www.mikrocontroller.net

Forum: Offtopic Lineare Unabhängigkeit durch Transformation


Autor: Helmut (Gast)
Datum:

Bewertung
0 lesenswert
nicht lesenswert
Hallo,

ich stelle hier mal diese Frage in der Hoffnung, daß jemand sowas schon
mal irgendwo gesehen/gehört hat. Ich selbst komme da gerade nicht
weiter, also:

ich habe ein System linear abhängiger Gleichungen (geg. z. B. in
Matrixform). Nun muß ich für weitere Berechnungen dieses System in ein
linear unabhängiges System transformieren (z. B. durch Multiplikation
mit einer geeigneten Transformationsmatrix) und später wieder zurück in
das ursprüngliche System. Hat jemand eine Idee, wie man so etwas
bewerkstelligen kann?

Vielen Dank!

Helmut

Autor: Daniel Braun (khani)
Datum:

Bewertung
0 lesenswert
nicht lesenswert
Hallo,

also soweit ich das in L(ineare)A(lgebra) geblickt habe, dürfte das ein
Ding der Unmöglichkeit sein. Ich vernute allerdings, dass hier eher das
babylonische Problem vorliegt (Sprachverwirrung). Wenn man einen Satz
linear abhängige Vektoren (von mir aus auch in einer Matrix
zusammengefasst) hat kann man die nicht in linear unabhängige Vektoren
transformieren (zumindest nicht mit linearen Transformationen) - das
sind beides Eigenschaften, die sich gegenseitig widersprechen.

Ich glaube Du musst nun entweder das Problem etwas genauer darlegen -
mach Dir die Mühe und klopf es in Latex ein oder nimm (Gott behüte !)
einen Formeleditor - dann können wir Dir vielleicht eher weiterhelfen.

Ansonsten ist das eine schwere Aufgabe a la ich habe hier ein
Rindersteak und würde es gerne mit Hausmitteln in ein Schweinesteak
transformieren ;-), wenn Du verstehst was ich meine.

MfG, Daniel.

Bitte melde dich an um einen Beitrag zu schreiben. Anmeldung ist kostenlos und dauert nur eine Minute.
Bestehender Account
Schon ein Account bei Google/GoogleMail, Yahoo oder Facebook? Keine Anmeldung erforderlich!
Mit Google-Account einloggen | Mit Yahoo-Account einloggen | Mit Facebook-Account einloggen
Noch kein Account? Hier anmelden.