Forum: Offtopic Gravitationswellen als Nachricht an 1. Stelle?


von ●DesIntegrator ●. (Firma: FULL PALATINSK) (desinfector) Benutzerseite


Lesenswert?

Gestern im Radio als erste Meldung.
Gravitationswellen beobachtet

es gibt also tatsächlich noch Lichtblicke zwischen all dem 
Terror-Angstmach Gedröhn.
Nur:
wat hammer jetzt davon, dass wir wissen, irgendwie mal um Femto-, 
Atto(?)meter gestreckt und wieder zurück geschnappt zu sein?

BTW waren in dieser Nachricht wie selbstverständlich
die Lichtjahre wieder einmal eine Zeiteinheit.

Ich sage JA zu deutschen Medien!

von Matthias S. (Firma: matzetronics) (mschoeldgen)


Lesenswert?

▶ J-A von der H. schrieb:
> Nur:
> wat hammer jetzt davon, dass wir wissen, irgendwie mal um Femto-,
> Atto(?)meter gestreckt und wieder zurück geschnappt zu sein?

Die Jungs und Mädels freuen sich deswegen so, weil:

> Diese Beobachtung bestätigt eine wichtige Vorhersage der von Albert
> Einstein im Jahr 1915 formulierten Allgemeinen Relativitätstheorie.

http://www.astronews.com/news/artikel/2016/02/1602-018.shtml

Hat halt 100 Jahre gedauert - aber gut Ding will Weile haben.

von Max M. (jens2001)


Lesenswert?

Erst mal sacken lassen!
Viel zu viel Hype!

Wir hatten auch schon mal Meldungen über "kalte Fusion" und 
"überlichtschnelle Neutrinos"

Irgend ein nicht mal 2sec. langes schwaches Signal in einem Rauchteppich 
reicht für mich noch nicht als Beweis!

von Reinhard M. (Gast)


Lesenswert?

Neben einer weiteren Bestätigung von Voraussagen der Allgemeinen 
Relativitätstheorie sehe ich es vor allem auch als grandiosen Erfolg
der Messtechnik.

Ein Signal das 1.3 Milliarden Jahre unterwegs ist, für 200 ms zu 
detektieren ist schon eine Leistung.

von Chris D. (myfairtux) (Moderator) Benutzerseite


Lesenswert?

Reinhard M. schrieb:
> Neben einer weiteren Bestätigung von Voraussagen der Allgemeinen
> Relativitätstheorie sehe ich es vor allem auch als grandiosen Erfolg
> der Messtechnik.

Ja, das ist es auf jeden Fall. Es ist schon sehr beeindruckend, welche 
Genauigkeiten durch technischen Fortschritt mittlerweile erzielt werden 
können. Noch 1990 war es nicht klar, ob man jemals Exoplaneten der Größe 
unserer Erde entdecken könne. Und nun "wimmelt" es von Nachweisen :-)

Faszinierend finde ich, dass man ohne die RT diese Art von Signal 
vermutlich niemals gesucht und entdeckt hätte.

> Ein Signal das 1.3 Milliarden Jahre unterwegs ist, für 200 ms zu
> detektieren ist schon eine Leistung.

Naja, diese Parameter hat man mit jedem besseren optischen 
Fernrohr/Radioteleskop auch. 1.3Mrd km sind da normal und 200ms bei 
Pulsaren eher langsam.

Die Leistung besteht hier darin, bei der Stärke des Signals noch etwas 
zu messen.

von Reinhard M. (Gast)


Lesenswert?

Chris D. schrieb:
> Naja, diese Parameter hat man mit jedem besseren optischen
> Fernrohr/Radioteleskop auch. 1.3Mrd km sind da normal und 200ms bei
> Pulsaren eher langsam

Das Ereigniss an sich hat nur 200 ms gedauert.
Sonnen leuchten im Allgemeinen schon etwas länger.

von Le X. (lex_91)


Lesenswert?

Was mir noch nicht ganz klar ist:
die GW entstehen ja wenn Massen beschleunigt werden, in diesem konkreten 
Fall zwei schwarze Löcher die sich immer schneller umkreisen und 
irgendwann vereinigen.

Müssten dann aus dieser Richtung nicht laufend neue Wellen eintreffen?
Die GW werden ja nicht nur direkt beim "Verschmelzen" erzeugt und der 
Vorgang des "sich-immer-schneller-Umkreisens" dürfte schon eine ganze 
zeitlang andauern.

Oder sind die bisherigen Wellen nur zu schwach gewesen und erst die 
"Verschmelzung" hat ausreichend energiereiche Wellen erzeugt? (Hab etwas 
von 3 Sonnenmassen gelesen, die in diesen 200ms abgestrahlt wurden)

von Chris D. (myfairtux) (Moderator) Benutzerseite


Lesenswert?

Reinhard M. schrieb:
> Chris D. schrieb:
>> Naja, diese Parameter hat man mit jedem besseren optischen
>> Fernrohr/Radioteleskop auch. 1.3Mrd km sind da normal und 200ms bei
>> Pulsaren eher langsam
>
> Das Ereigniss an sich hat nur 200 ms gedauert.

Schon richtig. Es geht hier aber um die Messauflösung. Und da sind 200ms 
Alltag. Entscheidend ist immer, dass man in dem Moment auf die richtige 
Stelle guckt :-) Man darf hier aber nicht vergessen, dass die Leute 
großes Glück hatten. Die Anlagen waren gerade erst wieder in Betrieb.

> Sonnen leuchten im Allgemeinen schon etwas länger.

Jepp.


Das ist auf jeden Fall eine tolle weitere Art, dem Universum einige 
seiner Geheimnisse zu entlocken. Ich bin gespannt, was man durch diese 
Signale in Zukunft für Ergebnisse (und neue Fragen) erhält.

Freuen wir uns :-)

von Teo D. (teoderix)


Lesenswert?

Reinhard M. schrieb:
> Das Ereigniss an sich hat nur 200 ms gedauert.
> Sonnen leuchten im Allgemeinen schon etwas länger.

So wie ich das verstanden habe, war das eine Verschmelzung zweier 
Schwarzer Löcher!
Da das Signal von ZWEI Detektoren aufgezeichnet worden ist, scheint mir 
das doch recht Plausibel.

von Matthias S. (Firma: matzetronics) (mschoeldgen)


Lesenswert?

le x. schrieb:
> Müssten dann aus dieser Richtung nicht laufend neue Wellen eintreffen?

Der Grund, das man diese Wellen messen konnte, war ja die schnelle 
Änderung der Schwerkraft, aus zwei kleineren wurde eine dickere. Wenn 
die Dinger dann erstmal zusammengepappt sind, gibt es diese schnelle 
Änderung nicht mehr und damit auch keine Wellen, sondern nur noch die 
gleichbleibende erhöhte Gravitation - von 'kleineren' Unfällen, wie 
weitere ins schwarze Loch stürzende Massen, mal abgesehen. Diese dürften 
aber nur wesentlich kleinere Wellenfronten erzeugen - kleine Masse, 
kleine Wellenfront.

: Bearbeitet durch User
von Reinhard M. (Gast)


Lesenswert?

le x. schrieb:
> Oder sind die bisherigen Wellen nur zu schwach gewesen und erst die
> "Verschmelzung" hat ausreichend energiereiche Wellen erzeugt? (Hab etwas
> von 3 Sonnenmassen gelesen, die in diesen 200ms abgestrahlt wurden)

soweit ich das verstanden habe, ist das Signal ein Chirp gewesen,
das sich innerhalb von 200 ms von 35 Hz auf 150 Hz verändert hat.

Und so ein Signal wurde vorausgesagt, wenn 3 Sonnenmassen
als Gravitationswellen abgestrahlt werden.

aber ich bin auch kein Experte ;-)

https://dcc.ligo.org/public/0122/P150914/014/LIGO-P150914%3ADetection_of_GW150914.pdf

von ●DesIntegrator ●. (Firma: FULL PALATINSK) (desinfector) Benutzerseite


Lesenswert?

Reinhard M. schrieb:
> soweit ich das verstanden habe, ist das Signal ein Chirp gewesen,
> das sich innerhalb von 200 ms von 35 Hz auf 150 Hz verändert hat.

also Hz = Umlaufgeschwindigkeit beider Löcher umeinander?

von Le X. (lex_91)


Lesenswert?

Matthias S. schrieb:
> Der Grund, das man diese Wellen messen konnte, war ja die schnelle
> Änderung der Schwerkraft, aus zwei kleineren wurde eine dickere. Wenn
> die Dinger dann erstmal zusammengepappt sind, gibt es diese schnelle
> Änderung nicht mehr und damit auch keine Wellen, sondern nur noch die
> gleichbleibende erhöhte Gravitation

Bei letzterem stimme ich dir zu. Sobald die beiden Massen vereinigt sind 
gibt es keine Änderung der Geschwindigkeit (= Beschleunigung) mehr.
Keine beschleunigte Masse => keine GW

Aber davor, während des lange andauernden Umkreisens (mit immer höherer 
Geschwindigkeit, ergo Beschleunigung) müssten welche abgestrahlt worden 
sein.
Wahrscheinlich waren diese aber einfach zu wenig energiereich.

von Frank M. (ukw) (Moderator) Benutzerseite


Lesenswert?

le x. schrieb:
> die GW entstehen ja wenn Massen beschleunigt werden, in diesem konkreten
> Fall zwei schwarze Löcher die sich immer schneller umkreisen und
> irgendwann vereinigen.

