen.

MFG
Falk

Autor: Falk Brunner (falk)
Datum:

Bewertung
0 lesenswert
nicht lesenswert
@ArnoR (Gast)

>> keine nennenswerte Energie.

>Falsch, der ideale Kern speichert überhaupt keine Energie.

Gähn, genauso wie der ideale Dirac-Impuls und das ideale 
Rechtecksignal.

>> Nicht ganz, es ist die anliegende Spannung! Der Stromfluss ist die
>> FOLGE!

>Die Magnetisierung des Kerns rührt nur vom fließenden Strom her. Das der
>eine Folge der anliegenden Spannung ist, hat hier keinerlei Relevanz.

Hier wird es philosophisch und quantenmechanisch. ;-)

Autor: U. B. (pasewalker)
Datum:

Bewertung
0 lesenswert
nicht lesenswert
> Falsch, der ideale Kern speichert überhaupt keine Energie.

Der ideale Kern hätte ein  µ(r)-> ∞, eine Spule um diesen Kern gewickelt 
besäße unendliche Induktivität.

Würde ein Strom durch diese fließen, wäre die gespeicherte Energie 
ebenfalls ∞.

Nur bekommt man eben deshalb einen solchen Strom schwierig zum Fliessen.

Autor: U. B. (pasewalker)
Datum:

Bewertung
0 lesenswert
nicht lesenswert
Nachtrag:

> Der ideale Kern hätte ein  µ(r)-> ∞, eine Spule um diesen Kern gewickelt
> besäße unendliche Induktivität.

Gilt natürlich nur, wenn der magnetische Kreis komplett über den Kern 
geschlossen ist.

Autor: ArnoR (Gast)
Datum:

Bewertung
0 lesenswert
nicht lesenswert
Der Strom bzw. die Magnetische Feldstärke (Einheit A/m) bzw. ist die 
Ursache für die Magnetisierung, das ist weder philosophisch noch 
quantenmechanisch, sondern Maxwell.

Gehts eigentlich noch darum Fragestellern zu helfen und die Sachlage 
ggfs. auch mit idealisierten Modellen (idealer Kern, idealer 
Diracimpuls, usw.) und damit vereinfacht zu erklären, oder um kleinliche 
Selbstdarstellung.

Autor: Henry (Gast)
Datum:

Bewertung
0 lesenswert
nicht lesenswert
Bei nem Dauermagneten fließt ja auch kein Strom (A) und seine Länge is 
kürzer als 1 Meter. Trotzdem kann ich immer wieder damit den 
SchraubenZIEHER magnetisch machen, um runtergefallene Gegenstände zu 
angeln wo die Finger nich rankommen.

Autor: Christoph A. (shadowrunner93)
Datum:

Bewertung
0 lesenswert
nicht lesenswert
Der Artikel "Spule" ist wirklich sehr gut erklärt, schon kapiere ich die 
ganze Geschichte ein Wenig mehr.

Man muss nur die Zusammenhänge zwischen maximaler Strom/maximaler 
speicherbare Energie/Induktivität verstehen.

Die Frage ist, wie man auf die Formel für die maxmiale Energie eines 
Kerns kommt. Ich will sie nicht von den Maxwell-Gleichungen weg 
verstehen können, aber die Überlegung dahinter würde mich interessieren.

Außerdem ist mir aufgefallen, dass der Al-Wert und das µe eines Kerns 
beide im gleichen Verhältnis proportional zum Luftspalt sinken. Könnte 
man sicher auch mathematisch zeigen.

Von was hängt die maximale Flussliniendichte eigentlich ab? Bis jz weiß 
ich:
1.Kernmaterial
2.Temeperatur des Kerns
3.Frequenz(?)

Falls ich etwas vergessen habe, würde ich mich um eine Ergänzung freuen 
^^

Dann noch was:

http://www.epcos.com/web/generator/Web/Sections/Pr...

Hier das Datenblatt meines Kernmaterials. Hat dieses Materiel wirklich 
500mT Bmax oder habe ich das Datenblatt falsch gedeutet? Ich dachte bei 
Ferriten würden es ca.300mT sein.

Hoffe die Fragen sind konkret genug, um auch konkrete Antworten zu 
erhalten =)
Ich bedanke mich wiedermal im voraus für eure Hilfe!

