www.mikrocontroller.net

Forum: Offtopic Hilfestellung zu Fourierreihe


Autor: MathFreak (Gast)
Datum:
Angehängte Dateien:

Bewertung
0 lesenswert
nicht lesenswert
Guten Abend,

ich bin schon seit drei Stunden mit der Aufgabe beschäftigt(Aufgabe
befindet sich im Anhang).
Ich habe da ein Problem den Gleichwertanteil zu berechnen.
Stimmt es, dass ich die Fläche von x=0 bis x=1 aufsummieren kann und
anschließend mit zwei noch multiplizieren muss?
Wie sieht es eigentlich mit den Sinusgliedern und Kosinusgliedern aus?

Bye

Autor: Mario (Gast)
Datum:

Bewertung
0 lesenswert
nicht lesenswert
Es sei die Periode gleich p=2*L, dann gilt:

Gleichanteil a0 = 1/(2*L) int_{-L}^{L} f(t) dt

Funktion gerade: a0= 2/(2*L) int_{0}^{L} f(t) dt

bei Dir:
a0 = 2/(T-2)*int_0^(T/2-1) f(t) dt.

T ist aber nirgends gegeben. Damit f(t) überall deriniert ist, sollte
die Periode aber zwei sein - oder täusche ich mich da?

Autor: MathFreak (Gast)
Datum:

Bewertung
0 lesenswert
nicht lesenswert
Moin Mario,

als T ist gegeben. T = 2.

Autor: MathFreak (Gast)
Datum:

Bewertung
0 lesenswert
nicht lesenswert
Und was meinst du mit L?
Ich habe keine Anung was das hier bedeuten soll a0 = 1/(2*L)
int_{-L}^{L} f(t) dt. Für was steht das -L und Hoch L?

Autor: MathFreak (Gast)
Datum:
Angehängte Dateien:

Bewertung
0 lesenswert
nicht lesenswert
Ich habe mal eine Skizze entworfen. So müsste duch das ganze aussehen
wenn die Geschichte hier gerade sein soll oder?

Autor: MathFreak (Gast)
Datum:

Bewertung
0 lesenswert
nicht lesenswert
Hilfreich wäre für mich, dass ich einen kleines Anlauf bekommen wie ich
nun die ganze Aufgabe rechnen muss.

Autor: Mario (Gast)
Datum:

Bewertung
0 lesenswert
nicht lesenswert
OK, hatte als Periode T-2 gelesen, nicht T=2 - geht auf dem Scan
irgendwie unter.

L ist hier natürlich T/2
"int" meint hier Integral, das nachgestellte "_{}" markiert die
untere Grenze, das folgende "^{}" die obere Grenze.

Das ist Latex-Schreibweise, ich dachte das ist soweit geläufig.

Sodann, nachdem T=2 ist, ergibt sich für a0:

a0 = int_{0}^{1} f(t) dt

Gerade-Funktion = reine cos-Reihe.

Autor: MathFreak (Gast)
Datum:

Bewertung
0 lesenswert
nicht lesenswert
Hi Mario,

danke für die Tipps. Ist meine Skizze korrekt?

Autor: MathFreak (Gast)
Datum:

Bewertung
0 lesenswert
nicht lesenswert
Sorry leider verwende ich gar kein LATEX.
Muss der Gleichwertanteil nicht so aussehen:

a0 = 2* (2/4) * [int_{0}^{1} f(t) dt]

ich muss doch die Fläche von der Grenze 0 bis eins aufsummieren und
anschließend mit zwei multiplizieren, oder?

Die alg Formel für den Gleichwertanteil lautet:

a0 = 1/T [int_{-T/2}^{T/2} f(t) dt]

Kosinusglieder:
ak = 2/T [int_{-T/2}^{T/2} f(t) * cos(kwt) dt]     (w = Omega)

Sinusglieder:
bk = 2/T [int_{-T/2}^{T/2} f(t) * sin(kwt) dt]     (w = Omega)
In diesem Beispiel müsste dann bk Null sein, da f(t) gerade und
sin(kwt) ungerade sind ?!

Autor: MathFreak (Gast)
Datum:

Bewertung
0 lesenswert
nicht lesenswert
Ich habe mich oben verschrieben:

Die Formel müsste so aussehen:
a0 = 2* (1/2) * [int_{0}^{1} f(t) dt]      (da T = 2)

Bitte melde dich an um einen Beitrag zu schreiben. Anmeldung ist kostenlos und dauert nur eine Minute.
Bestehender Account
Schon ein Account bei Google/GoogleMail, Yahoo oder Facebook? Keine Anmeldung erforderlich!
Mit Google-Account einloggen | Mit Yahoo-Account einloggen | Mit Facebook-Account einloggen
Noch kein Account? Hier anmelden.