Ja.

> Müssten dann aus dieser Richtung nicht laufend neue Wellen eintreffen?

Ja. Immer, wenn Massen beschleunigt werden.

Schau Dir das Bild mal an:

  http://scienceblogs.de/astrodicticum-simplex/files/2016/02/blackholemerger.jpg

Da ist das Verschmelzen in 3 Phasen aufgeteilt:

Inspiral: Die Umkreisung
Merger: Die Vereinigung
Ringdown: Das Abklingen beim Erreichen des idealen Energiezustands

Der Artikel im Ganzen:

  http://scienceblogs.de/astrodicticum-simplex/2016/02/08/der-direkte-nachweis-von-gravitationswellen/

Auch noch sehr anschaulich:

  http://www.scilogs.de/relativ-einfach/gravitationswellen-was-ist-das-eigentlich-gw-teil-1/

> Die GW werden ja nicht nur direkt beim "Verschmelzen" erzeugt und der
> Vorgang des "sich-immer-schneller-Umkreisens" dürfte schon eine ganze
> zeitlang andauern.

Ja, aber wohl zu schwach, um noch nachzuweisen.

> Oder sind die bisherigen Wellen nur zu schwach gewesen und erst die
> "Verschmelzung" hat ausreichend energiereiche Wellen erzeugt? (Hab etwas
> von 3 Sonnenmassen gelesen, die in diesen 200ms abgestrahlt wurden)

Jepp.

Ja, 3 Sonnenmassen wurden in kürzester Zeit in reine Energie 
umgewandelt... einfach unvorstellbar.

: Bearbeitet durch Moderator
von Teo D. (teoderix)


Lesenswert?

Frank M. schrieb:
> Ja, 3 Sonnenmassen wurden in kürzester Zeit in reine Energie
> umgewandelt... einfach unvorstellbar.

Da wurde sicher um einiges mehr an Energie abgestrahlt.
Mit den 3 Sonnen Massen, ist NUR die als Gravitationswellen abgestrahlte 
Energie gemeint!

von Max M. (jens2001)


Lesenswert?

Teo D. schrieb:
> Da das Signal von ZWEI Detektoren aufgezeichnet worden ist, scheint mir
> das doch recht Plausibel.

Über haupt nicht.
Wenn du lange genug wartest wirst du auch in 2 unabhängigen 
Zufallsfolgen von "0"en und "1"en belebig lange identische Zeichenfolgen 
finden!

von Le X. (lex_91)


Lesenswert?

Max M. schrieb:
> Über haupt nicht.
> Wenn du lange genug wartest wirst du auch in 2 unabhängigen
> Zufallsfolgen von "0"en und "1"en belebig lange identische Zeichenfolgen
> finden!

Hi Max,
das hier ist der Thread für Märchenfans wie mich, die alles 
unreflektiert den Medien nachkauen,

für dich gehts hier weiter: 
Beitrag "Photon Realität oder Einbildung?"

Frank M. schrieb:
> Schau Dir das Bild mal an:
>
>   http://scienceblogs.de/astrodicticum-simplex/files/2016/02/blackholemerger.jpg
>
> Da ist das Verschmelzen in 3 Phasen aufgeteilt:

danke dafür!

: Bearbeitet durch User
von Stefan M. (derwisch)


Lesenswert?

Teo D. schrieb:
> Da wurde sicher um einiges mehr an Energie abgestrahlt.
> Mit den 3 Sonnen Massen, ist NUR die als Gravitationswellen abgestrahlte
> Energie gemeint!

Was würde mit uns passieren, wenn so ein Ereignis in -sagen wir mal- 20 
Lichtjahren Entfernung stattfindet...
Das Thema gab es ja auch schon bei den Gammablitzen, wo unvorstellbare 
Strahlungsenergie ( wahrscheinlich ) gebündelt abgestrahlt wird.

Erstaunlich finde ich die Tatsache, dass unsere Erde offenbar in einem 
Gebiet ist, das sehr selten in der Schußlinie dieser Ereignisse liegt.

Scheinbar konzentrieren sich diese extremm brutalen Vorkommnisse auf 
eine jüngere Epoche das Alls.

von Frank M. (ukw) (Moderator) Benutzerseite


Lesenswert?

Als ich gestern im Radio von dem Nachweis von Gravitationswellen hörte 
und mich dann einlas, habe ich mich erstmal gefragt:

  "Wieso kann man die Gravitationswellen überhaupt mit dieser
  Apparatur messen? Die Raumzeit wird doch durch die GW
  überall gleichzeitig in der Apparatur gekrümmt und damit
  müssen sich die Effekte derart ausgleichen, dass man eben
  gar nichts messen kann... obwohl sie evtl. da sind!"

  "Schließlich merkt ein Astronaut nahe am schwarzen Loch
  auch nicht, dass seine Zeit langsamer geht. Das sieht nur
  ein außenstehender Beobachter."

Es dauerte ein paar Minuten, bis ich auf die Lösung kam: Man verfällt 
immer wieder in die Newtonsche Denkweise, nämlich dass die Krümmung der 
Raumzeit durch Gravitationswellen instantan passiert, also überall 
gleichzeitig. Aber genau das ist nicht der Fall, denn die 
Gravitationswellen breiten sich "nur" mit Lichtgeschwindigkeit aus. Und 
damit fallen sie auch nicht instantan über die LIGO-Apparatur her. Und 
nur deshalb kann man da überhaupt eine Abweichung messen.

Wenn man sich überlegt, dass 3 Sonnenmassen, die da als pure Energie in 
den Raum geschossen werden, eine unvorstellbar hohe Energie bedeuten und 
warum die Auswirkungen nur so schwach zu beobachten sind, wundert man 
sich eigentlich über diese Diskrepanz. Was man aber tatsächlich 
beobachtet, ist eigentlich "nur" der Effekt, der durch die begrenzte 
Ausbreitungsgeschwindigkeit der Gravitationswellen entsteht. Und dieser 
"spürbare" Effekt ist wohl nur ein Bruchteil der tatsächlichen Energie, 
die da tatsächlich an uns vorbeirauscht. Interessant wäre für mich, ob 
man diesen Bruchteil der tatsächlich beobachtbaren Energie ausrechnen 
kann.

: Bearbeitet durch Moderator
von Stefan M. (derwisch)


Lesenswert?

Frank M. schrieb:
> Wenn man sich überlegt, dass 3 Sonnenmassen, die da als pure Energie in
> den Raum geschossen werden, eine unvorstellbar hohe Energie bedeuten und
> warum die Auswirkungen nur so schwach zu beobachten sind, wundert man
> sich eigentlich über diese Diskrepanz. Was man aber tatsächlich
> beobachtet, ist eigentlich "nur" der Effekt, der durch die begrenzte
> Ausbreitungsgeschwindigkeit der Gravitationswellen entsteht. Und dieser
> "spürbare" Effekt ist wohl nur ein Bruchteil der tatsächlichen Energie,
> die da tatsächlich an uns vorbeirauscht. Interessant wäre für mich, ob
> man diesen Bruchteil der tatsächlich beobachtbaren Energie ausrechnen
> kann.

Dies ist eine einleuchtenede Erklärung.
Die Dikrepanz unserer "Messung" im Verhältnis zum Auslöser ist mit 
Sicherheit der Gedanke von vielen wissenschaftlich interessierten ( 
Laien ).

Doch leider wird eine leicht verständliche Erklärung dieser Art nie in 
den Medien dazu geliefert.
Selbst in "wissenschaftlichen" Fernsehsendungen wird leider schon nicht 
mehr so weit ausgeholt.

So ähnlich ging es mir mal bei der Frage, warum ein kräftiger 
Sonnenflare bei uns auf der Erde zum Ausfall ( Durchbrennen ! ) von 
Hochspannungsleitungen führen kann.
So wie 1989 in den USA.
Die Zusammenhänge wurden auch damals nie erklärt.

von (prx) A. K. (prx)


Lesenswert?

Frank M. schrieb:
> Aber genau das ist nicht der Fall, denn die
> Gravitationswellen breiten sich "nur" mit Lichtgeschwindigkeit aus. Und
> damit fallen sie auch nicht instantan über die LIGO-Apparatur her. Und
> nur deshalb kann man da überhaupt eine Abweichung messen.

Ich habe das etwas anders aufgefasst: Den üblichen Erklärungen zufolge 
sind Gravitationswellen polarisierte Transversalwellen. Die sich auf die 
beiden in einem 90° Winkel zueinander stehenden Arme unterschiedlich 
auswirken.

: Bearbeitet durch User
von Frank M. (ukw) (Moderator) Benutzerseite


Lesenswert?

A. K. schrieb:
> Ich habe das etwas anders aufgefasst: Den üblichen Erklärungen zufolge
> sind Gravitationswellen polarisierte Transversalwellen.

ACK. Ich denke das auch, dies so verstanden zu haben.

> Die sich auf die
> beiden in einem 90° Winkel zueinander stehenden Arme unterschiedlich
> auswirken.