Mfg
Christoph

Autor: Falk Brunner (falk)
Datum:

Bewertung
0 lesenswert
nicht lesenswert
@Christoph A. (shadowrunner93)

>Der Artikel "Spule" ist wirklich sehr gut erklärt, schon kapiere ich die
>ganze Geschichte ein Wenig mehr.

Schön zu hören.

>Die Frage ist, wie man auf die Formel für die maxmiale Energie eines
>Kerns kommt. Ich will sie nicht von den Maxwell-Gleichungen weg
>verstehen können, aber die Überlegung dahinter würde mich interessieren.

Ist relativ einfach.

E = 1/2 L * I^2.

Der maximale Strom kann über die mag. Feldstärke bzw. dann Flussdichte 
berechnet werden, welche bei Sättigung erreicht wird.

H = N * I / l
B = µ0 µr  H
L = Al * N^2

N setzt man zu 1, die Flußdichte ist materialabhängig, wobei man grob in 
Eisen, Eisenpuler und Ferrit unterscheiden kann.

>Außerdem ist mir aufgefallen, dass der Al-Wert und das µe eines Kerns
>beide im gleichen Verhältnis proportional zum Luftspalt sinken.

Logisch, Al errechnet sich aus µr und der Geometrie, im Wesentlichen 
mag. Feldlinienlänge und Querschnitt.

>Von was hängt die maximale Flussliniendichte eigentlich ab? Bis jz weiß
>ich:
>1.Kernmaterial

Ja.

>2.Temeperatur des Kerns

ein wenig.

>3.Frequenz(?)

Jain. Die Sättigungsflussdichte ist in erste Näherung 
frequenzunabhängig, praktisch wird sie aber in Hochfrequenzanwendungen 
wie Schaltnetzteilen und HF-Übertragern nicht mal ansatzweise erreicht, 
weil vorher die Ummagnetisierungsverlust riesig werden. Siehe Artikel 
Transformatoren und Spulen.

>http://www.epcos.com/web/generator/Web/Sections/Pr...

>Hier das Datenblatt meines Kernmaterials. Hat dieses Materiel wirklich
>500mT Bmax

Prinzipiell ja.

> oder habe ich das Datenblatt falsch gedeutet? Ich dachte bei
> Ferriten würden es ca.300mT sein.

Naja, das ist halt mehr der grobe Richtwert. Aber das es sehr viele 
verschiedene Ferrite gibt, ist es halt ab und an mal etwas anders.

MFG
Falk

Autor: Christoph A. (shadowrunner93)
Datum:

Bewertung
0 lesenswert
nicht lesenswert
Falk Brunner schrieb:
> Ist relativ einfach.
>
> E = 1/2 L * I^2.
>
> Der maximale Strom kann über die mag. Feldstärke bzw. dann Flussdichte
> berechnet werden, welche bei Sättigung erreicht wird.
>
> H = N * I / l
> B = µ0 µr  H
> L = Al * N^2
>
> N setzt man zu 1, die Flußdichte ist materialabhängig, wobei man grob in
> Eisen, Eisenpuler und Ferrit unterscheiden kann.

Ich verstehe nicht ganz wieso man einfach 1 für N einsetzt. Die Antwort 
wird wahrscheinlich lauten : Weil die Energie unabhängig von der 
Windungsanzahl immer gleich ist. Aber wieso dann nicht N = 100? =)

Den Rest werde ich mir noch zusammendenken bzw. durchrechnen.

Eine Frage hätte ich noch bezüglich des Datenblatts:
(http://www.epcos.com/inf/80/db/fer_07/e_25_13_7.pdf)

In der Tabelle für den Kern ohne Luftspalt gibt es noch eine Spalte Pv. 
Was ist das für eine Leistung?

Ich habe mal die Ergebnisse der maxmimalen gespeicherten Energie 
zwischen einem Kern mit und einem Kern ohne Luftspalt verglichen. Das 
Ergebnis : Der Kern mit Luftspalt kann um den Faktor 10 mehr Energie 
speichern als der ohne.
Ist das Ergebnis glaubwürdig?