Und genau damit habe ich ein Verständnisproblem. Einen Lichtstrahl, 
welcher sich entlang einer Geodäte ausbreitet, sehen wir immer als 
"gerade", egal wie der Raum gekrümmt ist. Das kann in der Nähe eines 
schwarzen Lochs sogar ein Kreis sein. Wir sehen ihn als interner 
Beobachter aber als "gerade". Dass der Effekt der Gravitationslinse 
(Stern hinter Sonne beobachtbar, also muss der Raum in der Nähe der 
Sonne gekrümmt sein) überhaupt von uns wahrgenommen wird, liegt einfach 
daran, dass wir dort ein außenstehender Beobachter sind.

Hier liegt der Fall aber anders: Die Messaparatur, auf welche die 
Graviationswelle wirkt, ist (auf den ersten Blick) kein außenstehender 
Beobachter. Wir stecken hier in der Raumzeitkrümmung mit drin. Und damit 
müsste sich der beobachtbare Effekt durch eine Gravitationswelle (z.B. 
ein kürzerer Abstand zwischen den Spiegeln innerhalb eines Arms durch 
die gleichzeitige Änderung der Zeit derart ausgleichen, dass nichts zu 
beobachten ist. Jedenfalls dann, wenn die Welle instantan auf die ganze 
Meßapparatur wirkt. Das tut sie aber erst wegen der begrenzten 
Ausbreitungsgeschwindigkeit nicht und deshalb rutschen Teile der 
Meßapparatur nach "draußen" und können überhaupt einen Unterschied erst 
feststellen.

Ob der Raum asymmetrisch durch die polarisierte Transversalwelle 
gekrümmt wird, kann doch eigentlich egal sein? Hauptsache, wir stecken 
nicht ganz mit "drin"? Oder ich habs immer noch nicht ganz kapiert.

: Bearbeitet durch Moderator
von Pandur S. (jetztnicht)


Lesenswert?

> Da wurde sicher um einiges mehr an Energie abgestrahlt. Mit den 3 Sonnen Massen, 
ist NUR die als Gravitationswellen abgestrahlte Energie gemeint!

Eher nicht. Denn Licht kommt ja nicht mehr weg.

von Hagen R. (hagen)


Lesenswert?

Die Lichtgeschwindigkeit ist immer konstant, mißt man wie bei LIGO kann 
sich somit nur die relative Länge der orthogonal zueinander stehenden 
und gleich langen Arme verändert haben wenn man ein Signalausschlag 
mißt.

Hinzu kommt nun das man zwei örtlich zueinander getrennte Detektoren hat 
und mit Korrelation der zwei Meßergebnisse arbeitet.

Was mich nun interessiert ist die Frage "wie man diese Signale 
korreliert". Wenn ich es richtig verstanden habe dann korreliert man die 
Meßdaten im Nachhinein mathematisch?

Man könnte doch aber auch so arbeiten:

Heutzutage kann man Photonen verschiedener LASER quantenverschränken und 
so über große Entfernungen quasi ohne Zeitverlust Informationen 
übertragen. Wäre es nun nicht möglich die LASER beider LIGO Anlagen 
ebenfalls so arbeiten zu lassen und somit diese Korrelation auf direktem 
optischen Wege zu realiseren, um damit das SNR dramatisch zu 
inkrementieren?


Gruß hagen

von Sven B. (scummos)


Lesenswert?

Frank M. schrieb:
> Wenn man sich überlegt, dass 3 Sonnenmassen, die da als pure Energie in
> den Raum geschossen werden, eine unvorstellbar hohe Energie bedeuten und
> warum die Auswirkungen nur so schwach zu beobachten sind, wundert man
> sich eigentlich über diese Diskrepanz. Was man aber tatsächlich
> beobachtet, ist eigentlich "nur" der Effekt, der durch die begrenzte
> Ausbreitungsgeschwindigkeit der Gravitationswellen entsteht. Und dieser
> "spürbare" Effekt ist wohl nur ein Bruchteil der tatsächlichen Energie,
> die da tatsächlich an uns vorbeirauscht. Interessant wäre für mich, ob
> man diesen Bruchteil der tatsächlich beobachtbaren Energie ausrechnen
> kann.

Naja, es ist natürlich auch so, dass man selbst für eine kleine 
Verformung der Raumzeit unglaublich viel Energie braucht. Außerdem ist 
das Ereignis sehr weit weg, und die Amplitude des Signals fällt ja 
linear (sic!) mit dem Abstand ...

von Sven B. (scummos)


Lesenswert?

Hagen R. schrieb:
> Heutzutage kann man Photonen verschiedener LASER quantenverschränken und
> so über große Entfernungen quasi ohne Zeitverlust Informationen
> übertragen.
Nein, kann man nicht. Das ist ein unglaublich verbeitetes 
Missverständnis.
Man kann mit Quantenverschränkung nicht überlichtschnell Information 
übertragen.
Quantenverschränkung hat ein ganz einfaches klassisches Analogon: Ich 
habe einen roten Ball und einen grünen Ball. Einen davon werfe ich nach 
rechts, den anderen nach links. Wenn du jetzt links stehst, wirst du, 
sobald du siehst dass du den grünen Ball bekommen hast, wissen dass ich 
den roten nach rechts geworfen habe. Ganz simples Phänomen. Und mehr ist 
es in der QM im Endeffekt auch nicht.

> Wäre es nun nicht möglich die LASER beider LIGO Anlagen
> ebenfalls so arbeiten zu lassen und somit diese Korrelation auf direktem
> optischen Wege zu realiseren, um damit das SNR dramatisch zu
> inkrementieren?
Wozu soll das gut sein, bzw. warum würde sich das SNR dadurch 
verbessern? Abgesehen davon ist die Korrelation der Signale nur der 
allerletzte Schritt in der komplexen Datenanalyse ...

: Bearbeitet durch User
von Teo D. (teoderix)


Lesenswert?

@ukw
Es handelt sich um eine Differenz-Messung!
Da die Sensoren nicht Räumlich voneinander zu trennen sind, erfolgt 
das ganze mit Hilfe der unterschiedlichen Winkel.
Zur besseren Vorstellung des Ganzen, ist es sicher einfacher anzunehmen 
der Lichtstrahl folgt nicht der Raumkrümmung, sondern wir von dieser 
abgelenkt.

Hagen R. schrieb:
> Heutzutage kann man Photonen verschiedener LASER quantenverschränken und
> so über große Entfernungen quasi ohne Zeitverlust Informationen
> übertragen.

Infos übertragen, NEIN. Das ist ein eventuell unerfüllbarer 
Zukunftswunsch.
Man müsste noch herausfinden wann Sie die Wahrheit sagen und wann sie 
schwindeln :)

von (prx) A. K. (prx)


Lesenswert?

Frank M. schrieb:
> Und genau damit habe ich ein Verständnisproblem.

Ich halte mich bei der ART lieber an erklärende Worte als an meine 
Intuition. ;-)

Und wenn es dann in beiden Wikipedia-Artikel hübsch entlang der Achsen 
schaukelt, dann passt das eigentlich auch ganz gut dazu:
https://de.wikipedia.org/wiki/Gravitationswelle
https://en.wikipedia.org/wiki/Gravitational_wave

von Hagen R. (hagen)


Lesenswert?

ok, danke für die Antworten.

von Sinus T. (micha_micha)


Lesenswert?

▶ J-A von der H. schrieb:
> BTW waren in dieser Nachricht wie selbstverständlich
> die Lichtjahre wieder einmal eine Zeiteinheit.

Sind sie doch auch: es ist genau die Zeit, die das Licht braucht, um 
sich ein Jahr lang auszubreiten

von Hagen R. (hagen)


Lesenswert?

Sven B. schrieb:
>> Wäre es nun nicht möglich die LASER beider LIGO Anlagen
>> ebenfalls so arbeiten zu lassen und somit diese Korrelation auf direktem
>> optischen Wege zu realiseren, um damit das SNR dramatisch zu
>> inkrementieren?
> Wozu soll das gut sein, bzw. warum würde sich das SNR dadurch
> verbessern?

Naja, ich beziehe mich dabei auf die Aussage bei Wikipedia:

https://de.wikipedia.org/wiki/Quantenverschr%C3%A4nkung

"Natürlich-verschränkte Systeme

Durch Femtosekunden-Spektroskopie konnte nachgewiesen werden, dass im 
Photosystem-Lichtsammelkomplex der Pflanzen eine über den gesamten 
Komplex reichende stabile Verschränkung von Photonen stattfindet, was 
die effiziente Nutzung der Lichtenergie ohne Wärmeverlust erst möglich 
macht. Bemerkenswert daran ist unter anderem die 
_Temperaturstabilität_ des Phänomens."

Mir geht es in erster Linie auch garnicht um die "Überlichtschnelle 
Kommunikation" sondern um die gekoppelte Stabilität der verschiedenen 
Detektoren mit Hilfe der Methoden der Quantenverschränkung und die 
Möglichkeit somit optische Korrelatoren verwenden zu können.

Gruß hagen

von Teo D. (teoderix)


Lesenswert?

Hagen R. schrieb:
> Mir geht es in erster Linie auch garnicht um die "Überlichtschnelle
> Kommunikation" sondern um die gekoppelte Stabilität der verschiedenen
> Detektoren mit Hilfe der Methoden der Quantenverschränkung und die
> Möglichkeit somit optische Korrelatoren verwenden zu können.