Mfg
Christoph

Autor: Falk Brunner (falk)
Datum:

Bewertung
0 lesenswert
nicht lesenswert
@  Christoph A. (shadowrunner93)

>Ich verstehe nicht ganz wieso man einfach 1 für N einsetzt. Die Antwort
>wird wahrscheinlich lauten : Weil die Energie unabhängig von der
>Windungsanzahl immer gleich ist. Aber wieso dann nicht N = 100? =)

Das kommt am Ende raus, wenn man die Formeln ineinander einsetzt.

>Den Rest werde ich mir noch zusammendenken bzw. durchrechnen.

Gute Einstellung!

>Was ist das für eine Leistung?

Die Verlustleistung im Kern, welche bei einer bestimmten Frequenz und 
Magnetisierung entsteht.

>Ergebnis : Der Kern mit Luftspalt kann um den Faktor 10 mehr Energie
>speichern als der ohne.
>Ist das Ergebnis glaubwürdig?

Ja. Eine reine Luftspule kann theoretisch unendlich viel Energie 
speichern, weil sie nie sättigt. Die Grenze setzt hier der Kupferdraht.

MFG
Falk

Autor: Michael O. (mischu)
Datum:

Bewertung
0 lesenswert
nicht lesenswert
Falk Brunner schrieb:
> Ja. Eine reine Luftspule kann theoretisch unendlich viel Energie
> speichern, weil sie nie sättigt. Die Grenze setzt hier der Kupferdraht.

Eine Spule mit Kern aber auch!
Bis zur Sättigung sind magnetische Flussdichte und Feldstärke über
B = µ0 x µr x H verknüpft, danach fällt das µr einfach weg und die Sule 
verhält sich wie eine Luftspule. Und die kann ja "unendlich" viel 
Energie speichern.

Autor: Christoph A. (shadowrunner93)
Datum:

Bewertung
0 lesenswert
nicht lesenswert
Michael O. schrieb:
> Falk Brunner schrieb:
>> Ja. Eine reine Luftspule kann theoretisch unendlich viel Energie
>> speichern, weil sie nie sättigt. Die Grenze setzt hier der Kupferdraht.
>
> Eine Spule mit Kern aber auch!
> Bis zur Sättigung sind magnetische Flussdichte und Feldstärke über
> B = µ0 x µr x H verknüpft, danach fällt das µr einfach weg und die Sule
> verhält sich wie eine Luftspule. Und die kann ja "unendlich" viel
> Energie speichern.

Nähert sich die Funktion dann nicht einem bestimmten Grenzwert an? (bei 
einer Spule mit Kern meine ich)

Autor: BMK (Gast)
Datum:

Bewertung
0 lesenswert
nicht lesenswert
>Eine reine Luftspule kann theoretisch unendlich viel Energie
>speichern, weil sie nie sättigt. Die Grenze setzt hier der Kupferdraht.
>
> Eine Spule mit Kern aber auch!
> Bis zur Sättigung sind magnetische Flussdichte und Feldstärke über
> B = µ0 x µr x H verknüpft, danach fällt das µr einfach weg und die Sule
> verhält sich wie eine Luftspule. Und die kann ja "unendlich" viel
> Energie speichern.

Jepp, ist zunächst mal physikalisch betrachtet korrekt.

Ist aber in der Praxis ungefähr genauso relevant wie folgende Aussage:

"Wenn bei einer Motor-Kettensäge der Sprit alle ist, kann man
immer noch unendlich lange von Hand weitersägen"

Autor: Michael O. (mischu)
Datum:

Bewertung
0 lesenswert
nicht lesenswert
BMK schrieb:
> Jepp, ist zunächst mal physikalisch betrachtet korrekt.
> Ist aber in der Praxis ungefähr genauso relevant wie folgende Aussage:
> "Wenn bei einer Motor-Kettensäge der Sprit alle ist, kann man
> immer noch unendlich lange von Hand weitersägen"

Ich wollte zum einen die Aussage relativieren, dass nur Luftspulen 
unendliche Energie speichern können.
In der Praxis kommt der Anteil "unendlich" eh schon nicht vor.