Aus den dürftigen Infos die ich habe, könnte man diese Vorgehensweise 
hinein interpretieren!?

von Frank M. (ukw) (Moderator) Benutzerseite


Lesenswert?

Hagen R. schrieb:
> Die Lichtgeschwindigkeit ist immer konstant, mißt man wie bei LIGO kann
> sich somit nur die relative Länge der orthogonal zueinander stehenden
> und gleich langen Arme verändert haben wenn man ein Signalausschlag
> mißt.

LIGO misst also die unterschiedliche Dehnung/Stauchung des Raumes in den 
beiden senkrecht aufeinander stehenden Armen. Aber was ist mit der Zeit?

A. K. schrieb:
> Und wenn es dann in beiden Wikipedia-Artikel hübsch entlang der Achsen
> schaukelt, dann passt das eigentlich auch ganz gut dazu:

Das habe ich ja längst kapiert. Aber auch Du scheinst das Wabern der 
Teilchen nur im "Raum" zu sehen. Was ist denn mit der Zeit dabei?

Deshalb noch mein Einwurf, der nichts mit Intuition zu tun hat:

Eine Gravitationswelle dehnt/staucht nicht nur den Raum, sondern 
dehnt/staucht auch die Zeit. Das steht auch so in dem von Dir 
aufgeführten Wiki-Artikel:

"Aus Sicht eines lokalen Beobachters scheinen sie die Raumzeit quer 
zu ihrer Ausbreitungsrichtung zu stauchen und zu strecken."

Hagen spricht nur von Streckung/Stauchung der Raumes. Die Schaubilder 
bei Wikipedia scheinen das auch eher so vorzuspiegeln. Aber es wird 
nicht ausschließlich von Raum oder von Zeit gesprochen, sondern im 
Artikel von "Raumzeit" - also von beiden in Kombination.

Also:

In dem Maße, wie sich der Abstand zweier Spiegel verkürzt, dehnt sich 
auch die Zeit, so dass sich der Effekt für einen lokalen Beobachter zu 
Null ausgleichen müsste. Die Zeit, die durch eine Stauchung des Raumes 
eingespart wird, geht mit der Dehnung der Zeit wieder drauf. Nur so kann 
die Konstanz der Lichtgeschwindigkeit gewahrt werden.

Oder? Was ist mit der Dehnung/Stauchung der Zeit dabei?

von Hagen R. (hagen)


Lesenswert?

Also ich habe es so verstanden:

Man mißt nicht direkt die "Stauchung/Dehnung" der Raumzeit sondern 
dessen relativen Gradienten in verschiedenen Ausdehnungen der Raumzeit. 
So erklärt sich für mich auch warum die sendenden Objekte sich bewegen 
müssen und warum die Empfindlichkeit der Anlagen um ein Vielfaches höher 
sein müssen als es notwendig wäre wenn man die Gravitationswelle auf 
direkte Art und Weise messen würde.

Aber ich kann mich irren, dazu bin ich einfach nicht schlau genug:(

von (prx) A. K. (prx)


Lesenswert?

Frank M. schrieb:
> Hagen spricht nur von Streckung/Stauchung der Raumes. Die Schaubilder
> bei Wikipedia scheinen das auch eher so vorzuspiegeln. Aber es wird
> nicht ausschließlich von Raum oder von Zeit gesprochen, sondern im
> Artikel von "Raumzeit" - also von beiden in Kombination.

Das ist mir zuviel Kaffeesatzlesen aus Begriffen.

: Bearbeitet durch User
von (prx) A. K. (prx)


Lesenswert?

Frank M. schrieb:
> Die Zeit, die durch eine Stauchung des Raumes
> eingespart wird, geht mit der Dehnung der Zeit wieder drauf.

So lange du nicht mehrere orthogonalen Zeitachsen im System hast, dürfte 
es doch eigentlich schwer fallen, die Stauchung einer Raumachse und die 
Dehnung einer anderen mit einer Veränderung auf der Zeitachse zu 
kompensieren?

von Hagen R. (hagen)


Lesenswert?

A. K. schrieb:
> So lange du nicht mehrere orthogonalen Zeitachsen im System hast, dürfte
> es doch eigentlich schwer fallen, die Stauchung einer Raumachse und die
> Dehnung einer anderen mit einer Veränderung auf der Zeitachse zu
> kompensieren?

Sehe ich auch so. Und d.h. Gravitationswellen breiten sich auch nur mit 
Lichtgeschindigkeit aus und somit kann man am gemeinsammen Detektor, im 
LIGO der Strahlteiler an dem die Interferenz entsteht, einen 
Laufzeitunterschied messen.

von Johann L. (gjlayde) Benutzerseite


Lesenswert?

Sven B. schrieb:
> Quantenverschränkung hat ein ganz einfaches klassisches Analogon: Ich
> habe einen roten Ball und einen grünen Ball. Einen davon werfe ich nach
> rechts, den anderen nach links. Wenn du jetzt links stehst, wirst du,
> sobald du siehst dass du den grünen Ball bekommen hast, wissen dass ich
> den roten nach rechts geworfen habe. Ganz simples Phänomen. Und mehr ist
> es in der QM im Endeffekt auch nicht.

Verschränkung lässt sich nicht klassisch erklären, siehe die Bell'sche 
Ungleichung und Experimente, die deren Verletzung zeigen

https://en.wikipedia.org/wiki/Bell's_theorem#Practical_experiments_testing_Bell.27s_theorem

von Hagen R. (hagen)


Lesenswert?

@Johann:

könntest du auf meine Frage antworten?

Wäre es möglich mehrere LIGO Detektoren mit Hilfe der Methoden die man 
bei der Quantenverschränkung benutzt die LIGO Detektoren so zu 
synchronisieren das man quasi nicht mit mehreren LASERn mißt sondern 
quasi mit zueinander synchronisierten LASERn? Wenn Ja dann wären die 
Methoden der optischen Fourieranalyse benutzbar und somit eine optische 
Korrelation meherer LIGO Detektoren.

Gruß hagen

von Frank M. (ukw) (Moderator) Benutzerseite


Lesenswert?

A. K. schrieb:
> So lange du nicht mehrere orthogonalen Zeitachsen im System hast, dürfte
> es doch eigentlich schwer fallen, die Stauchung einer Raumachse und die
> Dehnung einer anderen mit einer Veränderung auf der Zeitachse zu
> kompensieren?
1
                 | C
2
                 |
3
                 |
4
                 |
5
                 |
6
   B             | 
7
  ---------------- A

Genau das meine ich. In A steht der Laser, auf C und B stehen die 
Spiegel. Wenn man nun die Schaubilder aus Wikipedia nimmt, werden durch 
die "ovale Form" der Gravitationswelle (Polarisation) der Weg AC z.B. 
gestaucht, während die Strecke AB gedehnt wird. Aber gleichzeitig wird 
die Zeit, die das Licht von A nach B braucht, gestaucht und die Zeit von 
A nach C gedehnt. Ich sehe da tatsächlich zwei orthogonale Zeitachsen 
und nicht nur eine. Nur so kann die Lichtgeschwindigkeit in beiden 
Richtungen konstant bleiben.

Wie gesagt: Ein Raumfahrer, der mit hoher Geschwindigkeit fliegt oder in 
der Nähe einer großen Masse ist, bemerkt weder die Zeitdehnung noch die 
Verkürzung der Längen in seinem System. Das sieht nur ein 
Außenstehender.

Ich habe mir mittlerweile viele verschiedene Quellen angeschaut: Alle 
reden von Raumzeit (also 4 Dimensionen), veranschaulichen aber immer nur 
Teilchenabstände, reden hier also nur vom "Raum" und lassen dann die 
Zeit komplett weg.

Ich glaube, wir lassen das mal so stehen. Ich muss mich da erstmal in 
den nächsten Tagen reinarbeiten, bis ich das vollständig kapiert habe.

von Albert M. (Firma: Bastler aus Mönchengladbach) (albertm) Benutzerseite


Lesenswert?

Hier einige Links zum Thema

Original Paper:
http://scienceblogs.de/wasgeht/files/2016/02/LIGO-P150914Detection_of_GW150914.pdf

"Gravitationswellen bewegen sich – im Gegensatz zu Licht und anderen 
elektromagnetischen Wellen – nicht durch den Raum. Es handelt sich um 
Wellen im Raum."
siehe:
http://scienceblogs.de/astrodicticum-simplex/2016/02/11/was-koennen-und-wozu-braucht-man-gravitationswellen/

http://scienceblogs.de/hier-wohnen-drachen/2016/02/11/gravitationswellen-sind-entdeckt-mehr-oder-weniger-live-blogging/

von Michael S. (mikel_x)


Lesenswert?

Ich stelle es mir so vor, dass im transversalen Pfad sowohl Raum als 
auch Zeit gestaucht werden. D.h. innerhalb des IS des transv. Arms 
selbst ist trotz Stauchung keine Änderung festzustellen. Aber im 
longitudionalen Arm findet diese Stauchung nicht (bzw. weniger) statt, 
somit kann man aus dem IS des l.A. den relativistischen Effekt im t.A. 
beobachten (messen)... und umgekehrt.

Nichts messen könnte man nur, wenn die GW genau im Winkel von 45° 
zwischen beide Arme einfallen würde. Dann wären die Effekte symmetrisch 
in beiden Meßarmen und keine relativistische Differenz zu beobachten.

von Johann L. (gjlayde) Benutzerseite


Lesenswert?

Frank M. schrieb:
> Eine Gravitationswelle dehnt/staucht nicht nur den Raum, sondern
> dehnt/staucht auch die Zeit. Das steht auch so in dem von Dir
> aufgeführten Wiki-Artikel:
>
> "Aus Sicht eines lokalen Beobachters scheinen sie die Raumzeit quer
> zu ihrer Ausbreitungsrichtung zu stauchen und zu strecken."
>
> Hagen spricht nur von Streckung/Stauchung der Raumes. Die Schaubilder
> bei Wikipedia scheinen das auch eher so vorzuspiegeln. Aber es wird
> nicht ausschließlich von Raum oder von Zeit gesprochen, sondern im
> Artikel von "Raumzeit" - also von beiden in Kombination.

Wenn von "Raum" gesprochen wird, dann handelt es sich wohl um Schnitte 
durch die Raumzeit.  Die praktikabelste Schnittrichtung ist die eines 
relativ zum Interferometer ruhenden Beobachters, d.h. die Schnitte 
erfolgen so, dass sie für einen solchen Beobachter gleichzeitig sind.

Damit verbleibt durch die GW eine effektive Längenänderung, die sich in 
einer relativen Phasenänderung des Lichts am Detektor manifestiert.

von Frank M. (ukw) (Moderator) Benutzerseite


Lesenswert?

Michael S. schrieb:
> Ich stelle es mir so vor, dass im transversalen Pfad sowohl Raum als
> auch Zeit gestaucht werden.

Ack.

> D.h. innerhalb des IS des transv. Arms
> selbst ist trotz Stauchung keine Änderung festzustellen. Aber im
> longitudionalen Arm findet diese Stauchung nicht (bzw. weniger) statt,
> somit kann man aus dem IS des l.A. den relativistischen Effekt im t.A.
> beobachten (messen)... und umgekehrt.

Ja, das könnte tatsächlich die Erklärung sein, die mein Missverständnis 
ausräumt. Ich bin nämlich immer davon ausgegangen, dass die Welle 
(möglichst) senkrecht auf das Achsenkreuz fallen muss. Aber wenn eine 
Achse möglichst entlang der Welle liegt, sieht das ganz anders aus... 
Und damit hat es doch mit der beschränkten Ausbreitungsgeschwindigkeit 
(Lichtgeschwindigkeit) zu tun, dass also die Welle nicht instantan auf 
das ganze System "herfällt" - wie ich schon zu Anfang schrieb.

> Nichts messen könnte man nur, wenn die GW genau im Winkel von 45°
> zwischen beide Arme einfallen würde. Dann wären die Effekte symmetrisch
> in beiden Meßarmen und keine relativistische Differenz zu beobachten.

Ja, das klingt plausibel.

von Icke ®. (49636b65)


Lesenswert?

Haben die am LIGO eigentlich mal nachgeschaut, ob nicht irgendein 
Stecker 'nen Wackelkontakt hat??

von Frank M. (ukw) (Moderator) Benutzerseite


Lesenswert?

Johann L. schrieb:
> Wenn von "Raum" gesprochen wird, dann handelt es sich wohl um Schnitte
> durch die Raumzeit.

Ja, das passt.

> Die praktikabelste Schnittrichtung ist die eines
> relativ zum Interferometer ruhenden Beobachters, d.h. die Schnitte
> erfolgen so, dass sie für einen solchen Beobachter gleichzeitig sind.

Okay. Man nimmt also tatsächlich die Zeitbetrachtung durch Schnitte 
raus.

> Damit verbleibt durch die GW eine effektive Längenänderung, die sich in
> einer relativen Phasenänderung des Lichts am Detektor manifestiert.

Hm, das muss ich mir nochmal auf der Zunge zergehen lassen...

von (prx) A. K. (prx)


Lesenswert?

Icke ®. schrieb:
> Haben die am LIGO eigentlich mal nachgeschaut, ob nicht irgendein
> Stecker 'nen Wackelkontakt hat??

Hörte gestern, dass sie 1/2 Jahr nach potentiellen Fehler gesucht haben.

von Johann L. (gjlayde) Benutzerseite


Lesenswert?

Michael S. schrieb:
> Nichts messen könnte man nur, wenn die GW genau im Winkel von 45°
> zwischen beide Arme einfallen würde. Dann wären die Effekte symmetrisch
> in beiden Meßarmen und keine relativistische Differenz zu beobachten.

Wenn ich das recht verstehe, ist die beste Messrichtung senkrecht zu den 
beiden Armen.  In dieser Richtung kann wie Welle auf 2 Arten polarisiert 
sein, oft mit "+" und "x" bezeichnet:  Die "+"-Polarisation ergibt 
maximalen Unterschied in den beiden Armen, die "x"-Komponente ist nicht 
detektierbar.

Dabei sind "+" und "x" orthogonal zueinander, d.h. die Polarisation 
unterscheidet sich von der Polarisation von EM Wellen, was wohl ein 
Effekt davon ist, das ein Graviton Spin 2 hat, ein Photon jedoch Spin 1.

von Peter Z. (Gast)


Lesenswert?

Michael S. schrieb:
> Ich stelle es mir so vor, dass im transversalen Pfad sowohl Raum
> als auch Zeit gestaucht werden. D.h. innerhalb des IS des transv. Arms

Was hat jetzt der IS mit Gravitationswellen zu tun?!

von Frank M. (ukw) (Moderator) Benutzerseite


Lesenswert?

Peter Z. schrieb:
> Was hat jetzt der IS mit Gravitationswellen zu tun?!

IS = Intertialsystem

von Joe G. (feinmechaniker) Benutzerseite


Lesenswert?

Wer mag, darf ruhig dazu den Originaltext [1] von Einstein lesen.

[1] 
http://articles.adsabs.harvard.edu/cgi-bin/get_file?pdfs/SPAW./1916/1916SPAW.......688E.pdf

von Johann L. (gjlayde) Benutzerseite


Lesenswert?

Frank M. schrieb:
> Johann L. schrieb:
>> Die praktikabelste Schnittrichtung ist die eines
>> relativ zum Interferometer ruhenden Beobachters, d.h. die Schnitte
>> erfolgen so, dass sie für einen solchen Beobachter gleichzeitig sind.
>
> Okay. Man nimmt also tatsächlich die Zeitbetrachtung durch Schnitte
> raus.


Nicht wirklich, im Endeffekt hat man ja 3 Inertialsysteme...
1
A---0
2
    |
3
    |
4
    B

...die Basis des Interferometers (O) und die Enden der beiden Arme (A 
und B).

von Hagen R. (hagen)


Lesenswert?

Korrekt, und das lokale Bezugssystem befindet sich in O, also der 
Strahlteiler der die zurück reflektierten und kohärenten Photonen der 
beiden Arme dann auch dort lokal interferieren lässt.

von Le X. (lex_91)


Lesenswert?

Was ich mich auch Frage:
Die Anlage war grade erst in Betrieb, noch nicht mal offiziell sondern 
noch testweise.
Und schon wird so ein klarer Auschlag entdeckt.

Wie groß sind die Chancen für sowas? Ein solch großes Ereignis, dessen 
Spuren (GW) gerade zu dem Zeitpunkt bei uns eintreffen wenn wir das Ding 
einschalten? Ich meine, es hätte ja auch Jahre dauern können bis wir was 
empfangen. Großer Zufall.

Deswegen denke ich dass seit September laufend neue Ereignisse entdeckt 
werden.
Mich würds nicht wundern wenn wir da noch sehr viel mehr hören in 
nächster Zeit.
Das Universum ist riesig und existiert ewig. Eigentlich müssts im LIGO 
nur noch rauschen vor lauter Ausschlag.
Wie als macht man zum ersten Mal die Augen auf.

Faszinierende Vorstellung...

von Hagen R. (hagen)


Lesenswert?

Jo, ich bin eher gespannt was damit 
https://de.wikipedia.org/wiki/Laser_Interferometer_Space_Antenna alles 
möglich wird, denn es ist vorstellbar das nun auch wieder eine 
Finanzierung möglich wird.

: Bearbeitet durch User
von Johann L. (gjlayde) Benutzerseite


Lesenswert?

le x. schrieb:
> Was ich mich auch Frage:
> Die Anlage war grade erst in Betrieb, noch nicht mal offiziell sondern
> noch testweise.
> Und schon wird so ein klarer Auschlag entdeckt.
>
> Wie groß sind die Chancen für sowas? Ein solch großes Ereignis, dessen
> Spuren (GW) gerade zu dem Zeitpunkt bei uns eintreffen wenn wir das Ding
> einschalten? Ich meine, es hätte ja auch Jahre dauern können bis wir was
> empfangen. Großer Zufall.

Die Signifikanz war besser als 5.1 Sigma.

von Winfried J. (Firma: Nisch-Aufzüge) (winne) Benutzerseite


Lesenswert?

Nachdem die prinzipelle Funktionalität des Versuches demonstriert ist,
wäre es logisch und interessant das Ganze mittels ca 12 Satelliten auf 3 
ortogonalen solaren Umlaufbahn aufzubauen die Genauigkeit wäre um 
mindestens 2-3 Größenordnungen höher und auch ebenso wie die 
Winkellauflösung. Durch ausrichtbare Laser und Spiegel wären  die 
gesamte Sphäre vermessbar.