So ganz praxisfern ist die Aussage jedoch nicht.
Wenn man einen magnetischen Wickelkörper bis auf auf den letzten Cent 
abspecken möchte, kommt man nicht drumherum hart an der Grenze zur 
Sättigung zu arbeiten.
Wenn man mit einem magnetischen Material mit sehr hohem µr arbeitet ist 
der Induktivitätsunterschied vor und nach der Sättigung entsprechend 
gigantisch. Sofern ein Material mit niedrigem µr oder ein magnetischer 
Kreis mit Luftspalt eingesetzt wird, ist der unterschied nicht mehr so 
groß.
Es kommt immer darauf an, wofür man die Induktivität benötigt :)

Autor: Christoph A. (shadowrunner93)
Datum:

Bewertung
0 lesenswert
nicht lesenswert
Vielen Dank an alle die mir geholfen haben, Induktivitäten einigermaßen 
zu verstehen.

Durch mein hier erlangtes Wissen konnte ich die Speicherdrossel für 
einen StepDown-Regler berechnen : (Bitte kontrollieren ;) )

Die von mir getroffenen Eckdaten als erstes :
Ue = 32,5V
Ua = 5V
Ia = 2A
deltaI = Ia  (heißt, Strom sinkt während der Ausschaltphase bis zu 50% 
des Nennstroms)
deltaU = 20mV (Spannungsripple am Ausgang)
f = 80kHz

So, als erstes habe ich mir mal meine zur Verfügung stehenden 
Kernmaterialien angesehen :

Kernform  Material  Luftspalt
-----------------------------------
EFD20 / N87  -> Luftspalt 0,5mm
EF20 / N87 -> Luftspalt 0,5
ETD34 /N27 -> Luftspalt 1,0mm

Durch die Formel für die maximal speicherbare Energie die im Wiki steht 
und den Datenblättern der Materialien bzw. Kernformen, habe ich folgende 
Energiewerte herausbekommen :

Kernform / Emax (in Joule)
-----------------------------------
EFD20 / 1,166mJ
EF20 / 1,2mJ
ETD34 / 7,482mJ

Aus einem Fachbuch habe ich die Herleitung der Formeln für die minimale 
Induktivität und Kapazität für diese Eckdaten bei einem StepDown. Ich 
schreibe mal das Endergbnis auf :

Lmin = [Ua * (1-(Ue/Ua))] / (deltaI * f)
Cmin = deltaI / (8*f*deltaU)

Die Ergebnisse sind :
Lmin = 26µH
Cmin = 156µF

Aus der Leistungsformel lässt sich ganz einfach die
Induktivität berechnen :

W = 0,5  L  Imax²
wobei Imax = Ia + (deltaI / 2) = 3A

für den ersten Kern ergibt das einen maximale Induktivität L = 267µH

Der letzte Schritt ist die Berechnung der Windungsanzahl :
N = sqr(L/Al)

Ergibt mit L = 260µH und Al = 100nH (erster Kern) einen Wert von 45 
Windungen

So richtig berechnet oder gibt es einen Denk/-Rechenfehler?
Sind diese Berechnungen auch praktisch anwendbar oder muss ich noch auf 
etwas achten?

Mfg
Christoph

Antwort schreiben

Die Angabe einer E-Mail-Adresse ist freiwillig. Wenn Sie automatisch per E-Mail über Antworten auf Ihren Beitrag informiert werden möchten, melden Sie sich bitte an.

Wichtige Regeln - erst lesen, dann posten!

  • Groß- und Kleinschreibung verwenden
  • Längeren Sourcecode nicht im Text einfügen, sondern als Dateianhang

Formatierung (mehr Informationen...)

  • [c]C-Code[/c]
  • [avrasm]AVR-Assembler-Code[/avrasm]
  • [code]Code in anderen Sprachen, ASCII-Zeichnungen[/code]
  • [math]Formel in LaTeX-Syntax[/math]
  • [[Titel]] - Link zu Artikel
  • Verweis auf anderen Beitrag einfügen: Rechtsklick auf Beitragstitel,
    "Adresse kopieren", und in den Text einfügen




Bild automatisch verkleinern, falls nötig
Bitte das JPG-Format nur für Fotos und Scans verwenden!
Zeichnungen und Screenshots im PNG- oder
GIF-Format hochladen. Siehe Bildformate.
Hinweis: der ursprüngliche Beitrag ist mehr als 6 Monate alt.
Bitte hier nur auf die ursprüngliche Frage antworten,
für neue Fragen einen neuen Beitrag erstellen.

Mit dem Abschicken bestätigst du, die Nutzungsbedingungen anzuerkennen.