Langfrisig sollte sich auf diese Weise auch die bislang nur vermutete 
dunkle Materie erfassen lassen, deren Existenz für mich nicht länger in 
Frage zu stellen ist.

Namaste

p.S. Nicht klar bin ich mir ob man der zügigen Machbarkeit wegen mit 
einem Bahndurchmesser knapp außerhalb der Marsbahn zu arbeiten um sich 
möglichst dem Einfluß der großen Planeten zu entziehen und andereseits 
mit den notwendigen Laserleistungen aufwarten zu können.

: Bearbeitet durch User
von Hagen R. (hagen)


Lesenswert?

@Winfried: das hat man ja schon längst geplant gehabt, siehe LISA, aber 
die Finanzierung ist mal wieder das Problem.

https://de.wikipedia.org/wiki/Laser_Interferometer_Space_Antenna

Interessant sind die Arbeiten zu LISA (Dissertationen etc.) die man dazu 
im WEB findet.

von Winfried J. (Firma: Nisch-Aufzüge) (winne) Benutzerseite


Lesenswert?

Hagen R. schrieb:
> aber  die Finanzierung ist mal wieder das Problem.

Hier dürfte jetzt ein Paradigmenwechsel zu erwarten sein. Insofern 
erwarte ich einen run auf diesem Gebiet, es ist von jetzt an das 
bedeutenste und Erfolg versprechenste Forschungsgebiet neben der 
Fusionforschung!

Namaste

von Frank D. (Firma: Spezialeinheit) (feuerstein7)


Lesenswert?

Hat denn nun schon einer einen Bauplan für so ein Ligo Dingens, ein 
Arduino, 2 Laserpointer, ein paar Photodioden.....

von Winfried J. (Firma: Nisch-Aufzüge) (winne) Benutzerseite


Lesenswert?

Fred F. schrieb:
> Hat denn nun schon einer einen Bauplan für so ein Ligo Dingens,
> ein
> Arduino, 2 Laserpointer, ein paar Photodioden.....

just in progress

Beitrag "Laserinterferometer"

Namaste

: Bearbeitet durch User
von Johann L. (gjlayde) Benutzerseite


Lesenswert?

Hagen R. schrieb:
> Jo, ich bin eher gespannt was damit
> https://de.wikipedia.org/wiki/Laser_Interferometer_Space_Antenna
> alles möglich wird,

Das arbeitet aber konstruktionsbedingt bei einer viel kleineren 
Frequenz, die maximale Empfindlichkeit (ca. 1e-20) liegt bei 1e-3..1e-2 
Hz. Mit LISA wäre also so ein Ereignis, wie is im LIGO detektiert wurde 
(Binary Black Hole Merger), nicht nachweisbar.

von Winfried J. (Firma: Nisch-Aufzüge) (winne) Benutzerseite


Lesenswert?

Hagen R. schrieb:
> Jo, ich bin eher gespannt was damit
> https://de.wikipedia.org/wiki/Laser_Interferometer_Space_Antenna alles
> möglich wird, denn es ist vorstellbar das nun auch wieder eine
> Finanzierung möglich wird.

sorry, ich war dem link nicht gefolgt. Aber ja das wird!

Namaste

: Bearbeitet durch User
von Fpgakuechle K. (Gast)


Lesenswert?

▶ J-A von der H. schrieb:

> BTW waren in dieser Nachricht wie selbstverständlich
> die Lichtjahre wieder einmal eine Zeiteinheit.

Passt doch zu einer Meldung über die Theorie des Raum und Zeit 
Kontinuums.

MfG,

von ●DesIntegrator ●. (Firma: FULL PALATINSK) (desinfector) Benutzerseite


Lesenswert?

Sinus T. schrieb:
> ▶ J-A von der H. schrieb:
>> BTW waren in dieser Nachricht wie selbstverständlich
>> die Lichtjahre wieder einmal eine Zeiteinheit.
>
> Sind sie doch auch: es ist genau die Zeit, die das Licht braucht, um
> sich ein Jahr lang auszubreiten

ein Lj ist eine Strecke, keine Zeiteinheit

PUNKT!

ein Auto ist ja auch nur SEHR BEDINGT eine Stunde alt,
wenn es 100Km in einer Stunde zurückgelegt hat

von Winfried J. (Firma: Nisch-Aufzüge) (winne) Benutzerseite


Lesenswert?

▶ J-A von der H. schrieb:
> PUNKT!

.



Bitte!

Namaste

von Le X. (lex_91)


Lesenswert?

Johann L. schrieb:
> Die Signifikanz war besser als 5.1 Sigma.

Johann, lies doch meinen Beitrag bitte nochmal.
Ich will das Ergebnis des Experiments doch nicht in Frage stellen.

Ganz im Gegenteil. Es müssten seit September Unmengen an Wellen 
aufgezeichnet worden sein die nun nach und nach bekannt gemacht werden.

Nur ein Ereignis, noch dazu im Moment der Inbetriebnahme, das wäre ein 
unwahrscheinlicher Zufall.

von Da D. (dieter)


Lesenswert?

le x. schrieb:
> Nur ein Ereignis, noch dazu im Moment der Inbetriebnahme, das wäre ein
> unwahrscheinlicher Zufall.

Quizfrage: Gibt es irgendein physikalischen Effekt, der so ein Ereignis 
in dem Moment, wo die Anlage eingeschaltet wurde, unwahrscheinlicher 
macht? Oder ist die Wahrscheinlichkeit für dieses Ereignis in dem 
Moment, in dem ein Messgerät eingeschaltet wird, nicht exakt genau so 
groß wie in jedem anderem Moment auch? ;-)

: Bearbeitet durch User
von Peter Z. (Gast)


Lesenswert?

Da D. schrieb:
> le x. schrieb:
> Nur ein Ereignis, noch dazu im Moment der Inbetriebnahme, das wäre ein
> unwahrscheinlicher Zufall.
>
> Quizfrage: Gibt es irgendein physikalischen Effekt, der so ein Ereignis
> in dem Moment, wo die Anlage eingeschaltet wurde, unwahrscheinlicher
> macht? Oder ist die Wahrscheinlichkeit für dieses Ereignis in dem
> Moment, in dem ein Messgerät eingeschaltet wird, nicht exakt genau so
> groß wie in jedem anderem Moment auch? ;-)

Wenn so ein Ereignis wie die Verschmelzung zweier schwarzer Loecher im 
Mittel z.B. einmal pro Jahr passiert, dann ist die Wahrscheinlichkeit = 
1 / (60*60*24*365) in jeder Sekunde. Also eher unwahrscheinlich das es 
genau im Einschaltmoment passiert!

von Da D. (dieter)


Lesenswert?

Peter Z. schrieb:
> Also eher unwahrscheinlich das es
> genau im Einschaltmoment passiert!

Ja, ziemlich unwahrscheinlich. Und zwar exakt so unwahrscheinlich, wie 
in jeder einzelnen Sekunde danach. Auch wenn dein intuitives Gefühl 
etwas anderes sagt, war das Ereignis im  Einschaltmoment kein größerer 
Zufall, als z. B. ein Ereignis in genau 393421 Sekunden nach dem 
Einschalten. Der Moment des Einschaltens ist nur für den menschlichen 
Beobachter ein besonderer Moment. Für die kollodierenen Schwarzen Löcher 
was das ein völlig gewöhnlicher Moment.

von Johann L. (gjlayde) Benutzerseite


Lesenswert?

le x. schrieb:
> Johann L. schrieb:
>> Die Signifikanz war besser als 5.1 Sigma.
>
> Johann, lies doch meinen Beitrag bitte nochmal.
> Ich will das Ergebnis des Experiments doch nicht in Frage stellen.
>
> Ganz im Gegenteil. Es müssten seit September Unmengen an Wellen
> aufgezeichnet worden sein die nun nach und nach bekannt gemacht werden.
>
> Nur ein Ereignis, noch dazu im Moment der Inbetriebnahme, das wäre ein
> unwahrscheinlicher Zufall.

Was meinst du mit "Moment der Inbetriebnahme"?
1
More detailed statistical analysis of the signal, and of 16 days
2
of surrounding data from 12 September to 20 October, identified GW150914
3
as a real event, with a significance of over 5.1 sigma or a confidence
4
level of 99.99994%.
LIGO war also nur zeitweise im Betrieb; nach Adam Riese sinds vom 1209 
bis 2010 mehr als 16 Tage :-)

Ist wohl nicht im Dauerbetrieb gewesen, Inbetriebnahme eben.  Und es 
sieht nicht so aus, als hätte jemand nen Schalter umgelegt, und genau in 
diesem Moment wäre was aufgezeichnet worden...

von Johann L. (gjlayde) Benutzerseite


Lesenswert?

...und im Original-Paper:
 
1
We present the analysis of 16 days of coincident observations between
2
the two LIGO detectors from September 12 to October 20, 2015.
3
This is a subset of the data from Advanced LIGO's first observational
4
period that ended on January 12, 2016.
 
Es gibt also noch mehr Daten als die, die für GW150914 herangezogen 
wurden.  Ob die Daten nach dem 20.10 ausgewertet wurden, weiß ich nicht. 
Vermutlich hat sich erst mal alles auf den 14.09 gestürzt — das da ein 
Signal ist war wohl recht beld klar, und danach hat man wohl erst mal 
alles X mal nachgecheckt und die Daten für die Veröffentlichung 
vorbereitet.

Auch weiß ich net, wie genau die Häufigkeit Ereignisse bekannt ist.  Im 
EM Bereich ist so ein BH-Merger wohl nicht zu beobachten, d.h. 
entsprechende Abschätzungen dürften lediglich auf kosmologischen 
Modellen beruhen.

Vielleicht sind Neutronensterne oder Neutronenstern + Schwares Loch ja 
interessanter, immerhin hat ein Neutronenstern keinen Ereignishorizont, 
hinter welchem sich ein Teil der Dynamik verbirgt.

von Uhu U. (uhu)


Lesenswert?

Peter Z. schrieb:
> Wenn so ein Ereignis wie die Verschmelzung zweier schwarzer Loecher im
> Mittel z.B. einmal pro Jahr passiert, dann ist die Wahrscheinlichkeit =
> 1 / (60*60*24*365) in jeder Sekunde. Also eher unwahrscheinlich das es
> genau im Einschaltmoment passiert!

Nicht unwahrscheinlicher, als in jeder anderen Sekunde.

von Le X. (lex_91)


Lesenswert?

Ok ich versuchs nochmal, anders zu formulieren, ansonsten is mir auch 
egal ;-)

Das Teil war relativ kurz in Betrieb, laut Johann 16 Tage, als der 
Merger entdeckt wurde.
Mittlerweile ist es fast ein halbes Jahr im Betrieb.

Es ist also wahrscheinlich, dass mittlerweile weitere Ereignisse 
entdeckt wurden die jetzt nach und nach veröffentlicht werden.

Außer natürlich, so ein Merger ist wirklich verdammt selten, dann hatten 
wir wohl einfach Glück.

Da D. schrieb:
> Quizfrage: Gibt es irgendein physikalischen Effekt, der so ein Ereignis
> in dem Moment, wo die Anlage eingeschaltet wurde, unwahrscheinlicher
> macht? Oder ist die Wahrscheinlichkeit für dieses Ereignis in dem
> Moment, in dem ein Messgerät eingeschaltet wird, nicht exakt genau so
> groß wie in jedem anderem Moment auch? ;-)

Ich kann theoretisch beim ersten mal Lotto Spielen gewinnen.
Spiel ich aber 2 oder gar 10 mal ist die Wahrscheinlichkeit zu gewinnen 
höher.
Aber wir driften ab.

von Chris M. (yoblid) Benutzerseite


Lesenswert?

OT:

le x. schrieb:
> Ich kann theoretisch beim ersten mal Lotto Spielen gewinnen.
> Spiel ich aber 2 oder gar 10 mal ist die Wahrscheinlichkeit zu gewinnen
> höher.

Die Wahrscheinlichkeit ist bei jedem Lottospiel gleich und von der 
Anzahl der Spiele, an denen man teilnimmt, unabhängig. Lediglich die 
Anzahl der Tipps hat Einfluss auf die Wahrscheinlichkeit bei Lotto.
Also: die Chance ist höher, wenn man 10 Lottoscheine für eine Auslosung 
hernimmt, als wenn man je einen Lottoschein für 10 Auslosung nimmt.

von Sven B. (scummos)


Lesenswert?

le x. schrieb:
> Das Teil war relativ kurz in Betrieb, laut Johann 16 Tage, als der
> Merger entdeckt wurde.
> Mittlerweile ist es fast ein halbes Jahr im Betrieb.
Naja, LIGO war ja vorher schon jahrelang im Betrieb.

> Außer natürlich, so ein Merger ist wirklich verdammt selten, dann hatten
> wir wohl einfach Glück.
Wir wissen ungefähr überhaupt nichts darüber, wie häufig diese Merger 
sind. Ich meine, das hier ist der erste, der je beobachtet wurde ... 
oder beobachtet werden konnte ...

von Johann L. (gjlayde) Benutzerseite


Lesenswert?

Frank M. schrieb:
>   "Wieso kann man die Gravitationswellen überhaupt mit dieser
>   Apparatur messen? Die Raumzeit wird doch durch die GW
>   überall gleichzeitig in der Apparatur gekrümmt und damit
>   müssen sich die Effekte derart ausgleichen, dass man eben
>   gar nichts messen kann... obwohl sie evtl. da sind!"

Die Effekte gleichen sich eben nicht aus, weil die Raumzeit ja (zeitlich 
veränderlich) gekrümmt wird.

> Es dauerte ein paar Minuten, bis ich auf die Lösung kam: Man verfällt
> immer wieder in die Newtonsche Denkweise, nämlich dass die Krümmung der
> Raumzeit durch Gravitationswellen instantan passiert, also überall
> gleichzeitig. Aber genau das ist nicht der Fall, denn die
> Gravitationswellen breiten sich "nur" mit Lichtgeschwindigkeit aus.

Instantan geht dennoch, denn so ein Interferometer nimmt G-Wellen auf, 
die sich senkrecht zur Interferometer-Ebene ausbreiten. (Für andere 
Richtungen zeichnet es die entsprechende Projektion auf).  Wellen, die 
sich z-Richtung ausbreiten, erscheinen dem Interferometer instantan; 
ähnlich wie Licht einer Taschenlampt, dass du auf dem Mond richtest, 
dort (abgesehen von der Krümmung der Mondoberfläche und der Wellenfront) 
instantan auftrifft.

>   "Schließlich merkt ein Astronaut nahe am schwarzen Loch
>   auch nicht, dass seine Zeit langsamer geht. Das sieht nur
>   ein außenstehender Beobachter."

Der Astronaut bemerkt aber Gezeiteneffekte, d.h. wenn er kopfüber ins SL 
stürtzt wird sein Kopf stärker angezogen als seine Füße, d.h. er 
empfindet eine Kraft, die ihn in die Länge zieht.

Eine G-Welle prägt genau solche Gezeiteneffekte auf die lokal flache 
Raumzeit auf; der Unterschied ist nur, das die Gezeiteneffekte der 
G-Wellen sich zeitlich ändern und polarisiert sind.

von Frank M. (ukw) (Moderator) Benutzerseite


Lesenswert?

Johann L. schrieb:
> Eine G-Welle prägt genau solche Gezeiteneffekte auf die lokal flache
> Raumzeit auf; der Unterschied ist nur, das die Gezeiteneffekte der
> G-Wellen sich zeitlich ändern und polarisiert sind.

Danke für die wunderbare Erklärung. Ich glaube, ich habe es nun 
verstanden.

von Johann L. (gjlayde) Benutzerseite


Lesenswert?

Wer unter die Oberfläche der immergleichen Pressemeldungen abtauchen 
möchte:  Kip Thorne in action

https://www.youtube.com/watch?v=vjmNh2XPF88

: Bearbeitet durch User
von Reinhard M. (Gast)


Lesenswert?


von Johann L. (gjlayde) Benutzerseite


Lesenswert?

Siggi S. schrieb im Beitrag #4498750:
> Schon wieder ein Wackelkontakt!
> Genau wie bei dem Higgs-Boson.

Der Wachelkontakt ist in deinem Hirn; beim H-Boson gabs nämlich keinen 
Wackler.

von Sven B. (scummos)


Lesenswert?

Und dass die Tachyonen ein Messfehler sind war glaube ich auch jedem 
Mensch auf der Welt klar, inklusive der Leute die das Paper 
veröffentlicht haben.

von Jeffrey L. (the_dude)


Lesenswert?

Siggi S. schrieb im Beitrag #4498750:
> ▶ J-A von der H. schrieb:
>> Gravitationswellen beobachtet
>
> Schon wieder ein Wackelkontakt!
> Genau wie bei dem Higgs-Boson.
> Diese Wackelkontakte können einen echt in den Wahnsinn treiben. Ich
> schwöre.

Worin liegt die Aussage Deines Beitrags?
Muss die Nachricht vom 12.02. revidiert werden? - link?

von Johann L. (gjlayde) Benutzerseite


Lesenswert?

Jeffrey L. schrieb:
> Worin liegt die Aussage Deines Beitrags?

Na seit der Veröffentlichung zu GW150914 sprießen überall "Experten" aus 
dem Boden die binnen 1 Minute zu dem Schluss kommen, LIGO sei überhaupt 
nicht in der Lage Gravitationswellen nachzuweisen und nur ein Hort von 
Drittmittelschnorrern.

LIGO hatte First Light in 2002, und seither haben die "Experten" gepennt 
und sind eben erst jetzt aufgewacht.  Am besten verschwinden diese 
Schnarch-Experten wieder in die Löcher, aus denen sie vorgekrochen sind.

: Bearbeitet durch User
von Bernd K. (prof7bit)


Lesenswert?

Hier ist ein sehr tiefgehender und sehr ausführlicher Podcast (fast 3 
Stunden) über die Thematik. Tim Pritlove lässt sich von Dr. Oliver 
Jennrich von der ESA (eLISA-Projekt) das Thema 
Gravitationswellenastronomie in allen Einzelheiten erklären, sehr zu 
empfehlen:

http://raumzeit-podcast.de/2016/02/18/rz061-gravitationswellenastronomie/

: Bearbeitet durch User
von ●DesIntegrator ●. (Firma: FULL PALATINSK) (desinfector) Benutzerseite


Lesenswert?

zähle die "f"

von (prx) A. K. (prx)


Lesenswert?

Siggi S. schrieb im Beitrag #4502847:
> Wo ist bloß mein Hirn. Wie findet man sein Hirn ohne Hirn. Da weiß man
> gar nicht wie man suchen noch geht das schon wieder los...

Deshalb habe Ersatzhirne ja auch eine Telefonnummer. Anrufen (lassen) 
und wo es klingelt, scheppert, quäkt oder wie auch immer, da ist es.

von Jörg W. (dl8dtl) (Moderator) Benutzerseite


Lesenswert?

Siggi S. schrieb im Beitrag #4502844:
> In den Achtzigern gab es Befürchtungen, daß durch Kosmische Teilchen
> einzelne Bits im RAM gekippt werden könnten.

Da brauchte es keine „kosmische Teilchen“ dafür.  Die Alphastrahlung,
die die damaligen Keramikgehäuse selbst emittierten, genügte vollauf.

von Johann L. (gjlayde) Benutzerseite


Lesenswert?

Hagen R. schrieb:
> Wäre es möglich mehrere LIGO Detektoren mit Hilfe der Methoden die man
> bei der Quantenverschränkung benutzt die LIGO Detektoren so zu
> synchronisieren das man quasi nicht mit mehreren LASERn mißt sondern
> quasi mit zueinander synchronisierten LASERn?

Ich sehe nicht wozu das gut sein sollte.

Zum einen hat man dann keine zwei unabhängigen Observatorien mehr; 
aber gerade deren Unabhängigkeit ist wichtig.  Zum anderen müssen die 
beiden Lasersysteme weder in Frequenz noch Phase noch sonstwie 
abgestimmt sein.  Eine solche Abstimmung bringt m.E. nur Nachteile wie 
technische Komplexität — vorsusgesetzt, eine entsprechende Verschränkung 
wäre überhaupt technisch machbar und ihre Vorteile theoretisch 
ausgearbeitet und verstanden.

von Hagen R. (hagen)


Lesenswert?

Johann L. schrieb:
> Hagen R. schrieb:
>> Wäre es möglich mehrere LIGO Detektoren mit Hilfe der Methoden die man
>> bei der Quantenverschränkung benutzt die LIGO Detektoren so zu
>> synchronisieren das man quasi nicht mit mehreren LASERn mißt sondern
>> quasi mit zueinander synchronisierten LASERn?
>
> Ich sehe nicht wozu das gut sein sollte.
>

Naja, erstmal ist es eine "Spinnerei" von mir. Aber gehen wir mal von 
zwei Detektoren aus deren LASER quantenverschränkt sind. Wir benutzen 
die "eigenen" Photonen jeder Anlage wie gehabt, also so wie es jetzt 
schon gemacht wird. Da sie aber bei beiden Anlagen zusätzlich auch noch 
verschränkt sind sollte man bei der Auswertung dieser Verschränkung in 
jeder Anlage auch das messen können was die andere Anlage zum Zeitpunkt 
X ebenfalls gerade detektiert. Beide Anlagen könnten nun die später 
elektronisch stattfindende Korrelation der Signale auf optischem Wege 
viel direkter und in Echtzeit durchführen. Eine optische Korrelation 
arbeitet ja wie ein hochparalleler Quantencomputer und wäre damit viel 
leistungsfähiger als das jetzige System.

von Johann L. (gjlayde) Benutzerseite


Lesenswert?

Hagen R. schrieb:
> Johann L. schrieb:
>> Hagen R. schrieb:
>>> Wäre es möglich mehrere LIGO Detektoren mit Hilfe der Methoden die man
>>> bei der Quantenverschränkung benutzt die LIGO Detektoren so zu
>>> synchronisieren das man quasi nicht mit mehreren LASERn mißt sondern
>>> quasi mit zueinander synchronisierten LASERn?
>>
>> Ich sehe nicht wozu das gut sein sollte.
>

> Da sie aber bei beiden Anlagen zusätzlich auch noch
> verschränkt sind sollte man bei der Auswertung dieser Verschränkung in
> jeder Anlage auch das messen können was die andere Anlage zum Zeitpunkt
> X ebenfalls gerade detektiert.

Es gibt nicht den Zeitpunkt X.  Die Anlagen liegen 1/100 Lichtsekunde 
voneinander entfernt, d.h. nur Ereignisse, die entsprechend 
triangulieren, treffen gleichzeitig ein.

> Beide Anlagen könnten nun die später elektronisch stattfindende
> Korrelation der Signale auf optischem Wege viel direkter und in
> Echtzeit durchführen.

Dadurch verliert man aber die Flexibilität digitaler Signalanalyse.  Auf 
das Signal werden ja unterschiedlichen Analyseverfahren wie 
Chirplet-Analyse angewandt.  Die Signalanalyse ist zwar sehr aufwändig, 
aber gut parallelisierbar und auch nicht das Hauptproblem der 
GW-Detektoren.

> Naja, erstmal ist es eine "Spinnerei" von mir. Aber gehen wir mal von
> zwei Detektoren aus deren LASER quantenverschränkt sind.

äh... die paar verschränkten Photönchen, die man bisher darstellen kann, 
sind doch in keinster Weise für ein GW-Interferometer geeignet, allein 
schon wegen der benötogten Intensität und Kohärenz.  LIGO hat im 
Fabry-Pérot des Interferometers 100kW Laserleistung des stabilsten 
Lasers auf dem Planeten!

Außerdem hat jedes der Observatorien inzwischen über 1000 Regelkreise. 
Mit einer Totzeit von > 10ms um beide Interferometer zu synchronisieren 
verlöre man doch ein Großteil der Güte dieser Regelkreise.

Zur Strahlintensität:  Die Längenänderung der Schenkel des 
Interferometers übersetzt sich in eine zu messende Phasenverschiebung 
Δφ.  Schon im original-LIGO war die Phasenverschiebung besser zu 
bestimmen als 1e-9, was sich durch die Energie-Zeit-Unschärfe übersetzt 
in eine Mindestanzahl an benötigten Photonen gemäß
Das macht mehr als 1e18 Photonen, und mit einem angestrebten 
Empfindlichkeitszuwachs des Interferometers wächst die Photonenanzahl 
quadratisch; inzwischen ist man bei N_γ = 1e21 oder darüber.

von Hagen R. (hagen)


Lesenswert?

Johann ich danke dir für deine Erklärungen.

von Johann L. (gjlayde) Benutzerseite


Angehängte Dateien:

Lesenswert?

Johann L. schrieb:
> Die Längenänderung der Schenkel des Interferometers übersetzt sich in
> eine zu messende Phasenverschiebung Δφ [...] mit einem angestrebten
> Empfindlichkeitszuwachs des Interferometers wächst die Photonenanzahl
> quadratisch;

Irgendwann ist eine Leistungssteigerung nicht mehr möglich; sie führt 
zum Beispiel zur Erwärmung und damit Verzug der Spiegel.  Die Spiegel 
werden zwar aktiv und selektiv zugeheizt um Änderungen auszugleichen, 
aber das geht auch nur begrenzt.

Eine Möglichkeit, das Rauschen am Detektor zu vermindern ohne die 
Leistung weiter zu erhöhen, ist squeezed Light (der deutsche Begriff 
"gequetschtes Licht" ist einfach furchtbar).  Wie squeezed Light genau 
eingesetzt wird um das Rauschen zu vermindern versteh ich nicht, 
vielleicht hat hier ja jemand den Durchblick und kann das mal erklären?

Der Aufbau anbei ist ein vereifachtes Laufbild des GEO600 Lasersystems 
ohne Regelkreise:
1
For a Michelson interferometer operated close to a dark output port,
2
squeezed states can be utilized by injecting them into the observatory's
3
signal output port and spatially overlapping them with the high power
4
laser field at the beam splitter. The squeezed quadrature has to be
5
controlled such that, after being reflected off the interferometer, it is
6
in phase with the readout (amplitude) quadrature of the observatory output
7
light.  This scheme produces path entanglement between the high-power
8
light fields in the interferometer arms and reduces the photon counting
9
noise on the photo diode in a way that can be explained only by photon
10
correlations that are stronger than any classical correlation.

"A gravitational wave observatory operating beyond the quantum 
shot-noise limit: Squeezed light in application"
http://arxiv.org/abs/1109.2295

Squeezed Light wird also am Ausgang des Interferometers eingespeist?

: Bearbeitet durch User
von Johann L. (gjlayde) Benutzerseite


Lesenswert?

Liest sich wie Magie :-)
1
The idea is to replace the vacuum fluctuations, which enter the interferometer
2
through the dark port, with a squeezed vacuum to lower the noise contributions
3
in the variable of interest.  A Faraday rotator is used for the injection of the
4
squeezed field into the dark port of the interferometer. The squeezed field propagates
5
through the interferometer, leaves the interferometer through the dark port,
6
and is eventually detected together with the GW signal by the photodetector.

http://www.amps.uni-hannover.de/dissertationen/chelkowski_diss.pdf

Werd ich mir bei Gelegenheit mal näher anschauen...

Bitte melde dich an um einen Beitrag zu schreiben. Anmeldung ist kostenlos und dauert nur eine Minute.
Bestehender Account
Schon ein Account bei Google/GoogleMail? Keine Anmeldung erforderlich!
Mit Google-Account einloggen
Noch kein Account? Hier anmelden.